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§  Single plasmonic particle vs. particle 
array: optical response 

§  Experimental techniques 
§  Fabrication 
§  Optical characterization 

§  Results 
§  Square, triangular and honeycomb lattices 
§  Rectangular lattices 

§  Conclusion / future work 
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Single particle response 

free space. Electromagnetic radiation (light) incident on the
plasma at a frequency below the plasma frequency induces
motion in the charge carriers that acts to screen out the inci-
dent field—incident waves are reflected; above the plasma
frequency the charges are unable to respond quickly enough
to screen out the incident field and the waves are instead
transmitted. The ionosphere acts as a plasma, and inserting
appropriate values into Equation 1 shows the plasma fre-
quency to be in the MHz range—hence the importance of the
ionosphere as a reflector for long wavelength radio communi-
cations. Carrying out the same calculation for the conduction
electrons that form the plasma in silver yields a frequency in
the UV; consequently, metals reflect light in the visible, there-
by explaining their historical use as mirrors. Some forms of
carbon also have high enough charge carrier densities to pro-
duce plasmons in the UV.[19] In general, the relative permittiv-
ity of a material is a complex quantity with an imaginary com-
ponent that accounts for the dissipative processes the charge
carriers suffer during their motion within the material. Thus
far we have ignored this dissipation, but it is easily included
within the concept of a plasma by introducing a damping term
in addition to the plasma frequency. This results in the Drude

model, where the frequency dependent relative permittivity
of the metal, em(x), is given by[20]

em ! 1 "
x2

p

x2 # icx
(2)

where c is the relaxation frequency associated with the metal
(it is the inverse of the characteristic time interval between
scattering events that dampen the motion of the conduction
electrons). The frequency regime of interest occurs when the
relative permittivity of the metal is negative because, as we
will see below, this allows resonances to be set up. Bulk plas-
mons can not be excited by light owing to the longitudinal
nature of the oscillating charges in the plasmon and the trans-
verse nature of the electric field of light—an alternative tech-
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Figure 1. Scanning electron micrographs (top), dark-field images (mid-
dle), and dark-field spectra of several metallic nanoparticles made by
e-beam lithography. From left to right the shapes are, a rod, a disc, and
two triangles (the right hand one being the larger of the two). The thick-
ness of these particles were 30 nm and the substrates were silica glass
coated with 20 nm of ITO. (The scale bar in the top figure is 300 nm.)

Figure 2. Arrays of triangular nanoparticles (middle figure shows SEM)
can be made using nanosphere lithography (NSL). In the NSL process
ordered arrays of submicrometer polystyrene spheres are formed on a
substrate (top left) and metal deposited through the interstices via evap-
oration under vacuum (top right), the polystyrene spheres are then re-
moved to leave the array of metallic particles. The lower figure shows the
results of a finite element model of the optical field around the particles
(a unit cell is shown) when illuminated on resonance—note the tight
field confinement around the particle tips. Adapted with permission from
[35]. Copyright 2006 American Chemical Society.

W.A.	  Murray	  and	  W.L.	  Barnes,	  Plasmonic	  

Materials,	  Adv.	  Mater.	  19,	  3771–3782	  (2007)	  
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Array of particles 

§  Array acts as a grating. 

§  Resonantly scattered 
light in phase with each 
one of the oscillating 
dipoles. 

§  E field that each particle 
experiences is different 
to isolated particle. 
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How does array alter response? 

How does S depend 
on lattice? 
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Fabrication 

Arrays written with a write field of 50 micron x 50 micron. 

Resist coating Substrate cleaning E-beam exposure 

Metal deposition Development Lift-off 
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Optical characterization 

§  Index matched to give 
homogeneous environment. 

§  Incident beam divergence of < 1°. 

§  30 micron diameter illumination 
spot size. (arrays are 50 micron x 50 
micron). 

§  Long-pass filter to eliminate 
second order diffraction. 
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Square lattice 
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Triangular lattice 
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Honeycomb lattice 
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Comparison of lattices 
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Polarization sensitivity 
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Rectangular lattice 
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Rectangular lattice 
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Conclusion 
§  Successfully fabricated arrays of metallic nanoparticles and modelled their 

optical response using a simple coupled-dipole model. 

§  Shown that square, triangular and honeycomb lattices exhibit SLRs and that 
their optical response is independent of the polarization. 

§  Confirmed using a rectangular array that particles mainly couple together in 
the direction orthogonal to the applied electric field. 

Future work 
§  Change basis of lattice. 
 

Conclusion / future work 
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Conclusion / future work 
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Two particles 
Parallel polarization 

§  E-field from neighbouring 
nanoparticle is in opposite 
direction to internal field of 
nanoparticle 

§  Reduced restoring force 

§  LSPR red-shifted 

Perpendicular polarization 

§  E-field from neighbouring 
nanoparticle is in same 
direction to internal field 
of nanoparticle 

§  Increased restoring force 

§  LSPR blue-shifted 
 


