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• Motivations and context: the DE problem

• Local and non-local GR modifications

Outline

Part I: theory

Part II: phenomenology

• Spherical solutions (no vDVZ discontinuity)

• Cosmology: background & perturbations



Local modifications: massive gravity

Fierz-Pauli:    ghost-free at the linear level

dRGT:    ghost-free at the nonlinear level

bigravity:  extra massive spin2, 
    general covariant and still ghost-free

no flat FRW, instabilities
need for a reference, nondynamical metric

good background
perturbations under investigations

Modify GR in the infrared to get a DE model
  with same # of parameters as ΛCDM:

Λm



Non-local modifications:
general covariance without
extra degrees of freedom

�
1− m2

�

�
Gµν = 8πGTµν

(Arkani-Hamed, 
Dimopoulos, Dvali and 
Gabadadze 2002)

degravitation:

�−1f(x) ≡
�

d4y Gr(x, y) f(y)

retarded Green function
to ensure causality

r



δ

δφ(x)

�
dx�φ(x�)(�−1φ)(x�) =

δ

δφ(x)

�
dx�dx��φ(x�)G(x�, x��)φ(x��)

=

�
dx�[G(x, x�) +G(x�, x)]φ(x�)

Cannot be obtained from a variational principle:

no fundamental lagrangian: effective theory
(ghost problem cannot be addressed)

Still, non-local terms arise naturally in several contexts:

• when integrating out extra degrees of freedom (other 
fields or short-wavelength modes)

• in QFT, computing effective equations for in-in matrix 
elements (associated to classical observables) 
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possible implementations:

Gµν −m2(�−1Gµν)
T = 8πGTµν

Sµν = ST
µν + (∇µVν +∇νVµ) ∇µST

µν = 0

does not work:

( )

in general, taking the transverse part of 
tensors brings instabilities:

ST
µν ← S0

0 , S
i
i , V0

r

first try:



Gµν −m2(gµν�−1R)T = 8πGTµν

two ways out :

SNL =
1

16πG

�
d4x

√
−g

�
R−m2R

1

�2
R

�

I:

II:

(gµνS)
T ← S

with

trick: “derive” it from an “action”, e.g.:

∇µKNL
µν ≡ 0

Gµν −m2KNL
µν = 8πGTµν

� → �r

r

r

I and  II  are equivalent at linear level



Part II

Absence of vDVZ discontinuity and of  
a strong coupling regime 

•  write the eqs of motion of the non-local theory in spherical 
symmetry: U(r), S(r), plus 

 
•  for mr <<1: low-mass expansion 

•  for r>>rS: Newtonian limit  (perturbation over Minowski) 

•  match the solutions for rS<< r << m-1 (this fixes all coefficients) 

A. Kehagias and MM 2014 

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θ dφ2)

Spherical solutions



•  result: for r>>rs 

  

      
       
     the limit                is smooth ! 
 
By comparison,  in massive gravity the same computation gives 

A(r) = 1− rS
r

�
1 +

1

3
(1− cosmr)

�

B(r) = 1 +
rS
r

�
1− 1

3
(1− cosmr −mr sinmr)

�

A(r) � 1− rS
r

�
1 +

m2r2

6

�

m → 0

A(r) = 1− 4

3

rS
r

�
1− rS

12m4r5

�

vDVZ discontinuity breakdown of linearity below 
rV=(rs/m^4)1/5 

for rs<<r<< m-1: 

For both models      and      one finds:I II

Both     and       are ok with solar system constraintsI II

( )



Cosmology:  background

trade nonlocal for local terms

and run numerical evolution 
starting from deep in radiation era

�−1
r R → U : �rU = R ,R = 0 ⇒ U = 0

(R = 0)

adjust the only parameter m in order to have                  today,
if possible

ρ+ ρDE = ρ0

(as is done in ΛCDM, after all)



�10 �8 �6 �4 �2 0 2
0.0

0.5

1.0

1.5

2.0

x

Ρ D
E
�x��Ρ 0

�15 �10 �5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

x

�
i�x�

= log
a

a0

γ ≡ m
2

9H2
0

=
0.0891 
0.0504 (I)

(II)

The effective DE is sourced by R and starts growing only during MD



DE equation of state

-1.04 

-1.14 

(I)

(II)
w0

DE = phantom

a general feature of DE 
models sourced by R:

one unavoidably has                   and                 at some pointρ̇DE > 0 ρDE > 0



strictly speaking, one never has

so one should check that small deviations from the 
natural initial conditions for the auxiliary local fields

do not spoil the good behaviour.

Stability:

R = 0

Uin = 0

Indeed one always finds:
δU � eαx , α < 0



Perturbations 
are a much more stringent test

e.g.: Deser-Woodward model 

ruled out by structure formation at 8    level.
 

σ

Rf(�−1R)

Perturbations equations for models  I and II have been 
studied in the fluid approximation:

both are well compatible with observations,
and differ from ΛCDM at a few % level

see also: NESSERIS, TSUJIKAWA: 1402.4613

BARREIRA, LI, HELLWING, BAUGH, PASCOLI, in preparation
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d log δM (a; k)

d ln a
= [ΩM ]γ(z;k)

ΛCDM

model II

4% difference at z=.5

k2Φ = 4πGeffδρ
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CMB (preliminary) 
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Conclusions
Nonlocal massive gravity is phenomenological approach providing: 

• attenuation of coincidence problem

• phantom  e.o.s. w<-1 

• good structure formation,
with % deviations form ΛCDM

• good agreement with CMB and high H0

Can it be derived from a more fundamental theory?

...see for instance TSAMIS, WOODARD: 1405.4470
and          CUSIN, FUMAGALLI, MAGGIORE: 1407.5580



A fake ghost in massless GR 

S(2)

EH
=

1

2

�
dd+1xhµνEµν,ρσhρσ

hµν = hTT
µν +

1

2
(∂µ�ν + ∂ν�µ) +

1

d
ηµνs

S(2)

EH
=

1

2

�
dd+1x

�
hTT

µν �(hµν)TT − d− 1

d
s�s

�

It looks as if there are many more propagating d.o.f 
Furthermore s seems a ghost ! 

Sint =
κ

2

�
dd+1xhµνT

µν =
κ

2

�
dd+1x

�
hTT
µν (T

µν)TT +
1

d
sT

�

�hTT
µν = −κ

2
TTT
µν , �s =

κ

2(d− 1)
T

S. F. Hassan, R. A. Rosen, and A. Schmidt-May 2012  
 


