

Exotic optical properties of metal-SC core-shell NWs: Low-loss NIMs & ZIMs, transparent contacts

R. Paniagua-Domínguez, D.R. Abujetas, F. López-Tejeira,

L. Froufe-Pérez, José A. Sánchez-Gil

Instituto de Estructura de la Materia (CSIC), Madrid (Spain) Email: <u>i.sanchez@csic.es</u>

Physics

or Physical?

- Motivation: Optical Negative-Index Metamaterials (NIMs)
- Metal-SC core-shell NSs & NWs: 4
 3D/2D bulk Opt. NIMs & ZIMs?
- Other light-scattering properties
 Transparent Metallo-dielectric NWs
- Making it VISIBLE
- Conclusions

Optical Metamaterials

Optical Bulk Negative-index Metamaterials

- Negative Electric response: obvious (metal NPs)
- Negative Magnetic response → Big challenge

Conventional approach: ~SRR Complex Metal Nanostructures

NanoSRRs, paired nanorods, nano-fishnet...

BRINGING METAMATERIALS TO OPTICS:

-ANISOTROPY

Shalaev, Nat. Phot. 2010

-POLARIZATION DEPENDENCE

-THREE-DIMENSIONALITY

-METALS: -HIGH LOSSES -SATURATION OF MAGNETIC RESPONSE

Other approaches: NWs, Metasurfaces,...

Optical Metamaterials

Optical Negative-index Metamaterials

New approach: Magnetic resonances of high-dielectric index semiconductors

Si Rings, Rods: static model

Jelinek & Marqués, JPCM 2009

García-Etxarri et al, Opt. Express 2011

Magnetic Light: EXP

ARTICLE

Received 13 Jul 2012 | Accepted 25 Sep 2012 | Published 30 Oct 2012 DOI: 10.1038/ncom

Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere

J.M. Geffrin¹, B. García-Cámara^{2,3}, R. Gómez-Medina⁴, P. Albella⁵, L.S. Froufe-Pérez⁶, C. Eyraud¹, A. Litman¹, R. Vaillon⁷, F. González³, M. Nieto-Vesperinas⁸, J.J. Sáenz^{4,5} & F. Moreno³

ARTICLE

Received 6 Dec 2012 | Accepted 22 Jan 2013 | Published 26 Feb 2013 DOI: 10.1038/

Directional visible light scattering by silicon nanoparticles

Yuan Hsing Fu¹, Arseniy I. Kuznetsov¹, Andrey E. Miroshnichenko², Ye Feng Yu¹ & Boris Luk'yanchuk¹

Motivation: Optical Negative-Index Metamaterials (NIMs)

Outline

- Metal-SC core-shell NSs & NWs: 4
 3D/2D bulk Opt. NIMs & ZIMs?
- Other light-scattering properties
 Transparent Metallo-dielectric NWs
- Making it VISIBLE
- Conclusions

E, M resonances survive & overlap??

Optical NIMs: Single core-shell NSs

Ag/Si Core-Shell NSs YES, E, M resonances SURVIVE & OVERLAP? Metal Core: LSP Semiconducting Shells: Electric resonance Magnetic resonance -Oext R -Qsca 150 150 150 -Qsca(a1) -Qsca(b1) .g ¹⁰⁰ .<u>u</u> 100 100 Rin 50 50 50 1200 1300 1400 1000 1150 1300 1450 1000 1150 1300 1450 1000 1150 1300 1450 λ[nm] $\lambda[nm]$ λ [nm]

Ag/Si core-shell Sphere r,R~50,170 nm: Extended Mie

Port 1

Optical NIMs: core-shell NSs

Optical NIM, 3D highly isotropic

But... Moderate losses Challenging fabrication

Nanolight'2014, Benasque (Spain)

EPIET

Optical NIMs: core-shell NWs

IEM

CSIC

Optical NIMs: core-shell NWArrays

Paniagua-Domínguez, Abujetas, JASG, Sci. Rep. 2013

IEM

Optical NIMs: core-shell NWArrays

Ag/Si Core-Shell NW array What if disordered? → ROBUST√

Ag/Si core-shell NW r,R~80,170 nm Hex. Array, d=350 nm

Nanolight'2014, Benasque (Spain)

Optical ZIMs: core-shell NWArrays??

Optical ZIMs??

Lower filling fraction (core-shell NWs) ...or

Similar, doubly (E,H) resonant (but weaker) Nanostructures... Simple dielectric NWs

Nanolight'2014, Benasque (Spain)

TiO₂ NWs YES, weak (E,M) resonances can roughly OVERLAP

Electric (a_1) & Magnetic (a_0) resonances

TiO₂ Cylinder R=180 nm (Mie)

Optical ZIMs: NW Arrays

TiO₂ NW arrays Beam splitter

Plane-to-Cyl converter

Slab...

TiO₂ Cylinder R=180 nm, λ =750 nm (COMSOL)

- Metal-SC core-shell NSs & NWs: 4
 3D/2D bulk Opt. NIMs & ZIMs?
- Other light-scattering properties
 Transparent Metallo-dielectric NWs
- Making it VISIBLE
- Conclusions

Core-shell M@D NPs

Other optical properties: Theoretical proposals

Broadband Unidirectional Scattering by Magneto-Electric Core—Shell Nanoparticles

Cloaking and enhanced scattering of core-shell plasmonic nanowires

Ali Mirzaei,* Ilya V. Shadrivov, Andrey E. Miroshnichenko, and Yuri S. Kivshar 6 May 2013 | Vol. 21, No. 9 | DOI:10.1364/OE.21.010454 | OPTICS EXPRESS 10454

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 86, 081407(R) (2012)

Polarization-independent Fano resonances in arrays of core-shell nanoparticles

Wei Liu, Andrey E. Miroshnichenko, Dragomir N. Neshev, and Yuri S. Kivshar inear Physics Centre. Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS). Research School of Physics

Directional Scattering, Fano interference, Superscattering & cloaking,...

An invisible metal-semiconductor photodetector

Pengyu Fan¹, Uday K. Chettiar², Linyou Cao¹[†], Farzaneh Afshinmanesh¹, Nader Engheta² and Mark L. Brongersma¹*

Transparent core-shell NWs

Ag@Si Core-Shell NW ~Low Q_{scatt}??

~Broad (incidence, polarizaton) angles!!

~Approx (quasi-static) TRANSPARENCY conds

Transparent core-shell NWs

Ag@Si Core-Shell NW arrays ~weak coupling ✓ →TRANSPARENCY ✓

- Metal-SC core-shell NSs & NWs: 44
 3D/2D bulk Opt. NIMs & ZIMs?
- Other light-scattering properties
 Transparent Metallo-dielectric NWs
- Making it VISIBLE
- Conclusions

Making it VISIBLE

Outline

- Metal-SC core-shell NSs & NWs: 44
 3D/2D bulk Opt-NIMs?
- Other light-scattering properties
 Transparent Metallo-dielectric NWs
- Making it VISIBLE
- Conclusions

(High permittivity Shell)

Strong Circulation of D

IEM

CSIC

(Metal Core)

Localized Surface Plasmor

Concluding remarks

Other phenomena: Transparency

Fabrication!!

Acknowledgements

Coworkers

Instituto de Estructura de la Materia (CSIC), Madrid (Spain)

Surface Spectroscopies & Plasmonics group

D. R. Abujetas

Luis Froufe-Pérez

Ramón Paniagua-Domínguez

IEM

CSIC

Fernando López-Tejeira

Ricardo Marqués (GM-US)

Grupo de Microondas, Universidad de Sevilla

Juanjo Sáenz (MOLE-UAM) M. Nieto-Vesperinas (ICMM-CSIC) Fernando Moreno (Óptica-UC)

Acknowledgements

Funding agencies

...Thank you

