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Introduction

e The discovery at LHC of a scalar resonance with m =126 GeV
compatible with the SM Higgs gives support to the simplest EW
Symmetry Breaking Sector (SBS) with just one scalar doublet

e Future measurements at ATLAS and CMS will constrain the Higgs
mass and branching ratios with better precision

 However the Higgs self-couplings, i.e.
the shape of the potential, difficult to
constrain with LHC luminosity design

value

e We need alternative probes of the SBS. Cosmology?



Introduction

e EW phase transition difficult to explore, but still some effects: EW

inflation, baryogenesis, magnetogensis, ... vachaspati, 91; knox, Turner, 93; Kuseneko, 99

 Non-minimal couplings and Higgs inflation (higher energies)
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Do metric perturbations modify the
Higgs potential (VEV)?.
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* NO at classical level (scalar field)
e But quantum fluctuations feel the .

geometry

Bezrukov, Shaposhnikov, 08
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Phys. Rev. Lett. 112, 241301, Y. Hamada, et al.

e Calculate the one-loop effective potential with metric perturbations
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Effective potential in Minkowski space-time

Lsps = (Du®)(DFP) — M?(TD) — M(@TD)? + Ly

Higgs ¢=i(92+?ﬁ91 )
doublet V2 \ ¢+ if3

¢(t,x) = ¢ + do(t, x)
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D¢+ V'(¢) =0 V(8) = Vo + M4 + 4

Tree-level potential




Effective potential in Minkowski space-time

VEV one-loop equation of motion

T lr T 1 e T
06+ V(@) + V" (8)(36%) = 0.

~—2
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D¢+ V(¢) =0

Fluctuations equation

08¢+ V"($)ép = 0
~——

m?(¢)
Effective Vep () = V(@) + 5 [ dm3(0/62(n, %)/}
potential N A

one-loop contribution




Effective potential in Minkowski space-time
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Regularization

m?(¢) = M2 + 3)¢°




Renormalization
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Countertems Verp(9) =VI(¢) +Vi(9) + Acc + 5o md* + ZA)@A'




Effective potential in curved space-time

* In Minkowski space-time there is a privileged class of observers (inertial
observers) which share the same vacuum state (Poincaré invariance).

* In curved space-time there is no natural definition of vacuum

* |f we are interested in calculating a local expression for the effective
potential, we can use the coordinates (and vacuum) associated to a free-
falling observer (Schwinger- de Witt local effective action) valid in a local
neighborhood of the observer.

* However we are interested in comparing the effective potential at space-
time points with large separations (beyond the curvature radius) and the local
expansion might not be appropriate. Adiabatic vacuum for comoving
observers.



Locally inertial vs. comoving adiabatic vacua

39(1.%) = [ a"k (axdon (1. x) + al 07 (1.))




Locally inertial vs. comoving adiabatic vacua

! Locally inertial observer: Schwinger-de Witt

3 |O>a: representation explicitly covariant but local
1 .1 . 1 2 i
Guv = Nuv — §Rp.au,8:rair'd - gR-,u.av,ﬂ;f}':ra:rljirﬂ} =+ (_%R-p.ar/lﬁ;'}frj =+ EBQH.IB)\B)\’}’U(S) :r&:r'ﬁ:r J :ré 4
2
\ F Comoving observer: global but not
‘{; |O> com explicitly covariant

ds? = a*(n) {[1 + 20 (n,x)] dn? — [1 — 2W(n,x)] dxz}




Effective potential in curved space-time

Locally inertial observers

Effective action W

W] — /[dé]e"s[g“”’qs] = /[dcﬁ’]e_%fd‘”\/gqb(%mgiﬁm@é = (det O)~/
O

For constant fields

Vrt B =V + oy (2@ + (3 ) m @R ) m (mi(ﬁ) + O(R?)

3272 \ 2 6 /

Valid in a normal
neighborhood




Effective potential in curved space-time

Comoving observers

ds? = a?(n) {[1 4201, %)] di — [1 = 2W (7, %)] dx?}

* Since the background metric and fields are now space-time dependent, the

effective potential is unsuitable to determine the Higgs VEV dynamics (we
need to know the full effective action).

* However, for slowly varying background fields compared to the frequency
of quantum fluctuations. i.e w® > H* and w? > {V2®, VU]
we can neglect the gradient terms and work with a quasi-potential. sinha and Hu, 88

* |n this case we can use the adiabatic (WKB) approximation for the quantum
fluctuations modes




Equations in perturbed Robertson-Walker background

Spatially flat RW
longitudinal gauge ds* = a*(n) {[1 + 2®(n,x)] dn® — [1 — 2¥(n, x)] dxg}

D¢+ V'(¢) =0.

¢+ (2H — D — 30 — (14 2(P + ¥))V?¢
—V¢-V(®— W) +a?(1+28)V'(¢) =0.

First-order equations

é(n,x) = (1, %) + dp(1,x)




Equations in perturbed Robertson-Walker background

VEV one-loop equation of motion

¢ + (2H — & — 30')¢ — (1 +2(® + ¥))V34
—V¢-V(®— )

+a%(1 + 20) (V( )+ ;v 0|5¢) _0.

Ve (czb)
1t \ Ve’ff(@ =0

slowly varying back.

Quantum fluctuations equation

§¢" + (2H — ' — 39" )6¢" — (1 +2(® + ¥))V35¢
—V8p-V(® — U) + a?(1 + 20)V"($)d¢p = 0.




Quantization

rertin 30(.%) = [ @K (adon(1.%) + ol 567 (1))

Scalar
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Adiabatic + perturbative expansion

Adiabati |
epr:n:ic;lc'l 5¢k: (771, X) — fk(?’]j x) eiaﬁ,c("’?\sx)

/

slowly varying fast varying
amplitude. phase

Leading adiabatic order O (w?)

—02 4+ (V0,)2(1 4 2(® + U)) + m2a?(1 4+ 20) = 0.

Next to leading adiabatic order O (w)

2110 + frby + frb,(2H — @' — 3¥)
— 2V i - VO — V20, =0




Adiabatic + perturbative expansion

Perturbative

expansion 5(3539 (T].}X) — fk(na X) eiﬁk(ﬂsx)

/

fk(na X) - Fk(n) + 5fk:("'?fx)
1
Ou(n,3) == [ wl') dn’ +1c- x + S8,
Lowest-order solution
56\ (1, %) = Fy(n)ek>—t /" wm)dn
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Fi(n) = a(27)3/2y/20 w? = k? + m2a?




Perturbative solutions

Quantum Metric
fluctuations perturbations




Effective potential

_ %/dm%ow?(n, x)[0)

_ §/dm /d?’k n) + 2Fi(n) (Re d fi.(n,x) + Im 66(n, x))
= V"(n) + Vi(n,x)

{ K

Homogeneous Inhomogeneous




Homogeneous contribution: renormalized potential

Three-momentum cutoff vs. dimensional regularization




Inhomogeneous contribution

Matter dominated
universe

® and ¥ time independent

Cutoff regularized potential

Vips(d) = ﬂ;zgﬁ)(ff ) g 4 3w) - (@ + mp)] @) (mz(gb)QQ) R(1,%) + O(A~2)

PN 6472 A2

R(n,x) = F {(«p(p) ~ ¥(p)) (1 i (COS“”” " 4Sinza(§n)))]

Renormalized potential

vy a ™) (mZ(éB)

Verp(¢) =V (o) + 12

Super-Hubble modes: no contribution to leading order

pn K 1 R(n,x) ~ O(p*n?)




Renormalization

Space-time dependent
beta function

BN = Jios = (1 + R.%)
() = T8 ME_ Gy 4 R ,0)

= d(logp)  (47)?

Inhomogeneous renormalization: space-time dependence of the renormalized

mass and coupling constant (renormalization conditions)




Zero-point energy

Vacuum energy per field mode
homogeneous space-time
(leading adiabatic order) Eﬂac(k) — 5 hw

Vacuum energy per mode
perturbed space-time

1 3 1 1
E,oo(k)=Hhw| = + U 4+ —V? _ ddn|d
=t (5 + 5+ 59" [ [owan) an)

Albareti, Cembranos, A.L.M. arXiv:1404.5946

k<m




Higgs vacuum expectation value

Veff’((g’vac) =0

b S+ 52
\

Homogeneous VEV Perturbations

contribution
|44 ff(éﬂ) =0

A
Acb = — 3)\272 =
do 327

/

Space-time
dependent VEV

3
25672




Higgs vacuum expectation value

Gravitational slip b — P
(Eddington parameter) w=1— N = ——-

Higgs VEV variation — = 10_3 bro

Gravitational slip is small in standard cosmology with contributions from
neutrino diffusion and second order perturbations

Saltas, et al. arXiv:1406.7139

w| < 1073




Gravitational slip
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Cosmological scales




Phenomenological consequences

Uzan, 2010




Conclusions

* We have calculated the Higgs one-loop effective potential in a perturbed
Robertson-Walker background using the adiabatic vacuum of comoving

observers

* We have obtained an inhomogeneous contribution to the effective potential
and also to the running of the renormalized mass and coupling constant

* Quantum field theory does not predict the value of any physical parameter
(they must be measured). However, the results suggest a space-time

dependence of the Higgs mass and VEV.

* Variations in the Higgs VEV imply variations in the particle masses, which
could reach 103 @ @ . Potential signals or limits on gravitational slip.

* Improved atomic spectra data required. Other tests?



