#### COOLING AND AMPLIFICATION OF A VACUUM-TRAPPED NANOPARTICLE

Vijay Jain, Loïc Rondin, Erik Hebestreit, Lukas Novotny (ETH Zürich) Jan Gieseler, Marko Spasenovic, Romain Quidant (ICFO Spain)

### TRAPPING



 $\langle \mathbf{F} \rangle = -(\alpha'/2) \nabla \langle |\mathbf{E}|^2 \rangle$ 



#### DECELERATION



# Cavity opto-mechanics using an optically levitated nanosphere

D. E. Chang<sup>a</sup>, C. A. Regal<sup>b</sup>, S. B. Papp<sup>b</sup>, D. J. Wilson<sup>b</sup>, J. Ye<sup>b,c</sup>, O. Painter<sup>d</sup>, H. J. Kimble<sup>b,1</sup>, and P. Zoller<sup>b,e</sup> PNAS | January 19, 2010 | vol. 107 | no. 3 | 1005–1010



#### Toward quantum superposition of living organisms

Oriol Romero-Isart  $^{1,4},$  Mathieu L Juan  $^2,$  Romain Quidant  $^{2,3}$  and J Ignacio Cirac  $^1$ 

New Journal of Physics 12 (2010) 033015





# PARAMETRIC COOLING



# OUTLINE

PART 1: - INTRODUCTION

PART 2: - AMPLIFICATION

PART 3: - COOLING

PART 4: - NONEQUILIBRIUM DYNAMICS

PART 5: - OUTLOOK

## CAVITY OPTOMECHANICS



particle :  $\Omega_0$ cavity :  $\omega_0$ 

Principles of Nano-Optics, 2<sup>nd</sup> ed. (Cambridge University Press 2012)

### PROBLEM STATEMENT



### SMALL OSCILLATION AMPLITUDES

$$\ddot{x}(t) + \Gamma_0 \dot{x}(t) + \Omega_0^2 x(t) = (1/m) \left[ F_{\text{fluct}}(t) + F_{\text{opt}}(t) \right]$$

$$\downarrow$$

$$\Omega_0 = \sqrt{k_{\text{trap}}/m}.$$

$$\downarrow$$

$$k_{\text{trap}} = 4\pi^3 \frac{\alpha P}{c\varepsilon_0} \frac{(\text{NA})^4}{\lambda^4}$$

#### EXPERIMENTAL PARAMETERS

| R = 73 nm                                   |
|---------------------------------------------|
| n = 1.45 + <i>i</i> 8 10 <sup>-9</sup>      |
| m = 4 10 <sup>-18</sup> kg                  |
| $\sigma_{\text{scatt}} = (10  \text{nm})^2$ |
|                                             |

 $k_{trap} = 10 \ \mu N/m$   $\Omega_0 = 2\pi \ 125 \ kHz$ 

#### MEASURING THE TRAP STIFFNESS





#### QUALITY FACTOR



 $P_{\rm gas} = 10^{-5} \,\mathrm{mbar} \longrightarrow \Gamma_0/2\pi = 10 \,\mathrm{mHz} \longrightarrow Q = 10^7$ 

$$P_{\rm gas} = 10^{-9} \,\mathrm{mbar} \longrightarrow Q \sim 10^{11}$$

# OUTLINE

PART 1: - INTRODUCTION

PART 2: - AMPLIFICATION

PART 3: - COOLING

PART 4: - NONEQUILIBRIUM DYNAMICS

PART 5: - OUTLOOK

# AMPLIFICATION



## AMPLIFICATION



 $\ddot{x}(t) + \Gamma_0 \dot{x}(t) + \Omega_0^2 x(t) = (1/m) [F_{\text{fluct}}(t) + F_{\text{opt}}(t)]$  nonlinear!  $F_{\text{opt}}(t) = \Delta k_{\text{trap}}(t) x(t)$   $k_0 \sin(\Omega_{\text{mod}} t) \quad x_0 \sin(\Omega_0 t)$ 





PRL, in print (2014)

# BISTABILITY / HYSTERESIS



PRL, in print (2014)

# BISTABILITY / HYSTERESIS



Modulation: 0.1V / Pressure: 3 10<sup>-3</sup> mBar

PRL, in print (2014)

## OSCILLATION IS PHASE-LOCKED



PRL, in print (2014)

NONLINEAR FREQUENCY FLUCTUATIONS



#### NONLINEAR FREQUENCY FLUCTUATIONS



$$\ddot{x}_i + \Omega_i Q_i^{-1} \dot{x}_i + \Omega_i^2 \left( 1 + \sum_{j=x,y,z} \xi_j x_j^2 \right) x_i = \mathcal{F}_{\text{fluct}} / m$$

$$\Delta \Omega_{\rm L} = \Omega_0 Q^{-1}$$
$$\Delta \Omega_{\rm NL} = \frac{3}{8} \xi \Omega_0 r_{\rm th}^2 \longrightarrow r_{\rm th} = \sqrt{2k_{\rm B}T/m\Omega_0^2}$$

$$\mathcal{R} = \frac{\Delta \Omega_{\rm NL}}{\Delta \Omega_{\rm L}} = \frac{3\xi Q k_{\rm B} T}{4 \Omega_0^2 m} \longrightarrow \mathbf{Q} \mathsf{T}$$

Nature Phys. 9, 806 (2013)

### BOOSTING SENSITIVITY

Force noise spectral density :  $S_F = 4k_B Tm\Omega_0/Q \rightarrow Q/T$ 

$$\longrightarrow F_{min} = S_F^{1/2} B^{1/2}$$



Nature Phys. 9, 806 (2013)

# OUTLINE

PART 1: - INTRODUCTION

PART 2: - AMPLIFICATION

PART 3: - COOLING

PART 4: - NONEQUILIBRIUM DYNAMICS

PART 5: - OUTLOOK

www.nano-optics.org

#### -> GENERATION OF SIDEBANDS



# COOLING

#### PARAMETRIC FEEDBACK



#### FEEDBACK LINEARIZED





#### **CENTER-OFF-MASS TEMPERATURE**

$$S_{x}(\Omega) = \int_{-\infty}^{\infty} \langle x(t)x(t-t')\rangle e^{-i\Omega t'}dt' = \frac{\Gamma_{0}k_{B}T/(\pi m)}{([\Omega_{0}+\delta\Omega]^{2}-\Omega^{2})^{2}+\Omega^{2}[\Gamma_{0}+\delta\Gamma]^{2}}$$

Integrating over 
$$\Omega$$
:  $\langle x^2 \rangle = \langle x(0)x(0) \rangle = \frac{k_B T}{m(\Omega_0 + \delta \Omega)^2} \frac{\Gamma_0}{\Gamma_0 + \delta \Gamma}$ 

Equipartition principle :  $k_{\rm B}T_{\rm c.m.} = m(\Omega_0 + \delta\Omega)^2 \langle x^2 \rangle$ 

For  $\delta \Omega \ll \Omega_0$ :

$$T_{\rm c.m.} = T \frac{\Gamma_0}{\Gamma_0 + \delta \Gamma}$$

### **CENTER-OFF-MASS TEMPERATURE**





PRL 109, 103603 (2012)

## QUANTUM GROUNDSTATE



Mean thermal occupancy : 
$$\langle n \rangle = \frac{k_B T_{\text{c.m.}}}{\hbar \Omega_0}$$

Quantum groundstate :  $\langle n \rangle < 1 \longrightarrow T_{c.m.} \sim 6 \ \mu K$ 

Extrapolating cooling curve:  $\longrightarrow P_{gas} = 10^{-10} \text{ mbar}$ 

Problem : Signal (area of Lorentzian lineshape)  $\propto T_{c.m.}$ 

# OUTLINE

PART 1: - INTRODUCTION

PART 2: - AMPLIFICATION

PART 3: - COOLING

PART 4: - NONEQUILIBRIUM DYNAMICS

PART 5: - OUTLOOK



Nature Nanotechnology, in print (2014)

Pressure: 3 10<sup>-4</sup> mBar







# FLUCTUATION THEOREM



 $\langle E(t) \rangle = k_B T_0 + k_B (T_{\text{eff}} - T_0) e^{-\Gamma_0 t}$ 

# OUTLINE

PART 1: - INTRODUCTION

PART 2: - AMPLIFICATION

PART 3: - COOLING

PART 4: - NONEQUILIBRIUM DYNAMICS

PART 5: - OUTLOOK



For 
$$\Omega = \Omega_0$$
 and  $S_f^{1/2} = k_{trap} S_x^{1/2}$ :  $S_f^{1/2} = \sqrt{2 k_{trap}^2 x_{rms}^2 / (\pi Q f_0)}$ 

Minimum detectable force in bandwidth B :  $F_{min} = S_f^{1/2} B^{1/2}$  $= \sqrt{2 B \, k_{
m trap} \, k_B T \, / (\pi Q f_0)}$ 

For 
$$P_{\rm gas} = 10^{-9}\,{
m mbar}$$
 :  $F_{min} \approx 10^{-20}\,{
m N}$  in 1 sec

T. D. Stowe et al., Appl. Phys. Lett. 71, 288 (1997).

#### COUPLING OF COM AND INTERNAL (SPIN) DEGREES OF FREEDOM



c.f. S. Kolkowitz *et al., Science* **335**, 1603 (2012) D. Rugar *et al., Nature* **430**, 329 (2004)

Opt. Lett. 38, 2976 (2013)



# SUMMARY

$$\ddot{q} + \Gamma_0 \dot{q} + \Omega_0^2 \left[ 1 + \underbrace{\epsilon \cos\left(\Omega_{\rm m} t\right)}_{\rm parametric \ drive} + \underbrace{\Omega_0^{-1} \eta q \dot{q}}_{\rm feedback} + \underbrace{\xi q^2}_{\rm Duffing \ term} \right] q = \frac{\mathcal{F}_{\rm fluct}}{m} \approx 0$$

- Trapping and cooling with a single laser beam
- Parametric active feedback (amplification and cooling)
- Compression ratio of 10<sup>4</sup> ( < 50 mK)
- Ultrahigh force sensitivity



Jan Gieseler