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•   The discovery at LHC of a scalar resonance with mH= 126 GeV 

compatible with the SM Higgs gives support to the simplest  EW  

Symmetry Breaking Sector (SBS) with just one scalar doublet   

•   However the Higgs self-couplings, i.e. 

the shape of the potential, difficult to 

constrain with LHC luminosity design 

value 

•   Future measurements at ATLAS and CMS will constrain the Higgs 

mass and branching ratios  with better precision 

   Introduction 

•   We need alternative probes of the SBS. Cosmology?  



•   EW phase transition difficult to explore, but still some effects: EW 

inflation, baryogenesis, magnetogensis, …   Vachaspati, 91; Knox, Turner, 93;  Kuseneko, 99  

•   Do metric perturbations modify the 

Higgs potential (VEV)?. 

•   Non-minimal couplings and Higgs inflation (higher energies)  
                                                                                                                                                                                                                        Bezrukov, Shaposhnikov, 08 

   Introduction 

•   Calculate the one-loop effective potential with metric perturbations 

•   NO at classical level (scalar field) 

•  But quantum fluctuations feel the       

    geometry  
Phys. Rev. Lett. 112, 241301, Y. Hamada, et al. 



• Higgs VEV, varying fundamental constants  and 
phenomenology  

•    Higgs effective potential in Minkowski space-time 

•   Effective potential in curved space-time 

I. Refreshing basic ideas 

I. Locally inertial vs. comoving observers 

OUTLINE 

•   Perturbed Robertson-Walker backgrounds 

I. Perturbative solutions 
II. Homogeneous and inhomogeneous contributions 



   Effective potential in Minkowski space-time 
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   Effective potential in Minkowski space-time 
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Countertems 



•   In Minkowski space-time there is a privileged class of observers (inertial 

observers) which share the same  vacuum state (Poincaré invariance). 

•   If we are interested in calculating  a local expression for the effective 

potential, we can use the coordinates (and vacuum) associated to  a free-

falling observer (Schwinger- de Witt local effective action) valid in a local 

neighborhood of the observer. 

•   In curved space-time there is no natural definition of vacuum 

   Effective potential in curved space-time 

•   However we are interested in comparing the effective potential at space-

time  points with large separations (beyond the curvature radius) and the local 

expansion might not be  appropriate. Adiabatic vacuum for comoving 

observers.   



   Locally inertial vs. comoving adiabatic  vacua 



Locally inertial observer: Schwinger-de Witt 

representation explicitly covariant but local   

Comoving observer: global but not 

explicitly covariant 

   Locally inertial vs. comoving adiabatic  vacua 



   Effective potential in curved space-time 
Locally inertial observers 

Effective action  W 

O 

Valid in a normal 
neighborhood 

For constant fields 



   Effective potential in curved space-time 
Comoving observers 

•   Since the background metric and fields are now space-time dependent, the 

effective potential is unsuitable to determine the Higgs VEV dynamics (we 

need to know the full effective action). 

•   In this case we can use the adiabatic (WKB) approximation for the quantum 

fluctuations modes 

•   However, for slowly varying background fields compared to the frequency  

of  quantum fluctuations.  i.e                           and                                                                                                             

we can neglect the gradient terms and work with a quasi-potential.  Sinha  and Hu, 88 



   Equations in perturbed Robertson-Walker background 

Spatially flat RW 

longitudinal gauge 

First-order equations 



   Equations in perturbed Robertson-Walker background 

VEV one-loop equation of motion 

Quantum fluctuations equation 

  
slowly varying back. 



   Quantization 

Canonical 

quantization 

Scalar 

product 



   Adiabatic + perturbative expansion 

slowly varying  
amplitude. 

fast varying  
phase 

• Leading adiabatic order                   

• Next to leading adiabatic order                   

Adiabatic 
expansion 



   Adiabatic + perturbative expansion 

Lowest-order solution 

Perturbative 
expansion 



   Perturbative solutions 

Defining 

Quantum 
fluctuations 

Metric 
perturbations 

Amplitude 
perturbation 

Phase 
perturbation 



   Effective potential 

Inhomogeneous Homogeneous 



   Homogeneous contribution: renormalized potential 

  
constant renormalization scale 

Dimensional  
regularization constant  equation of state 

  

 evolving  renormalization scale 

Cutoff 
regularization 

evolving  equation of state 

   Three-momentum cutoff vs. dimensional regularization 



Cutoff regularized potential 

Super-Hubble modes: no contribution to leading order 

Renormalized potential 

   Inhomogeneous contribution 

            and        time independent 
Matter dominated 

universe 



   Renormalization 

Space-time dependent  
beta function 

Inhomogeneous renormalization: space-time dependence of the renormalized 

mass and coupling constant (renormalization conditions) 

Dimensional regularization not feasible in this case.  

Regularization dependence? 



   Zero-point  energy 

Vacuum energy per field mode 
homogeneous space-time 
(leading adiabatic order) 

Vacuum energy per mode 
perturbed space-time 

Albareti, Cembranos, A.L.M.  arXiv:1404.5946  



Assuming constant 

tree-level parameters 

and 

   Higgs vacuum expectation value 

Homogeneous VEV Perturbations  

contribution 

Space-time 

dependent VEV 



Gravitational slip 
(Eddington parameter) 

Gravitational slip is  small in standard cosmology with  contributions from 
neutrino diffusion and second order perturbations 

Higgs VEV variation 

Saltas, et al.  arXiv:1406.7139  

   Higgs vacuum expectation value 



   Gravitational slip 

Ballesteros, et al.  arXiv:1112.4837  

Cosmological  scales 



   Phenomenological consequences 

... 

Local constraints 

• Atomic  clocks on Earth 

• Milky Way molecular clouds 

Astrophysical and 
cosmological constraints 

• Quasar absortion spectra 

• CMB 

• BBN 

Uzan, 2010 



•   We have calculated the Higgs one-loop effective potential in a perturbed 

Robertson-Walker background using the adiabatic vacuum of comoving 

observers  

•   Improved atomic spectra data required. Other tests? 

•   We have obtained an inhomogeneous contribution to the effective potential 

and also to the running of the renormalized mass and coupling constant 

   Conclusions 

•   Quantum field theory does not predict the value of any physical parameter 

(they must be measured). However, the results suggest a space-time 

dependence of the Higgs mass and VEV. 

•   Variations in the Higgs VEV imply variations in the particle masses, which 

could reach  10-3 v F . Potential signals or limits on gravitational slip. 


