

### Alicia Calderón Instituto de Física de Cantabria (CSIC-UC) On behalf of the CMS collaboration



XLII International Meeting on Fundamental Physics Benasque, 2014, Jan 29

## Outline

- LHC and CMS detector
- Precise measurement of standard model processes:
  - Jets electroweak production
  - Top physics
  - B Physics
- Physics of the Higgs boson:
  - Summary of Higgs boson discovery and properties
- Searches for physics beyond the standard model:
  - Supersymmetry, exotica, dark matter
- Summary and overview of future program

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

2

# CMS

# LHC and CMS operations

- The Large Hadron Collider delivered pp collisions from 2010 to 2012:
   ~6 fb-1 of pp collisions at √s = 7 TeV
   ~23 fb-1 of pp collisions at √s= 8 TeV
- The CMS detector proved itself very efficient collection and reconstructing event at high instantaneous luminosity:
   ~94% of delivered data were recorded
   ~89% of delivered used in analyses
- Also collected heavy ion collision data: ~150 µb of PbPb collisions at √sNN = 2.76 TeV during 2011 ~31 nb-1 of pPb collisions at √spN = 5.02 TeV during 2013



#### CMS Integrated Luminosity, pp

## **CMS: the collaboration**



#### 40 countries, 193 institutes ~ 3300 scientist & engineers (including ~ 900 students)



## **CMS: the detector**





# **CMS: the physics objects**





### **Object reconstruction: performance**



20.000.000/sec

Incoming data

## CMS

## CMS: trigger system

 Level-1 & HLT menus reduce # of p-p interactions from: 2x10<sup>7</sup> Hz (input) down to ~350 Hz (recorded),~300 Hz ("parked" for later analysis)





 Example: dimuon mass distribution from several double-μ trigger paths: calibration, Bs(μμ), quarkonia, DY+Z

## CM

9

## No without challenges

 At high luminosity, multiple collisions per beamcrossing occur (<u>what we called pile-up</u>) without precedent !

Experimental challenge to cope with high pile-up

#### CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV

## No without challenges

At high luminosity, multiple collisions per beamcrossing occur ( what we called pile-up ) without precedent !

Experimental challenge to cope with high pile-up





Highly-flexible HLT system allows CMS to keep a constant-rate cross section with varying pile-up conditions without sacrificing physics



## **CMS performance under PU**



# **CMS** highlight physics results



## **QCD: Jet cross sections**



- Study the strong force using jet production
- Differential cross section for inclusive jet production at 8 TeV:
  - Agreement with NLO⊗NP QCD over ≥7 orders of magnitude up to 2TeV
- CMS data can be used to constrain the fits of the parton distribution functions (PDFs)
  - Knowing your PDFs is critical for searches and precision tests on x-sections



#### CI

14

### **QCD: Strong coupling from jets x-sections**





## **Electroweak: W, Z boson production**

 Differential DY+Z x-section in agreement with NNLO at 7,8 TeV. Quark PDF constraints at low mll



W muon charge asymmetry
 vs |η| measured to ~1%. Many
 uncertainties cancel in ratio.
 Constrains u/d PDF ratio







## **Electroweak: diboson production**



A. Calderon, XLII IMFP 14



17

### **Electroweak: anomalous TGC & QGC** Triple (Quadruple) Gauge Couplings

- Diboson final states in scattering topologies and triboson and vector boson scattering final states can be used to set limits on aTGC (aQGC)
  - Probes Electroweak sector and search deviation from standard model



### Summary of all aTGC & aQGC Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

| Feb 2013                                     | Ζγγ,         | ZZγ                                                  | ATLAS Limits<br>CMS Limits<br>CDF Limit                                                                                                                                          |                                                                                                                                              | EWK-11-009<br>SMP-11-005 | July 2013                                                                     | · · ·   · ·                  | ZZZ, ZZ                                            | γ –                                                                                                                                                | ATLAS Limits<br>CMS Limits                                                                                                                                                                    |                                                                                                                        |                                              |
|----------------------------------------------|--------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| $h_2^{\gamma}$                               | ⊢I           | Zγ                                                   | -0.015 - 0.016                                                                                                                                                                   | 4.6 fb <sup>-1</sup>                                                                                                                         | AND 42 015               | zγ                                                                            |                              | ZZ                                                 |                                                                                                                                                    | -0.015 - 0.0                                                                                                                                                                                  | 15 4.6                                                                                                                 | fb <sup>-1</sup>                             |
| 5                                            |              | Ζγ<br>Ζγ                                             | -0.003 - 0.003                                                                                                                                                                   | 5.0 fb<br>5.1 fb <sup>-1</sup>                                                                                                               | SMP-12-010               | $\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix}$  | щ                            | ZZ                                                 |                                                                                                                                                    | -0.004 - 0.0                                                                                                                                                                                  | 04 19.6                                                                                                                | 6 fb⁻¹                                       |
| .7                                           | ⊢I           | Zγ                                                   | -0.013 - 0.014                                                                                                                                                                   | 4.6 fb <sup>-1</sup>                                                                                                                         | SMP-13-009               | .7                                                                            | H                            | ZZ                                                 |                                                                                                                                                    | -0.013 - 0.0                                                                                                                                                                                  | 13 4.6                                                                                                                 | fb <sup>-1</sup>                             |
| h <sub>3</sub>                               | н            | Zγ                                                   | -0.003 - 0.003                                                                                                                                                                   | 5.0 fb <sup>-1</sup>                                                                                                                         |                          |                                                                               | щ                            | ZZ                                                 |                                                                                                                                                    | -0.004 - 0.0                                                                                                                                                                                  | 04 19.6                                                                                                                | 6 fb <sup>-1</sup>                           |
|                                              | ⊢I           | Zγ                                                   | -0.020 - 0.021                                                                                                                                                                   | 5.1 fb <sup>-1</sup>                                                                                                                         | SMP-13-005               |                                                                               |                              | 77                                                 |                                                                                                                                                    | -0.016 - 0.0                                                                                                                                                                                  | 15 4.6                                                                                                                 | fb <sup>-1</sup>                             |
| h <sup>y</sup> v100                          | <b>⊢</b> −−1 | Zγ                                                   | -0.009 - 0.009                                                                                                                                                                   | 4.6 fb <sup>-1</sup>                                                                                                                         |                          | $f_5^{\gamma}$                                                                |                              | 77                                                 |                                                                                                                                                    | -0.005 - 0.0                                                                                                                                                                                  | 05 10 6                                                                                                                | 6 fb <sup>-1</sup>                           |
| 1 <sub>4</sub> x100                          | Н            | Zγ                                                   | -0.001 - 0.001                                                                                                                                                                   | 5.0 fb <sup>-1</sup>                                                                                                                         | •••                      |                                                                               |                              |                                                    |                                                                                                                                                    | -0.005 - 0.0                                                                                                                                                                                  |                                                                                                                        | 5 ID                                         |
| h <sup>Z</sup> v100                          | H            | Zγ                                                   | -0.009 - 0.009                                                                                                                                                                   | 4.6 fb <sup>-1</sup>                                                                                                                         |                          | f                                                                             | <b>⊢−−−−</b> 1               | ZZ                                                 |                                                                                                                                                    | -0.013 - 0.0                                                                                                                                                                                  | 13 4.6                                                                                                                 | fb <sup>-</sup> '                            |
| 14×100                                       | н            | Zγ                                                   | -0.001 - 0.001                                                                                                                                                                   | 5.0 fb <sup>-1</sup>                                                                                                                         |                          | -5                                                                            | H                            | ZZ                                                 |                                                                                                                                                    | -0.005 - 0.0                                                                                                                                                                                  | 05 19.6                                                                                                                | 6 fb⁻1                                       |
| -0.5                                         | 0            | 0.5                                                  | 1 15                                                                                                                                                                             | ×10 <sup>-1</sup>                                                                                                                            |                          |                                                                               |                              | 0.5                                                | <u> </u>                                                                                                                                           | 10                                                                                                                                                                                            |                                                                                                                        | ×10 <sup>-1</sup>                            |
| 0.0                                          | U            | 0.0                                                  | aTGC Limits @95                                                                                                                                                                  | % C I                                                                                                                                        |                          | -0.5                                                                          | U                            | 0.5                                                | atec I                                                                                                                                             | imite @0                                                                                                                                                                                      | 5%                                                                                                                     | $\gamma_{1}$                                 |
| Feb 2013<br>$\Delta \kappa_Z$<br>$\lambda_Z$ |              | Z, ZZγ<br>WW<br>WV<br>LEP Co<br>WW<br>WW<br>WW<br>WZ | ATLAS Limits<br>CMS Limits<br>D0 Limit<br>LEP Limit<br>0.043 - 0.043<br>-0.043 - 0.033<br>-0.043 - 0.033<br>-0.043 - 0.031<br>-0.062 - 0.059<br>-0.048 - 0.048<br>-0.046 - 0.047 | 4.6 fb <sup>-1</sup><br>5.0 fb <sup>-1</sup><br>0.7 fb <sup>-1</sup><br>4.6 fb <sup>-1</sup><br>4.9 fb <sup>-1</sup><br>4.6 fb <sup>-1</sup> |                          | July 2013<br>Anomalous WW<br>a <sup>W</sup> /∧ <sup>2</sup> TeV <sup>-2</sup> | L<br>τγγ Quartic Coupling    | LEP L3 limits<br>30 limits<br>limits @95% C.L.     | $\begin{tabular}{c} \hline Channel \\ \hline WW\gamma \\ \gamma\gamma \rightarrow WW \\ WW\gamma \\ \gamma\gamma \rightarrow WW \end{tabular}$     | $\begin{tabular}{ c c c c } \hline CMS & WW & \gamma & limits \\ \hline & Limits \\ \hline & [-15000, 15000] \\ \hline & [-430, 430] \\ \hline & [-21, 20] \\ \hline & [-4, 4] \end{tabular}$ | s<br>mits<br><u>L</u><br>0.43fb <sup>-1</sup><br>9.70fb <sup>-1</sup><br>19.30fb <sup>-1</sup><br>5.05fb <sup>-1</sup> | √s<br>0.20 Te<br>1.96 Te<br>8.0 Te<br>7.0 Te |
| $\Delta g_1^Z$                               | I & H        | WV<br>D0 Cor<br>LEP Co<br>WW<br>WW                   | -0.038 - 0.030<br>nbination -0.036 - 0.044<br>mbination -0.059 - 0.017<br>-0.039 - 0.052<br>-0.095 - 0.095                                                                       | 5.0 fb <sup>-1</sup><br>8.6 fb <sup>-1</sup><br>0.7 fb <sup>-1</sup><br>4.6 fb <sup>-1</sup><br>4.9 fb <sup>-1</sup>                         |                          | ac//∆² TeV⁻²                                                                  |                              |                                                    | $\mathbf{W}\mathbf{W}\mathbf{\gamma}$<br>$\mathbf{\gamma}\mathbf{\gamma}  ightarrow \mathbf{W}\mathbf{W}$<br>$\mathbf{W}\mathbf{W}\mathbf{\gamma}$ | [- 48000, 26000]<br>[- 1500, 1500]<br>[- 34, 32]                                                                                                                                              | 0.43fb <sup>-1</sup><br>9.70fb <sup>-1</sup><br>19.30fb <sup>-1</sup>                                                  | 0.20 Te<br>1.96 Te<br>8.0 Te                 |
| -0.5                                         |              | VVZ<br>D0 Cor<br>LEP Co<br>0.5                       | -0.057 - 0.093<br>nbination -0.034 - 0.084<br>ombination -0.054 - 0.021                                                                                                          | 4.6 fb <sup>-1</sup><br>8.6 fb <sup>-1</sup><br>0.7 fb <sup>-1</sup>                                                                         |                          | ر<br>f <sub>T,0</sub> / Δ <sup>4</sup> TeV <sup>-4</sup>                      |                              | -                                                  | $\gamma\gamma \rightarrow WW$                                                                                                                      | [- 15, 15]<br>[- 25, 24]                                                                                                                                                                      | 5.05fb <sup>-1</sup>                                                                                                   | 7.0 Te<br>8.0 Te                             |
|                                              |              | á                                                    | aTGC Limits @95                                                                                                                                                                  | % C.L.                                                                                                                                       |                          | -10 <sup>5</sup> -10 <sup>4</sup> -10 <sup>3</sup>                            | -10 <sup>2</sup> -10 - 1 1 - | 10 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> | <br>10 <sup>5</sup>                                                                                                                                | vvWW                                                                                                                                                                                          | WV                                                                                                                     | VZν                                          |



## **Top quark production**



Top pair produced in strong interaction

g

g

00000

00000

- Cross section precision challenging approx. NNLO QCD calculations
- Quality of differential top x-sections can constrain proton gluon (N)NLO PDF



Combined m<sub>top</sub> measurement with 0.6% precision!



## **Top quark production**



# $g \underbrace{\mathbf{x}}_{b} \underbrace{\mathbf{x}}_{\overline{b}} \underbrace{\mathbf{x}}_{\overline{q}} \underbrace{\mathbf{x}}_{\overline{b}} \underbrace{\mathbf{x$

- Single top production in EWK interaction
- Well established also in association to a W boson: tW-channel 6.0σ evidence
- 2σ excess for s-channel single top production





# Rare Decays: $B^{0}_{(s)}$ to $\mu\mu$

#### Rare decays, BR sensitive to new particles



| Mode                          | SM prediction                    |
|-------------------------------|----------------------------------|
| $B_s \rightarrow \mu^+ \mu^-$ | $(3.54 \pm 0.30) \times 10^{-9}$ |
| $B^0 \rightarrow \mu^+ \mu^-$ | $(0.11 \pm 0.01) \times 10^{-9}$ |
| A. Buras et al.,              | arXiv:1208.0934                  |
| DeBruyn et al.,               | arXiv:1204.1737                  |
|                               |                                  |

- CMS results:
  - BR(B<sub>s</sub> $\rightarrow$ µ+µ-) = (3.0<sup>+1.0</sup><sub>-0.9</sub>) x 10<sup>-9</sup> (4.3 $\sigma$  evidence) BR(B<sup>0</sup> + 1.1 + 1.0) < 4.4 × 40<sup>-9</sup> @ 0.5% C I
  - BR(B<sup>0</sup>→μ+μ-) < 1.1 x 10<sup>-9</sup> @ 95% C.L.
- Combination with LHCb:
  - BR(B<sub>s</sub>→µ+µ-) = (2.9 ± 0.7) x 10-9
  - 5σ combined significance

No sign of new physics yet









# Search for the Higgs @ the LHC

Looking back... discovery of new boson Summer 2012



Observation of a new particle with mass of ~125 GeV by ATLAS & CMS

ATLAS: 5.1 σ CMS: 5.0 σ With just: 5 fb-1 @ 7Te V 6 fb-1 @ 8TeV of data!

22





Leptons

Bosons

The Standard Model of particle physics





### SM Higgs boson: LHC production & decays





«Cleanest» channels, good masss resolution (1-2%):  $H \rightarrow \gamma$ 's, leptons Large x-section channels, lower mass resolution (20%) :  $H \rightarrow WW$ ,  $\tau\tau$ , bb



### **Higgs Boson Signals: couplings to bosons**

 CMS Higgs searches in 2011-2012 led to new boson discovery with a mass of M<sub>H</sub> = 125.7±0.3(stat)±0.3(syst)



### **Higgs Boson Signals: couplings to fermions**



#### New result, Dec. 2013!

- 4σ combined (bb+ττ) evidence in fermionic channels
- Strong evidence of fermionic Higgs decays !



# **Higgs properties**

#### Mass peak position





Precision to 0.3-0.5 %



## **Higgs properties**

- Couplings from simultaneous fits to observed signals
- Define scale factors K as the ratio with respect to SM couplings (arXiv:1209.0040)
  - Test to custodial symmetry, fermion universality and effects from new physics
- Spin and parity from angular distributions in WW, ZZ and γγ
  - Studied pseudo-scalar, spin-1 and spin-2 models excluded at 95% CL or higher



#### > Properties indicate no deviation from H(SM) so far



- Couplings from simultaneous fits to observed signals
- Define scale factors K as the ratio with respect to SM couplings (arXiv:1209.0040)
  - Test to custodial symmetry, fermion universality and effects from new physics
- Spin and parity from angular distributions in WW, ZZ and γγ
  - Studied pseudo-scalar, spin-1 and spin-2 models excluded at 95% CL or higher



> Properties indicate no deviation from H(SM) so far

# **Other Higgs channels:** $t\overline{t}H$

- Important test of the Yukawa coupling of the top quark
  - Several final states from top and Higgs decays: Higgs Multi-leptons, bb, ττ, or γγ
- Combined sensitivity on signal strength  $\mu$  < 2:
  - excess driven by same sign dimuon channel
- Expected factor ~5 in production at 13 TeV







## **Other Higgs channels:** $H \rightarrow \mu^+ \mu^-$

- Interesting test of the Yukawa coupling for 2nd generation fermions
  - Expected branching ratio in the SM is BR( $H \rightarrow \mu + \mu -$ ) = 2.2 x 10<sup>-4</sup> (MSSM and other BSM can predict higher BR)
- Inclusive search for gluon fusion and vector boson fusion production:
  - Observed (expected) upper limit for  $m_H$ =125 GeV is  $\mu = \sigma / \sigma_{SM} <$  7.4 (5.2)
- RunII can reach a precision of 40% (14%) on  $\mu$  with 300 (3000) fb<sup>-1</sup>



# **MSSM Higgs Bosons**

- CMS searched for  $\phi^0 \rightarrow bb$ ,  $\tau\tau$ ,  $\mu\mu$  and for H<sup>±</sup> signals
- Recent result for neutral higgs:  $\phi^0 \rightarrow \tau \tau$ :
  - Including production associated to bb
- No evidence for a MSSM Higgs boson





#### Precise SM measurements: the key to discovery



 Very good agreement with NLO (or approx. NNLO) predictions at 7, 8 TeV

#### All predicted elements of the SM have now been verified!

- Higgs was last missing piece.
- Yet SM remains an incomplete description of Nature!



## **BSM: SUSY searches**

#### Searches driven by the production xsec and thus luminosity



https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

- Early analyses dominated by broad and inclusive searches for strong gluino and squark production
- Increasing luminosity gave access to rarer production channels:
  - Additional motivation from the discovery of the Higgs boson move experimental strategy and interpretation to "Natural SUSY" scenarios
    - light 3th generation squarks (specially stops)
    - EWK production (also with Higgs in final state)
- The goal of experiments is to develop strategies to cover the rich decay spectrum:
  - Focus on X→ LSP + SM production (RPC): large MET signatures
  - Also RPV and long-live particles.



## **Typical Natural-SUSY searches (8 TeV)**

- After 2 years of dedicated efforts...
- Searches for direct stop production
  - SUSY simplified model limits at ~700 GeV for stop mass depending on mass of LSP





## **Typical Natural-SUSY searches (8 TeV)**

- Searches for gluino decays to stop or sbottom quarks
  - SUSY simplified model limits at ~1.3 GeV for gluino mass depending on mass of LSP and decay mode







# **SUSY EWK production (8 TeV)**

- Searches for electroweakino ( $\widetilde{\chi}^0_2$  and  $\widetilde{\chi}^\pm_1)\,$  pair production and sleptons
  - SUSY simplified model mass limits between 200-700 GeV depending on mass of LSP the decay mode





## **Overview SUSY searches**



### CMS

40

### **BSM searches: High-mass resonances**

#### «Simple» procedure:

- Reconstruct pairs of high-pT objects: jets, leptons, bosons, ...
- Look at inv. mass,  $M_T$  tails for deviations from smooth SM backgrounds.
- Interpret (lack of) excess within (simplified) BSM models: Set limits for NP



### **BSM searches: High-mass resonances**

#### Di-boson resonances

- Search for deviations in final WW, ZZ, WZ states
- · Excellent momentum and energy resolutions are required







### **BSM:** Dark matter = new heavy particle?

→ Weakly Interacting Massive Particle (WIMP)

- CMS searches for DM production in association to g,  $\gamma$  or W( $\rightarrow$ Iv):
  - Monojet, monophoton or monolepton final states + MET





- Derived limits using LHC data and compared to direct-detection experiments:
  - Non-collider experiments: dark matter nucleon cross section limits.
  - Effective field theory: limits dependent on mediator nature Vector mediator → spin independent Axial-vector mediator → spin dependent





### **BSM searches: generic dark-matter**





### **Overview BSM (non-SUSY) searches**



### The consequence: a lot of reading material

| Show all   | Total | QCD     | Exotica | Searches | Supers  | /mmetry  | B Phys | ics | Electroweak     |    |
|------------|-------|---------|---------|----------|---------|----------|--------|-----|-----------------|----|
| Top Physic | s He  | avv lon | Hiaas   | Forward  | Physics | Standard | Model  | Be  | vond the SM: B2 | 2G |

287 papers published





#### https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults





## CMS

## The Future of the LHC





# **CMS Physics Program Priorities**

#### With data collected until ~2022 (~300 fb<sup>-1</sup>)

- Measure Higgs-like boson properties
  - individual couplings with 5-10% precision
- Search for new physics at higher mass scale

#### **CMS** Projection









# **CMS Physics Program Priorities**

10

 $10^{3}$ 

 $10^{2}$ 

10

10<sup>-1</sup>

10<sup>-2</sup>

10<sup>-3</sup>

500

1000

1500

2000

m [GeV]

σ (pb)

#### arXiv:1307.7135v2

49

#### With data collected until ~2032 (~3000 fb<sup>-1</sup>)

- Measure Higgs-like couplings with ultimate precision
  - The decay H→µµ can be observed with a significance of 5 sigma
- Probe SUSY up to m(gluino) ~ 2 TeV
- Study vector boson scattering
- Search for new physics in rare processes



#### FTR-13-006

Sensitivities for SM EWK scattering discovery and aQGC.

| $3\sigma$               | $5\sigma$                                                              |
|-------------------------|------------------------------------------------------------------------|
| $75  {\rm fb}^{-1}$     | $185  {\rm fb}^{-1}$                                                   |
| $0.8 \text{ TeV}^{-4}$  | $1.0 \text{ TeV}^{-4}$                                                 |
| $0.45 \text{ TeV}^{-4}$ | $0.55 \text{ TeV}^{-4}$                                                |
|                         | 75 fb <sup>-1</sup><br>0.8 TeV <sup>-4</sup><br>0.45 TeV <sup>-4</sup> |

## **Concluding remarks**

- The 2011-2012 LHC run has fostered great successes by CMS:
- Higgs boson: final discovery and consequent detailed studies
- Observation of  $B_s \rightarrow \mu \mu$  decays and new resonances
- World's best top mass measurement, large number of other precise measurements and searches in top sector
- Exclusion of SUSY in wide range of parameter space, long list of searches for new phenomena
- Wide program of precision measurements in EW parameters and QCD
- After shutdown the new energy regime will bring sensitivity to higher energy scales, measurements of Higgs couplings, and more...





## Thank you ;)



Is there anything beyond the Standard Model?



# **Backup material**

### Some goals of the Large Hadron Collider

- Solve some open questions in HEP:
- Mass generation problem: What is the origin of the SM elementary particle masses ? Higgs boson ? other mechanism ?
- Hierarchy / fine-tuning problem: Higgs mass runs up «uncontrolled» up to Planck scale... what stabilizes m<sub>Higgs</sub> up to m<sub>Planck</sub> (10<sup>16</sup> orders-of-magnitude!?) ? SUSY ? extra-D ? ... ?
- Dark matter problem: SM describes only 5% of Universe (visible fermions-bosons). ~1/4 universe = invisible matter. SUSY ? Other particles ?
- 4. Flavour problem: Origin of matter-antimatter asymmetry in the Universe ? Why so many types of matter particles ?
- 5. **QCD in non-perturbative regime:** Why quark confinement ? Total hadronic x-sections ?













### **Object reconstruction: Particle Flow**

 CMS exploits fine granularity and 3.8T magnetic field in the inner tracker region to define a Gloval Event Description



- Optimal combination of information from all CMS sub-detectors produces a list of reconstructed particles: energy and direction
- e, γ, μ, charged and neutral hadrons used in analysis (as if they came from a list of generated particles) used as building blocks for jets, b-jets, taus, MET, isolation

## **Top quark production**

- Top quark pairs produced in strong interaction via:
  - gluon-gluon fusion: dominant mode at LHC
  - quark- antiquark annihilation



|    | LHC   | Tevatron |
|----|-------|----------|
| gg | ~ 85% | ~ 10%    |
| qq | ~ 15% | ~ 90%    |

σ (7TeV) ≈ 163 pb (@ approx. NNL0) σ (8TeV) ≈ 246 pb (@ NNL0+NNLL)

 Single top quark produced in EWK interaction via:





## **QCD**: $\alpha_s$ from the tt cross section



ve. ve

57

# **Higgs couplings**

- Several production and decay mechanisms contribute to signal rate → interpretation is difficult
- A better option: measure deviations of couplings from the SM prediction (*LHCXSWG YR3: arxiv:11307.1347*)
  - series of benchmark parametrizations
- Basic assumptions:
  - there is only one underlying state at mH=125.5 GeV
  - width of the Higgs boson is neglected (narrow-width approximation) for decoupling production and decay  $(\sigma \cdot BR)(ii \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$
  - same tensor structure of the SM Higgs boson : JCP = 0++ (tested independently by ATLAS/CMS/Tevatron)
    - only allow for modification of coupling strengths
- Under these assumptions all production cross sections and branching ratios can be expressed in terms of a few common multiplicative factors to the SM Higgs couplings

$$\Gamma_{H} = \kappa_{H}^{2} \cdot \Gamma_{H}^{SM} ; \quad \Gamma_{f} = \kappa_{f}^{2} \cdot \Gamma_{f}^{SM} ; \quad \sigma_{i} = \kappa_{i}^{2} \cdot \sigma_{i}^{SM}$$

• Example:

$$\sigma \cdot BR (gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{\kappa_g + \kappa_\gamma}{\kappa_H^2}$$

# **Coupling Modifiers**

• Universality of k's for fermions and gauge bosons  ${\bf k_F}$  =  ${\bf k_b}$  =  ${\bf k_t}$  =  ${\bf k_\tau}$  ,  ${\bf k_V}$  =  ${\bf k_W}$  =  ${\bf k_z}$  can be assumed

• Scale factors of loop induced couplings  $(\mathbf{k}_{g}, \mathbf{k}_{\gamma})$  and the total width  $\mathbf{k}_{H}$  can be treated effectively (allowing for possible additional particles)  $\kappa_{I}$ 



fundamental factors  $k_w$ ,  $K_z$ , Kt... (assuming the SM contents)

- total width:  $\kappa_H^2 \approx 0.75 \kappa_F^2 + 0.25 \kappa_V^2$
- Photon vertex loop H→γγ mediated by W and fermions (mainly top)
   → sensitivity to relative sign between k<sub>v</sub> and k<sub>F</sub> from the interference k<sub>v</sub>k<sub>F</sub> term
  - $\rightarrow$  **kV** assumed positive
  - → two minima





$$\kappa_H(\kappa_W,\kappa_Z,\kappa_b,...) \quad \kappa_g(\kappa_t,\kappa_b) \quad \kappa_\gamma(\kappa_t,\kappa_W,...)$$

## **Higgs properties**

#### Couplings from simultaneous fits to observed signals

- Measure deviations of couplings from the SM prediction: define scale factors K as the ratio with respect to SM couplings (arXiv:1209.0040)
- Test to custodial symmetry, fermion universality and effects from new physics
- Within uncertainties, quite a SM Higgs-like statement...



59

## **Higgs properties**

- **Spin and parity** from angular distributions in WW, ZZ and YY
  - Studied pseudo-scalar, spin-1 and spin-2 models excluded at 95% CL or higher



→  $J^{P}$  CL<sub>S</sub> 0<sup>-</sup> 0.16% 0<sup>+</sup><sub>h</sub> 8.1% 2<sup>+</sup><sub>mgg</sub> 1.5% 2<sup>+</sup><sub>mqq</sub> <0.1% 1<sup>-</sup> <0.1% 1<sup>+</sup> <0.1%

SM prediction JP = 0+ highly favorite vs. other hypotheses

Properties indicate no deviation from H(SM) so far



60



### Big themes: many (& complex) signatures





## **Constrained SUSY searches (7 TeV)**

- Many searches with multiple observables: Spartner masses pushed to increasingly heavier (TeV) masses. No «simple» SUSY so far …
  - cMSSM or mSUGRA = minimal SUSY SM extension with least # of params (m0,m1/2,tanβ,A,signµ)
- 2011 was a very rich year for limits on SUSY
- Most limits from inclusive search program: i.e. MET + jets



EXO13-004



### **BSM searches: generic dark-matter**







63

CMS preliminary 2012 20 fb  $^{-1}$   $\sqrt{s}$  = 8 TeV CMS preliminary 2012 20 fb  $^{-1}$   $\sqrt{s}$  = 8 TeV χ-nucleon σ (cm<sup>2</sup>) <sub>20</sub> 10.32 (cm<sup>2</sup>) <sub>20</sub> 10.32 (cm<sup>2</sup>) (cm<sup>2</sup> Observed limit ---- CMS monojet 2012 CMS monojet 2012 Observed limit 10<sup>-31</sup> Expected limit ---- Xenon 100 2012 Expected limit 10<sup>-32</sup> ----- Super-K W<sup>+</sup>W<sup>-</sup> Expected  $\pm 1\sigma$ **COUPP 2012** Expected  $\pm 1\sigma$ χ-nucleon σ 10<sup>-33</sup> SIMPLE 2012 Expected  $\pm 2 \sigma$ 10<sup>-36</sup> Expected  $\pm 2 \sigma$ IceCube W<sup>+</sup>W<sup>-</sup> CoGeNT 2011 Limit in 90 C.L. 10<sup>-34</sup> Limit in 90 C.L. ---- CDMSII 2011 Spin Dependent ----- SIMPLE 2012 10<sup>-35</sup> Spin Independent 10-37 CDMSII 2010 electron + muon ξ = +1 electron + muon 10<sup>-36</sup> 10<sup>-37</sup> 10<sup>-38</sup> 10<sup>-38</sup> 10<sup>-39</sup> 10-39 10<sup>-40</sup> 10-40  $10^{-41}$ 10<sup>-42</sup> 10-41 10<sup>-43</sup>  $10^{2}$ 10 10<sup>2</sup> 10 M<sub>γ</sub> (GeV) M<sub>γ</sub> (GeV

No strong indication for dark matter at CMS found.