

Harvard School of Engineering and Applied Sciences

Harvard University Center for Nanoscale Systems

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters

Mikhail A. Kats

Harvard University

School of Engineering and Applied Sciences

NanoLight [Benasque]

March 4, 2014

- Thin film interference in lossy films
- Ultra-thin color coatings
- Ultra-thin tunable perfect absorber in the infrared
- Anomalous thermal emitter

Thin film interference in lossy films

- Ultra-thin color coatings
- Ultra-thin tunable perfect absorber in the infrared
- Anomalous thermal emitter

Anti-reflection (AR) coating

One simple application: anti-reflective coatings

- Simplest/thinnest conventional AR coating: quarter-wave film
 - (optimized for a particular wavelength)

$$\tilde{r} = \frac{\tilde{r}_{12} + \tilde{r}_{23}e^{2i\tilde{\beta}}}{1 + \tilde{r}_{12}\tilde{r}_{23}e^{2i\tilde{\beta}}} \text{ with } R = \left|\tilde{r}\right|^2$$

$$r_{12} = \frac{n_1 - n_2}{n_1 + n_2} \qquad \qquad \tilde{\beta} = \frac{2\pi}{\lambda} \tilde{n}_2 h$$

Anti-reflection (AR) coating

One simple application: anti-reflective coatings

- Simplest/thinnest conventional AR coating: quarter-wave film
 - (optimized for a particular wavelength)

Anti-reflection (AR) coating

One simple application: anti-reflective coatings

- Simplest/thinnest conventional AR coating: quarter-wave film
 - (optimized for a particular wavelength)

Interference in lossy films

- What if the film becomes very lossy?
 - Reflection coefficient from the 1-2 interface becomes complex-valued
 - Phasor r₀ points away from the real axis

Interference in lossy films

- What if the film becomes very lossy?
 - Reflection coefficient from the 1-2 interface becomes complex-valued
 - Phasor r₀ points away from the real axis

The reflection coefficient is also complex-valued at the 2-3 interface, and even more-so if the substrate index is complex (but not →∞)

Interference in lossy films

- What if the film becomes very lossy?
 - Reflection coefficient from the 1-2 interface becomes complex-valued
 - Phasor r₀ points away from the real axis

- The reflection coefficient is also complex-valued at the 2-3 interface, and even more-so if the substrate index is complex (but not →∞)
- Must account for both interface reflection phase shifts and gradual phase accumulation via propagation
 - New interference condition → loss cannot be treated as a perturbation

Lossy dielectrics + finite metals

- Metals with finite conductivity and lossy dielectrics have weird interface reflection phase shifts (i. e. not 0 or π)
 - Different interference condition compared to the lossless case:
 "resonance" can exist for films significantly thinner than λ/4

<u>M. A. Kats</u> et al, **APL** 101, 221101 (2012)

- > Thin film interference in lossy films
- Ultra-thin color coatings
- Ultra-thin tunable perfect absorber in the infrared
- Anomalous thermal emitter

Our first experimental system

- ► Lossy dielectric → Amorphous germanium
- Lossy metal → Gold

Our first experimental system

- ► Lossy dielectric → Amorphous germanium
- Lossy metal → Gold

Our first experimental system

- ► Lossy dielectric → Amorphous germanium
- Lossy metal → Gold

Coloring gold

• "Colored" gold films by coating with 5-20 nm germanium films \rightarrow much thinner than $\lambda/4$

<u>M. A. Kats</u> et al, **Nat. Materials** 12, 20 (2013)

Angle-dependent reflectivity spectra

Au + 15 nm of germanium

Nanometer thickness optical coatings

Patterning ultra-thin coatings to create images, labels, etc

The difference between blue and purple, and purple and pink is only ~4 nm continuous film of germanium (~ 8 atomic layers)!

<u>M. A. Kats</u> et al, **Nat. Materials** 12, 20 (2013)

Color gradients with ultra-thin coatings

- Ge film of gradient thickness on gold (top section)
- Overcoat with thin Al₂O₃ layers
 - Increased color contrast
 - Protection from the elements
 - Can be replaced by transparent electrode (e.g. ITO)

<u>M. A. Kats</u> et al, **APL** 103, 101104 (2013)

Additional layer of transparent dielectric

Au / 12 nm Ge / 44 nm Al₂O₃ overcoat → R = 0 - 15% across the entire visible spectrum with most of the light absorbed in the germanium film

<u>M. A. Kats</u> et al, **APL** 103, 101104 (2013)

Gold + 15 nm of Ge

Equivalent material

Gold + 15 nm of Ge

Color by pigment

Wavelength (nm)

 Optically it is impossible to determine if you're looking at a solid material, a flat pigment, or a multi-layer system with ultra-thin films

- > Thin film interference in lossy films
- Ultra-thin color coatings
- Ultra-thin tunable perfect absorber in the infrared
- Anomalous thermal emitter

Lossy dielectrics + finite metals

- Metals with finite conductivity and lossy dielectrics have weird interface reflection phase shifts (i. e. not 0 or π)
 - Resonance can exist for films significantly thinner than $\lambda/4$
 - To achieve full suppression of a wavelength, the film should be very lossy

Takeaway message: it is possible to achieve large (even perfect) absorption by using thin film interference in a system involving an ultra-thin, highly-lossy layer

Making a tunable perfect absorber

- Our experimental system comprises a thin (180 nm vs. λ ~ 5-15 µm) film of vanadium dioxide (VO₂) on sapphire
 - VO₂ serves as highly-absorbing layer (tunable)
 - Sapphire is highly-reflecting due to phonon activity in the IR

Why sapphire?

In the IR, what reflectors give us non-trivial optical phase shifts upon reflection?

$$r_{23} = \frac{\tilde{n}_2 - \tilde{n}_3}{\tilde{n}_2 + \tilde{n}_3}$$

• At $\lambda = 12$ um, conventional metals do not work

- ▶ $n_{Au} \sim 15 + 60$ i, $n_{Fe} \sim 6 + 40$ i, etc → all pretty much PEC-like..
- Sapphire (crystalline Al₂O₃) fits the bill!

→ Multi-phonon activity in Sapphire → At 12 um, $n \sim 0.1 + 0.8i$

Gervais and Piriou, J. Phys. C (1974)

Vanadium dioxide (VO_2)

- VO₂ is a correlated metal oxide which experiences phase change upon heating to past ~70 °C (reversible, but with hysteresis)
- Conductivity changes by >10,000 from the insulating to conducting state

VO₂ samples from Ramanathan group @ Harvard

VO₂ in the transition region

What happens in the transition region of VO₂?

Qazilbash, Basov, et al, Science (2007)

- Nanoscale islands of metal-phase VO₂ begin to form within a background of dielectric-phase VO₂, which then grow and connect
 - > The mixture can be viewed as a *disordered, natural metamaterial*
 - ► The ratio of co-existing phases can be controlled → tunable medium

Tunable perfect absorber

- Temperature control of VO₂ allows significant tuning of its refractive index, and hence the sample reflectivity
- Reflectivity tuning from ~80% to 0.25% at 11.6um
 - \rightarrow on/off ratio of more than 300
 - \rightarrow entire structure is simply 180nm of VO₂ on sapphire

<u>M. A. Kats</u> et al, **APL** 101, 221101 (2012)

Changing the transition temperature

- Doping VO₂ with tungsten (W) \rightarrow lower transition temperature
 - ▶ 1% W incorporated into VO₂ during growth → perfect absorption condition at ~50 °C rather than ~70 °C

- > Thin film interference in lossy films
- Ultra-thin color coatings
- Ultra-thin tunable perfect absorber in the infrared
- Anomalous thermal emitter

IR absorber in reverse: thermal emitter

Spectrum/intensity of thermal radiation emitted by an object is given by Planck's law:

Thermodynamic statement: Kirchhoff's law of thermal radiation

$$\mathcal{E}(K) = a(K) \longleftarrow$$
 absorptivity

IR absorber in reverse: thermal emitter

Spectrum/intensity of thermal radiation emitted by an object is given by Planck's law:

Thermodynamic statement: Kirchhoff's law of thermal radiation

$$\mathcal{E}(K) = a(K) \longleftarrow$$
 absorptivity

- Our VO₂/sapphire structure has temperature-dependent infrared absorptivity, and hence its emissivity is expected to also vary with temperature
 - Anomalous behavior such as non-monotonic thermal emission with temperature

Thermal emitter: experimental setup

Fourier transform infrared spectrometer (FTIR)

- Data analysis must account for thermal emission from the detector and optics, and the frequency-dependent response of the instrument
- Can use a wafer blackened by candle soot as blackbody-like reference (ε ≈ 0.96 in the IR)

Thermal emitter: experimental results

Extracted spectral radiance (distribution of thermal emission)

- Thermal emission peak @ "perfect absorption" condition
- > At some point emissivity surpasses our black soot reference
- Total emitted IR light goes up, then down with increasing temperature

<u>M. A. Kats</u> et al, **Physical Review X** 3, 041004 (2013)

Thermal emitter: experimental results

Integrated emitted power over the 8-14 µm atmospheric transparency region

Multiple unusual features:

- Local maximum in the emitted power
- Negative differential thermal emittance over ~10°
- Hysteresis (intrinsic to VO₂)

<u>M. A. Kats</u> et al, **PRX** 3, 041004 (2013)

sample

temp. controller

Thermal emitter: experimental results

Integrated emitted power over the 8-14 μm atmospheric transparency region

Multiple unusual features:

- Local maximum in the emitted power
- Negative differential thermal emittance over ~10°
- Hysteresis (intrinsic to VO₂)

<u>M. A. Kats</u> et al, **PRX** 3, 041004 (2013)

sample

temp. controller

- Described existence of strong optical interference in ultra-thin, highlyabsorbing films
- Demonstrated ultra-thin optical interference coatings comprising lossy semiconductor films on gold substrates
 - Large optical absorption within nanometer-thick layers
 - Thin film interference without iridescence
- Demonstrated a tunable absorber in the infrared based on VO₂ and sapphire
 - Used the phase transition of VO₂ as a tunable, disordered, "natural metamaterial"
- Demonstrated an anomalous thermal emitter
 - "Perfect" blackbody-like emission,
 - Negative differential thermal emittance

Acknowledgements and thanks!

- Federico Capasso
- Romain Blanchard
- Shuyan Zhang
- Patrice Genevet
- Steve Byrnes
- Deepika Sharma
- Jiao Lin

- Zheng Yang
- Changhyun Ko
- Shriram Ramanathan
- Matthias Kolle
- Joanna Aizenberg
- Mumtaz Qazilbash (UCSD, WM)
- Dmitri Basov (UCSD)

Harvard School of Engineering and Applied Sciences

Thank you!

Harvard School of Engineering and Applied Sciences

Harvard University Center for Nanoscale Systems

