HALOGEN A tool for fast generation of mock catalogs

by Santiago Ávila and Steven Murray with A. Knebe, J. García-Bellido, C. Power & A. Robotham

- Large Scale Structure (LSS) is one of the fundamental pillars of LCDM
- And a very hot source of observations: BOSS, DES, PAU, DESi, Euclid, ...
- Whereas CMB can tell us more about primordial universe, we need LSS to learn more about late effects: Dark Energy
- BAO: a very clean probe.

- We need to compare observations to theory, but analytic approaches in LSS are very limited → we need numerical simulations.
- To constrain models we need ~1000 mock catalogs to control systematic errors and compute covariance matrices.
- To produce a mock catalog:
 - (1) N-Body Simulation \rightarrow DM-field
 - (2) Halo finder \rightarrow Halos
 - (3) HOD/SAM/etc \rightarrow Galaxies
- N-Body Simulations take really long. Not *feasible* to run hundreds of them.
- (1) is very precise, but
 (2) has ~10% scatter in mass function (Knebe et al. 2013)
 (3) can present a huge scatter in 2-point function (50% in Benson et al. 2001)

• Do we need that much precision in the Dark Matter field?

- Do we need that much precision in the Dark Matter field? Maybe Not:
 - PThalos (Scoccimarro & Seth, 2001; Manera et al. 2013 & 2014)
 - PINNOCHIO (Monaco, Theuns & Taffoni, 2002; Monaco & Theuns, 2013; ...)
 - COLA (Tassev, Zaldarriaga & Eisenstein 2013; Koda, Kazin & Blake, 2013)
 - QPM (Martin, Tinker & McBride, 2014)
 - PATCHY (Kitaura, Yepes & Prada, 2014, Kitaura et al. 2014)
 - EZAmocks (Chuang, in prep)
 - HALOgen (Avila et al, in prep)

All of them are alternative methods, compared in *Chuang et al. in prep.*

- Do we need that much precision in the Dark Matter field? Maybe Not:
 - PThalos (Scoccimarro & Seth, 2001; Manera et al. 2013 & 2014)
 - PINNOCHIO (Monaco, Theuns & Taffoni, 2002; Monaco & Theuns, 2013; ...)
 - COLA (Tassev, Zaldarriaga & Eisenstein 2013; Koda, Kazin & Blake, 2013)
 - QPM (Martin, Tinker & McBride, 2014)
 - PATCHY (Kitaura, Yepes & Prada, 2014, Kitaura et al. 2014)
 - EZAmocks (Chuang, in prep)
 - HALOgen (Avila et al, in prep)

All of them are alternative methods, compared in *Chuang et al. in prep.* (http://popia.ft.uam.es/nIFTyCosmology)

HALOGEN: the method

- The philosophy of HALOgen is to start from the simplest things and improve if needed.
- Main ingredients:
 - 2LPT ← Dark matter field
 - Analytic Mass function

HALOGEN: the method

- The philosophy of HALOgen is to start from the simplest things and improve if needed.
- Main ingredients:
 - 2LPT ← Dark matter field
 - Analytic Mass function

HALOGEN: the method

- Requirements:
 - A fast tool for generation of halo mock catalogs
 - with the right Halo Mass Function
 - and correct 2-point correlation function (real + k-space)
- Desired:
 - Correct higher order statistics

Note: we do not aim at actually *finding* halos. We *place* them with the correct statistics

• 2LPT: **2nd** order Lagrangian Perturbation Theory

• 2LPT: **2nd** order Lagrangian Perturbation Theory

Based on Particles

• 2LPT: **2nd** order Lagrangian Perturbation Theory

Based on Particles

Beyond linear ZA

• It reproduces well the large scales, but fails at small scales.

- It reproduces well the large scales, but fails at small scales.
- It can be generated from an IC generator (Scoccimarro et al.)

2LPT vs N-Body

Halo Mass Function (HMF)

- Assume an analytic HMF fit (e.g. Tinker, Watson, etc). In particular, we use the cumulative HMF n(>M)
- Select a minimum mass M_0 $N = n(>M_0) \cdot Vol$ and derive the number of halos
- Using Inverse-Cumulative-Distribution-Function, we generate masses for N halos.

Halo Mass Function (HMF)

- Use 2LPT particles as a scaffolding \rightarrow Place halos in particles
- Select particles in a manner that reproduces the correct 2-pt correlation function of halos (implicit bias model).
- This is the difficult part...

- Use 2LPT particles as a scaffolding \rightarrow Place halos in particles
- Select particles in a manner that reproduces the correct 2-pt correlation function of halos (implicit bias model).
- This is the difficult part...

start from the simplest ideas

• Version 1. Select Random particles

- Too un-bias at most scales
- Positive correlation at low scale

- Version 2. Add exclusion halos not allowed to overlap
 - + Better, low scale cut-off
 - Still low bias

- Version 3. Conserve mass in cells Split the simulation box in a grid of cells Do not allow the mass of the halos exceed the mass of the particles in a given cell.
 - Slightly better cut-off
 - Better shape (tilt) of the function (difficult to see in this plot)
 - Slows down the method
 - Still low bias

 Version 4: Ranked-ordered placement place the nth most massive halo in the nth densest cell and pick up a random particle within cells

- Too much bias

 Version 4: Ranked-ordered placement place the nth most massive halo in the nth densest cell and pick up a random particle within cells

• Version 5: Control bias-stochasticity

- Weight the probability of picking up a cell by $P_{cell} \propto \rho_{cell}^{\alpha}$

• Version 5: Control bias-stochasticity

- Weight the probability of picking up

• Version 5: Control bias-stochasticity

- Weight the probability of picking up

HALOGEN: recapitulation

- Run a 2LPT dark matter field
- Choose a Halo Mass Function fit and sample it with halos
- Place halos in dark matter particles:
 - Select a halo of mass M_h
 - Select a cell with probability $P_{cell} \propto \rho_{cell}^{\alpha(M_h)}$
 - Select a random particle within cell making sure the new halo does not overlap a previous one
 - Reduce the mass in the cell by M_h

HALOGEN: recapitulation

- Run a 2LPT dark matter field
- Choose a Halo Mass Function fit and sample it with halos
- Place halos in dark matter particles:
 - Select a halo of mass M_h
 - Select a cell with probability $P_{cell} \propto \rho_{cell}^{\alpha(M_h)}$
 - Select a random particle within cell making sure the new halo does not overlap a previous one
 - Reduce the mass in the cell by M_h
- NOTE: 2 parameters introduced:
 - α : has to be fitted in mass bins
 - I_{cell} : desirable as small as possible before 2LPT breaks down

HALOGEN: parameters

HALOGEN: results

HALOGEN: Work in progress

- We created a tool HALOGEN capable of:
 - Creating halo catalogs with the right mass function

- We created a tool HALOGEN capable of:
 - Creating halo catalogs with the right mass function
 - And the 2-point correlation function correct

- We created a tool HALOGEN capable of:
 - Creating halo catalogs with the right mass function
 - And the 2-point correlation function correct
 - It can create a mock catalog in a 2.5 Gpc/h box with ~5 million halos in ~5min.

- We created a tool HALOGEN capable of:
 - Creating halo catalogs with the right mass function
 - And the 2-point correlation function correct
 - It can create a mock catalog in a 2.5 Gpc/h box with ~5 million halos in ~5min.
 - The k-space, redshift space and 3-point statistics are (preliminarily) also recovered in a slightly wider margin of error. (Chuang et al., in prep.)
 - We do not need to resolve halos \rightarrow less RAM and faster

- We created a tool HALOGEN capable of:
 - Creating halo catalogs with the right mass function
 - And the 2-point correlation function correct
 - It can create a mock catalog in a 2.5 Gpc/h box with ~5 million halos in ~5min.
 - The k-space, redshift space and 3-point statistics are (preliminarily) also recovered in a slightly wider margin of error. (Chuang et al., in prep.)
 - We do not need to resolve halos \rightarrow less RAM and faster
- We introduced a parameter $\alpha(M_h)$ that controls the bias.
 - It has to be fitted \rightarrow Fitting routine
 - Once fitting, the 1000 mock catalogs can be run very quickly
 - We aim at implementing a fit from theory predictions
- Future: introduce galaxies

HALOGEN

Thank you for your attention

Física

Santiago Avila Instituto de UNIVERSIDAD AUTONOMA Teórica DE MADRID

HALOGEN: P(k)

