

51(stat) ± 1.46 (syst)] $\times 10^{\frac{3}{2}}$ Results from LHCb

XLII International Meeting on Fundamental Physics 27-31 January 2014 (Benasque)

José Ángel Hernando Morata Universidade de Santiago de Compostela, Spain (LHCb Collaboration)

outlook
◆ LHCb and Flavor Physics
The Physics case
The LHCb detector
◆ CP Violation
■ Direct CP violation in $B_{(s)}$ →hh
γ measurements B→DK
B _s oscillations
• $\phi_{s}: B_{s} \rightarrow J/\psi \phi$
◆ Rare decays (RD)
■ B→K*μμ
$\bullet B_{(s)} \rightarrow \mu \mu$
 Conclusion
2

Physics case

- **FCCC**: the Unitary Triangle: **y**
 - **FCNC**: Flavour Changing Neutral Currents: a search for New Physics (NP)
 - Forbidden at tree level. NP enters in loops and penguins!
 - **B** (D, K **decays**) controlled by SM CKM matrix with some precise SM predictions
 Oscillation in B_(s), CP violation, rare decays (RD)

B_s->μμ

 \mathbf{Z}^{o}

5

Measure: Asymmetries, branching rations (BR), angular distributions

Luminosity

- ◆ Integrated Luminosity: 1 fb⁻¹(2011) 2 fb⁻¹(2012)
 - efficiency >93%
- Relevant decays have small BR, with selection efficiencies, we expect O(10⁴) to few events per fb⁻¹!
- ◆ Most analysis use **1 fb**⁻¹, few with 3 fb⁻¹, expect most data analyzed in 2014!

Detector requirements

The Velo detector

Velo detector

- Si strips (r, ϕ) sensors, in vacuum and RF foil
- retractable: 8 mm from the beam line!
- PV resolution: 13 μm (x,y), 69 μm (z)
 - proper time resolution σt~45 fs!
- Impact parameter, IP, <20 μm (P_T>2 GeV)

◆ crucial:

- Trigger (hadrons, single muon)
- Secondary Vertices (B_(s) decays)
- Oscillation

PID

◆ PID:

- Riches:Gas radiatios and aerogel, Photomultiplies tubes
- Efficiency/Rejection using ΔLL
- Calibrated with data: J/ψ→μμ, tag and probe, D*-→D(Kπ)π-

• Crucial:

- trigger: μ-ID (di-μ)
- Separation of $B(s) \rightarrow hh'$ (h= π ,K)
 - Separation $B^{\pm} \rightarrow DK^{\pm}$ from $B^{\pm} \rightarrow D\pi^{\pm}$
- Rejection of bkg: $B^{(s)} \rightarrow \mu\mu$, due to $B \rightarrow hh'$, with h(h') misID by μ

Trigger

- ◆ High efficiency, manageable data size
- ◆ Trigger on different B (D) decays:
 - Inclusive/Exclusive

◆ Handles:

- P_T signals, IP tracks, displaced Secondary Vertices (SV), muons
- Identify events TOS (Trigger on Signal)/TIS (Trigger Independent of Signal), => trigger efficiency!

N

muon nedas:

$$\begin{aligned} y_{ln} + Y_{a}^{ij}Q_{L}^{i}\phi U_{n}^{j} + Y_{e}^{ij}L_{L}^{i}\phi E_{n}^{j} + h.c. \quad (\stackrel{\circ}{\phi} U_{n}^{ij}\chi_{a}^{ij}) \\ y_{ln}^{ij}\chi_{a}^{ij}Q_{L}^{i}\phi U_{n}^{j} + Y_{e}^{ij}L_{L}^{i}\phi E_{n}^{j} + h.c. \quad (\stackrel{\circ}{\phi} U_{n}^{ij}\chi_{a}^{ij}) \\ y_{ln}^{ij}\chi_{a}^$$

CP semileptonic asymmetry

arXiv:1308.1048/1fb⁻¹

 $\left| \mathbf{a}_{\mathrm{sl}} \equiv 1 - \left| \frac{q}{p} \right|^2 \right|$ CP due to mixing via flavor specific decays (semileptonic): $a_{\rm sl} \equiv \frac{\Gamma\left(\overline{B}(t) \to f\right) - \Gamma\left(B(t) \to \overline{f}\right)}{\Gamma\left(\overline{B}(t) \to f\right) + \Gamma\left(B(t) \to \overline{f}\right)} \simeq \frac{\Delta\Gamma}{\Delta M} \tan\phi_{12} \,,$ \blacksquare B_s \rightarrow D_s⁺ $\mu\nu$, D_s⁺ $\rightarrow\phi(K^+K^-)\pi^+$ $\phi_{12} \equiv \arg\left(-M_{12}/\Gamma_{12}\right)$ • $\phi^{s_{12}}$ is very small in SM ~0.2° but can be $a_{s1}^{s}(B_{s}^{0}) = (+1.9 \pm 0.3) \times 10^{-5}$ affected by NP! negiglible due to rapit oscillations $A_{\text{meas}} \equiv \frac{\Gamma[D_s^-\mu^+] - \Gamma[D_s^+\mu^-]}{\Gamma[D_s^-\mu^+] + \Gamma[D_s^+\mu^-]} = \frac{a_{\text{sl}}^s}{2} + \left[a_{\text{P}} - \frac{a_{\text{sl}}^s}{2}\right] \frac{\int_{t=0}^{\infty} e^{-\Gamma_s t} \cos(\Delta M_s t)\epsilon(t)dt}{\int_{t=0}^{\infty} e^{-\Gamma_s t} \cosh(\frac{\Delta\Gamma_s t}{2})\epsilon(t)dt},$ 0.02 ه_تي ~189k candidates Correct by detector asymmetries 0 I/ψ TIS, and tag-&-probe, D*- \rightarrow D(K $\pi\pi\pi$) π^- Dominant syst. from stats of control sample -0.02 LHCb D0 more precise measurement! **D**0 Y(4S) HFAG -0.04 in agreement SM! D0 Not exclused not confirmed Do! -0.02 0.02 -0.04 0 a_{sl}^d 29

β: CP in B→J/ψK_s

PLB 721 (2013) 24/1fb-1

- reproduce B factories measurement!
- golden channel: $B \rightarrow J/\psi Ks$
- time-dependent asymmetry
 - tagging OST: D (2.38±0.27)%
 - **a** main syst, $\epsilon = (32.65 \pm 0.31)\%$, $\omega = 0.365 \pm 0.008$
 - simultaneous fit to the different $\Gamma(t)$

$$\begin{split} A_{J/\psi K_{\rm S}^0}(t) &\equiv \frac{\Gamma(\overline{B}{}^0(t) \to J/\psi K_{\rm S}^0) - \Gamma(B^0(t) \to J/\psi K_{\rm S}^0)}{\Gamma(\overline{B}{}^0(t) \to J/\psi K_{\rm S}^0) + \Gamma(B^0(t) \to J/\psi K_{\rm S}^0)} \\ &= S_{J/\psi K_{\rm S}^0} \sin(\Delta m_d t) - C_{J/\psi K_{\rm S}^0} \cos(\Delta m_d t). \end{split}$$

$$S_{J/\psi K_{\rm S}^0} = 0.73 \pm 0.07 \,(\text{stat}) \pm 0.04 \,(\text{syst}),$$

 $C_{J/\psi K_{\rm S}^0} = 0.03 \pm 0.09 \,(\text{stat}) \pm 0.01 \,(\text{syst}),$

Angular analysis $B \rightarrow K^* \mu \mu$ JHEP 09 (2013) 131/1fb-1

- In the SM, the γ/Z penguin introduces a forward/ backward asymmetry (A_{FB}) of the muons
 - SM prediction of the zero-crossing point of AFB
 - SM $q^2_0 = (4.-4.3) \text{ GeV}^2/c^2$
- This Asymmetry and other observables (FL,S₃) can be altered by the presence of NP
 - W. Coefficients involved: C₇,C₉,C₁₀
- LHCb measurement clarified the situation after BaBar, Belle, CDF results!

See: F. Kruger, J. Matias PR D71(2005); J.Matias et al, JHEP, 1204:104,2012

$$A_{FB}\left(s=m_{\mu^{+}\mu^{-}}^{2}\right) = \frac{N_{F} - N_{B}}{N_{F} + N_{B}}$$

In agreement with SM!

$$\cos\theta \propto \operatorname{Re}\left\{ C_{10} * \left[q^2 C_{2} e^{ff}(q^2) + r(q^2) C_{7} \right] \right\}$$

$$a_{2}^{2} = 4 + 0.9 \operatorname{GeV}^{2}/c$$

Angular analysis $B \rightarrow K^* \mu \mu$ JHEP 09 (2013) 131/1fb-1

• The decay is described by 3 angles $(\theta_1, \theta_K, \varphi)$ and the q^2 dimuon mass squared

40

Reduced expression of the angular distribution after φ folding:

$$\frac{1}{\Gamma} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\hat{\phi} dq^2} = \frac{9}{16\pi} \left[F_L \cos^2\theta_K + \frac{3}{4}(1 - F_L)(1 - \cos^2\theta_K) + F_L \cos^2\theta_K (2\cos^2\theta_\ell - 1) + \frac{1}{4}(1 - F_L)(1 - \cos^2\theta_K)(2\cos^2\theta_\ell - 1) + \frac{3}{4}(1 - \cos^2\theta_K)(1 - \cos^2\theta_\ell)\cos 2\hat{\phi} + \frac{4}{3}A_{FB}(1 - \cos^2\theta_K)\cos\theta_\ell + \frac{4}{3}A_{FB}(1 - \cos^2\theta_K)(1 - \cos^2\theta_\ell)\sin 2\hat{\phi} \right]$$

With the following folding $\phi \rightarrow \phi + \pi$ if $\phi < 0$, the terms in $\cos\phi$ e sin ϕ (I₄, I₅, I₇ and I₈) cancel out while the terms with $\cos 2\phi$ e sin 2ϕ survive.

- BDT to suppress combinatorial bkg
- The 3D fit in the angles (in bins of q_{\downarrow}^2) allow to access:
- F_L , i.e. the longitudinal polarization of the K^{*} Remove peaking background due to swap
- The A_{FB} of the leptonic system $\rightarrow \phi(KK)\mu\mu$
- A_{IM} asymmetry
- $S_3 = \frac{1}{2} (1 F_2) A_{\text{Tec}}^2$ the transverse asymmetry

- ~900 candidates
- 3D fit in the angles (in bis q²)
- F_L, the longitudinal polarization of K*
- A_{FB}, the forward/backwark dimuon asymmetry

 π^+

Angular analysis $B \rightarrow K^* \mu \mu$

PRL 111 (2013) 191801/1fb⁻¹

 $P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_{\rm T}(1-F_{\rm T})}}$

Angular analysis with new observables:

- S_i are functions of Wilson coefficients and form-factors
- P'i observables reduce hadron form-factors uncertainties, are complementary!
- using SM predictions [Descotes-Genon et al. JHEP 05 (2013) 137]

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_K \, d\phi \, dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K - F_L \cos^2 \theta_K \cos 2\theta_\ell \right. \\ \left. + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi \right. \\ \left. + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2 \theta_K \cos \theta_\ell \right. \\ \left. + \frac{1}{8} S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \right]$$

Analysis:

- BDT to suppress combinatorial bkg
- Veto in dimuon resonances J/ψ , $\psi(2S)$
- Veto peaking background due to swap or mis-id: $B \rightarrow J/\psi K^*, B_s \rightarrow \phi(KK)\mu\mu$
- Acceptance function from simulation, but crosschecked with $B \rightarrow J/\psi K^*$ 42

- mass from control channel and bkg distributions from upper side bands
- Fit to the mass and angular distributions after unfolding ϕ
- main systematic: background distributions, acceptance function and S-wave contribution

$\begin{array}{l} \textbf{Isospin Analysis B} \longrightarrow K^{(*)}\mu\mu \quad \textbf{JHEP 07 (2012) 133/1fb-1} \\ \textbf{Isospin asymmetry:} \quad \textbf{A}_{I} = \frac{\Gamma(B^{0} \rightarrow K^{(*)0}\mu^{+}\mu^{-}) - \Gamma(B^{+} \rightarrow K^{(*)}+\mu^{+}\mu^{-})}{\Gamma(B^{0} \rightarrow K^{(*)0}\mu^{+}\mu^{-}) + \Gamma(B^{+} \rightarrow K^{(*)}+\mu^{+}\mu^{-})} \\ = \frac{\mathcal{B}(B^{0} \rightarrow K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{+} \rightarrow K^{(*)}+\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \rightarrow K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{+} \rightarrow K^{(*)}+\mu^{+}\mu^{-})}, \end{array}$

d/u

d/u

- SM prediction is close to zero
- Measured by BaBar, Belle and CDF. Babar measurement of B with some tension (3.9σ)!

SM B predictions suffer from hadron form factors uncertainties

- Measured Differential B:
 - $B^+ \rightarrow K^{*+}(K_s \pi^+) \mu \mu, B \rightarrow K^* \mu \mu,$
 - $B \rightarrow K \mu \mu, B^+ \rightarrow K^+ \mu \mu$

■ Use as normalization channel $B \rightarrow J/\psi(\mu\mu)K^*$; $B^+ \rightarrow J/\psi(\mu\mu)K^+$

Update of $B_{(s)} \rightarrow \mu \mu$ with 3fb⁻¹

PRL 111 (2013) 101805/3fb⁻¹

- Discrimination in 2D space:
 - BDT (kinematical & geometrical variables) & mass
- Normalize to $B^+ \rightarrow J/\psi K^+$

• Use CLs method to set a limit and a unbinned maximum $\lim_{R \to \infty} \frac{1}{4M_W^2} \lim_{R \to \infty} \frac{\log(\frac{M_{H^+}}{2})}{M_{H^+}^2}$

Update of $B_{(s)} \rightarrow \mu \mu$ with $3fb^{-1}$

PRL 111 (2013) 101805/3fb-1

◆ A multivariate discriminant BDT:

kinematical and geometrical variables signal uniformly distributed [0,1] trained with MC

estimated with data:

signal B \rightarrow hh trigger unbias background: B_s \rightarrow µµ sidebands

Mass:

signal: CB shape

central values B→hh fit

resolution: interpolation between $\mu\mu$ resonances J/ ψ , $\Psi(2S)$, $\Upsilon(1S, 2S, 3S)$

 $\sigma(Bs) = 23.2 \pm 0.4 \text{ MeV/c}^2$ $\sigma(B) = 22.8 \pm 0.4 \text{ MeV/c}^2$

D→µµ

PLB 725 (2013) 15/0.9fb⁻¹

SM: FCNC suppression driven Candidates / $(0.5 \text{ MeV}/c^2)$ 120 by GIM mechanism 100 80 ■ SM $B(D \rightarrow \mu \mu)$: 10⁻¹³-10⁻¹¹ 60 NP models can enhance B (R 40 parity violating MSSM) 20 145 150 140 $\Delta m_{\mu^+\mu^-}$ [MeV/c²] Analysis: 50 Candidates / (10 MeV/ c^2) 45 • Use $D^{*+} \rightarrow D^0(\mu\mu)\pi^+$ 40 35 **2** D fit to $m(D^0)$, $\Delta m(D^{*+}-D^0)$ 30 25 **Background:** combinatorial, $D \rightarrow \pi\pi$ 20 15 • Normalize to $D_{s} \rightarrow \phi(\mu\mu)\pi^{-}$ 10 $1950 2000 \ m_{\mu^+\mu^-} [\text{MeV}/c^2]$ 1800 1850 1900 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \ (7.6) \times 10^{-9}$ at 90% (95%) CL. best límít! 52

LHCb Upgrade

- Current limitation: trigger in hadronic channels!
- ◆ Upgrade LHCb:
 - Trigger (40 MHz), Velo, Tracking
- ◆ Current (~2 fb⁻¹/year): Upgrade 50 fb⁻¹ (5x) data

Type	Observable	Current	LHCb	Upgrade	Theory	
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty	
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [138]	0.025	0.008	~ 0.003	
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [214]	0.045	0.014	~ 0.01	
	$a^s_{ m sl}$	6.4×10^{-3} [43]	0.6×10^{3} V	elg pixelodet	eqtor, _× Si _{la} nd	scintillating fibre tracke
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02	
penguins	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02	
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [43]	0.30	0.05	0.02	
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01	
currents	$ au^{\mathrm{eff}}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	_	5~%	1%	0.2%	
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08[67]	0.025	0.008	0.02	
penguins	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [67]	6%	2%	7%	
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$	0.25 [76]	0.08	0.025	~ 0.02	
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [85]	8%	2.5%	$\sim 10\%$	
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	1.5×10^{-9} [13]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}	
penguins	$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B^0_s \to \mu^+\mu^-)$	_	$\sim 100\%$	$\sim 35\%$	$\sim 5\%$	
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ} [244, 258]$	4°	0.9°	negligible	
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible	
angles	$\beta \ (B^0 \to J/\psi \ K_{\rm s}^0)$	0.8° [43]	0.6°	0.2°	negligible	
Charm	A_{Γ}	2.3×10^{-3} [43]	$0.40 imes 10^{-3}$	0.07×10^{-3}	_	
$C\!P$ violation	$\Delta \mathcal{A}_{CP}$	2.1×10^{-3} [18]	0.65×10^{-3}	$0.12 imes 10^{-3}$	_	
		54				

	i wo types of measurements				
Extra Direct CP - B	$P(s)_{1.} \xrightarrow{hh} h$ PRL 100 221601 (2013)/1fb-1 $\frac{N}{N}$				
• Charge Asymmetry:	$_{A^{ch}} \ge 2$ intering) ampl(trades f) it bo				
• selection:	$ \begin{array}{c} \Lambda_f = \\ N(B \to f) + N(\overline{B} \to \overline{f}) \\ \hline \end{array} $				
D distance/ σ >2 to reduce bkg	2. Time-dependent asymmetry: If B^{*} interference through $B^{0}_{-}\overline{B}^{0}_{-}$ mixin				
Calibration Rich $D^*+\rightarrow D(K\pi)\pi$ + kinematically selected; reweighted to B(s) phase-space	$(b) \qquad \qquad LHCb \qquad$				
• Mass PDFs:	$A(t) = \frac{N(B^{0}(t) \rightarrow f) - N(B^{0}(t) \rightarrow f)}{N(B^{0}(t) \rightarrow f) + N(B^{0}(t) \rightarrow f)}$				
signal: 2Gauss + tails, comb: exponential, x-fee partial B→Xhh (feno)	d (MC), For example, for $B^0 \rightarrow J/\psi K^0_s$:				
• Detector and production asymmetries	(<i>t</i> - <i>t</i> ₀) modulo (2π/Δ <i>m</i> _s) [ps] Note, for asymmetry measurements of				
detector: using $D^*+\rightarrow D(K\pi,KK)\pi+$, $A_{CP}(KK)$ ext	ternal $A_{\Delta}(B^0_{(s)} \rightarrow K\pi) = \zeta_{d(s)} \tilde{A}_D(K\pi) + \kappa_{d(s)} A_P(B^0_{(s)}), (-)$				
production: amplitude of oscillation	$= 1 + A^*_{\text{Fav}}(K\pi) - A^*_{\text{Fav}}(KK) = A^*_D(F\pi) + A_{CP}(KK).$				
Systematic:	$ = at(\underline{T}(45), \underline{D} and \underline{D} m content $ $ \underline{t} \longrightarrow \Delta t = t(1) $				
B (det. Asymm), Bs (signal model, comb bkg)	$\mathcal{A}(t) \approx A_{CP} + A_D + A_P \cos(\Delta m_{d(s)} t);$				

Extra

Direct CP $B^{\pm} \rightarrow K^{\pm}h^{+}h^{-}$

PRL 100 221601 (2013)/1fb-1

• Charge Asymmetry:

◆ selection:

$$A_{CP}(B^{\pm} \to f^{\pm}) = \Phi[\Gamma(B^{-} \to f^{-}), \Gamma(B^{+} \to f^{+})],$$

- D distance/ σ >2 to reduce bkg, exclude D mass region
- Calibration Rich D*+→D(Kπ)π+ kinematically selected; reweighted to B(s) phase-space
- ◆ Mass PDFs:
- signal: 2Gauss + tails, comb: exponential, partial
 B→Xhhhh (feno)
- Detector and production asymmetries
- Only for K and B
- use $B^{\pm} \rightarrow J/\psi K^{\pm}$, $A_{CP}(J/\psi K)$ word average
- Systematic:
- trigger asymmetries (trigger response to K, diff decisions) and phase-space acceptance corrections (det eff data/MC)

$$A_{CP} = A_{\text{raw}} - A_{\Delta}, \qquad A_{\Delta} = A_D(K^{\pm}) + A_P(B^{\pm}).$$

$$A_{\Delta} = A_{\rm raw}(J/\psi K) - A_{CP}(J/\psi K),$$

$\gamma: B \rightarrow D(hh)K$ PLB 712 (2012) 203/1fb-1 • GWL/ADS analysis with $B^{\pm} \rightarrow D(hh)K^{\pm}$ (h=K[±], π^{\pm}) ■ GWL D→KK, $\pi\pi$ • ADS $B^{\pm} \rightarrow D(\pi^{\pm}K^{\mp})K^{\pm}$ (suppressed), $B^{\pm} \rightarrow D(K^{\pm}\pi^{\mp})K^{\pm}$ (favoured) ■ $B^{\pm} \rightarrow D(K^{\pm}\pi^{\mp})\pi^{\pm}$ control sample (and reduced sensitivity) Observables: ratios and asymmetries $R_h^{\pm} = \frac{\Gamma(B^{\pm} \to [\pi^{\pm} K^{\mp}]_D h^{\pm})}{\Gamma(B^{\pm} \to [K^{\pm} \pi^{\mp}]_D h^{\pm})}.$ $A_h^f = \frac{\Gamma(B^- \to [f]_D h^-) - \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [f]_D h^-) + \Gamma(B^+ \to [f]_D h^+)},$ $R^{f}_{K/\pi} = \frac{\Gamma(B^{-} \to [f]_{D}K^{-}) + \Gamma(B^{+} \to [f]_{D}K^{+})}{\Gamma(B^{-} \to [f]_{D}\pi^{-}) + \Gamma(B^{+} \to [f]_{D}\pi^{+})},$ Ratio suppressed/favoured ratio K/ π Asymmetry -/+ ◆ Selection: mass D (25 MeV), D distance/σ, and BDT (B,D,tracks, isolation,...), trained MC PID: DLL(K- π) separation, veto if mass in J/ ψ , ψ (2S) • ADS modes suffers x-feed $K \leftrightarrow \pi$ from favoured decays!

• efficiency of PID calibrated using $D^{*+} \rightarrow D(K^-\pi^+)\pi^+$ and $B^{\pm} \rightarrow D(K^{\pm}\pi^{\mp})\pi^{\pm}$ phase-space

τ→μμμ

PLB 724 (2013) 36/1fb-1

- ◆ LFV process, sensible to NP,
- similar strategy to $B_s \rightarrow \mu \mu$
 - discrimination using BDT, mass and PID
 - combinatorial background bb→ $\mu\mu X$, cc→ $\mu\mu X$, D⁻_s→ $\eta(\mu\mu\gamma)\mu\nu$
 - normalization and control channel: $D_s \rightarrow \phi(\mu\mu)\pi^-$

Introduction

LHCb searches for NP in FCNC with B (and D) decays, new particles can enter in the loops and modify the SM prediction on some observables!

- Some FCNC processes have precise SM prediction
 - Branching fractions and angular dependence
- Luck of NP

constrains models beyond SM, set higher energy scale for NP

In a model independent interpretation, constrains Wilson coefficients

Rare Decays Analysis

- ◆ Very rare decays
 - $B_{(s)} \rightarrow \mu \mu$ [3fb⁻¹/arXiv:1307.5024]
 - **D**→ $\mu\mu$ [0.9fb⁻¹/arXiv:1305.5050]
 - $K_s \rightarrow \mu \mu$ [1fb⁻¹/arXiv:1209.4029]
 - B→4µ [1fb⁻¹/arXiv:1303.1092]
 - $B^+ \rightarrow \pi^+ \mu \mu$ [1fb⁻¹/arXiv:1210.2645]
- ◆ Angular an isospin analysis
 - B → K^{*}µµ [1fb⁻¹/arXiv:1308.1707] [1fb⁻¹/arXiv:1304.6325]
 - $\Lambda_b \rightarrow \Lambda \mu \mu \, [\text{1fb}^-/\text{arXiv:1306.2577}]$
 - $B_s \rightarrow \phi \mu \mu$ [1fb⁻¹/arXiv:1305.2168]
 - $B \rightarrow K^{(*)} \mu \mu$ [1fb⁻¹/arXiv:1205.3422]
 - ψ(4160) [3fb⁻¹/arXiv:1307.7595]

- ◆ CP Asymmetries
- $B \rightarrow K^* \mu \mu$ [1fb⁻¹/arXiv:1210.4492]
- $B^+ \rightarrow K^+ \mu \mu$ [1fb⁻¹/arXiv:1308.1340]
- ◆ No SM processes
- $B^+ \rightarrow X\mu^-\mu^-$ [0.41fb⁻¹/arXiv:1201.5600]
- $\mathbf{B}_{(s)} \rightarrow \mu e$ [1fb⁻¹/arXiv:1307.4889]
- $\tau \rightarrow 3\mu$, $\tau \rightarrow p\mu\mu$ [1fb⁻¹/arXiv:1304.4518]
- ◆ Radiative decays
- $B \rightarrow K^* \gamma, B_s \rightarrow \phi \gamma$ [1fb⁻¹/arXiv:1202.6267]

LHCb detector

66

◆ LHCb detector

- single-arm spectrometer (2<η<5)
- B, B_s, B⁺,D,Λ_b, ... produced at LHCb
 - trigger on muons, electrons, hadrons with "low" P_T
 - efficiency on dimuon channels ~90%
- precise vertex (IP ~20 μm at high P_T)
- excellent momentum resolution $\Delta p/p \approx 0.5 \%$
- good particle ID (>97% μ-eff, 1-3% mis-IP)
- ◆ LHCb operation
 - "beautifully"
 - operating @ 2 nominal luminosity
 - Integrated luminosity 3 fb⁻¹
 - (2 fb⁻¹ 8 TeV, 1 fb⁻¹ 7 TeV)

