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✎ Spin-1/2 kagome antiferromagnets have been intensively studied.

why spin-1 kagome antiferromagnet (KAF)?

Herbertsmithite

S. Yan, D.A. Huse, & S.R. White, Spin 
liquid ground state of the S=1/2 kagome 
Heisenberg antiferromagnet. Science 
332, 1173–1176 (2011)

H.-C Jiang, Z.H. Wang & L. Balents, Nature 
Physics 8, 902-905 (2012)
S. Depenbrock, et. al, PRL, 2012
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Figure 3: The entanglement entropy S(L
y

) of the kagomé J1-J2 model in Eq.(2), with L
y

=
4 ⇠ 12 at L

x

= 1. By fitting S(L
y

) = aL
y

� �, we get � = 0.698(8) at J2 = 0.10, and
� = 0.694(6) at J2 = 0.15. Inset: kagomé lattice with L

x

= 12 and L
y

= 8.

phase. Fortunately, for a given D, there are only finitely many distinct topological phases, and

for small values of D, a complete classification of all topological phases is known (18). Other

constraints such as time-reversal symmetry (if present) further constrain the possible topological

order. For example, there are only two time-reversal invariant phases consistent with D = 2,

found here for the kagomé Heisenberg model: the Z2 phase, and a doubled semion phase.

It will be interesting to develop methods to distinguish these in the future, and to calculate

the topological ground state splitting. Identifying topological order by combining theoretical

classification results with numerical simulation is a major step in the development of a post-

Landau paradigm for classifying quantum phases of matter.
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The observed Q dependence of the scattered intensity provides
important information on the ground-state spin correlations. The
scattering in reciprocal space has the shape of broadened hexagonal
rings centred at (0, 0, 0)- and (2, 0, 0)-type positions. All of the scans
that we have performed from Bv 5 1.5 to 11 meV show similar pat-
terns for the scattered magnetic intensity. The energy-integrated
dynamic structure factor over the integration range 1 # Bv # 9 meV
is plotted in Fig. 1d. This quantity serves as an approximation of the
equal-time structure factor. For comparison, a calculation of the equal-
time structure factor for a collection of uncorrelated nearest-neighbour
singlets on a kagome lattice is shown in Fig. 1e. To a first approxi-
mation, the observed magnetic signal resembles this calculation.
Therefore, the ground-state wavefunction of herbertsmithite has a
large component resembling randomly arranged nearest-neighbour
singlets, similar to a short-range resonating valence-bond state2,16,23.
However, it is also clear that the data have a narrower width in recip-
rocal space than does the model calculation. Thus, the spin–spin cor-
relations in herbertsmithite extend beyond nearest neighbours, as
further discussed below. The intensity in Fig. 1e corresponds to 1/8
of the total moment sum rule24. For the data, the integrated intensity
up to Bv 5 11 meV corresponds to 20(3)% of the total moment (where
the uncertainty represents 1 s.d.). This indicates that the excitations
extend up to much higher energies (a few multiples of J), and future
inelastic measurements up to these energies would be of great interest.

At the lowest measured energy transfers, we observe additional
features in the pattern of magnetic scattering. Figure 1c depicts the
intensity contour plot for Bv 5 0.75 meV, showing additional broad
peaks centred at (1, 0, 0) and equivalent positions (seen as the yellowish
spots near the centres of the low-Q Brillouin zones). The (1, 0, 0) posi-
tion does not correspond to a nuclear Bragg position for this cry-
stal structure. Additional scans taken with Bv between 0.25 and
1 meV confirm that this feature is generic to the low-energy transfers.
This peak is probably influenced by the weakly coupled Cu21 ions at

the interlayer Zn21 sites, which are believed to affect the low-energy
scattering25.

The scattering pattern’s overall insensitivity to energy transfer is
another remarkable feature of the data. Conventional spin-wave excita-
tions take the form of sharp surfaces of dispersion in Q–v space. Such
spin-wave excitations were indeed observed in the S 5 5/2 kagome
antiferromagnet KFe3(OH)6(SO4)2 (ref. 26). In herbertsmithite, no
surfaces of dispersion are observable in the low-temperature data.
The dependence of Stot(Q, v) on Bv and Q is plotted in Fig. 2 for
two high-symmetry directions in reciprocal space: the (H, 0, 0) direc-
tion (Fig. 2a) and the (H, H, 0) direction (Fig. 2b). These directions are
indicated by thick black lines in Fig. 2d. These plots show that the spin
excitations form a broad, continuous band (or a continuum), extending
up to the highest measured energy, 11 meV. This is direct evidence that
the excitations are fractionalized, forming a continuum in this two-
dimensional antiferromagnet.

In Fig. 2c and its inset, the energy dependences of Stot(Q, v) and
Smag(Q, v) are plotted for high symmetry Q positions as indicated in
the reciprocal space map in Fig. 2d. The scattered signal is rather flat for
2 # Bv # 10 meV but increases significantly with decreasing energy
transfer below Bv 5 1.5 meV. There is no indication of a spin gap
down to Bv 5 0.25 meV at the measured reciprocal space positions.

The magnetic intensity can be plotted as one-dimensional ‘line scans’
along specific directions in reciprocal space. In Fig. 3a, Smag(Q, v) is
shown along the (22, 1 1 K, 0) direction, indicated by the thick red line
on the reciprocal space map in Fig. 3d. Three energy transfers,Bv 5 2, 6
and 10 meV, are plotted, and there is no substantial change in the peak
width as a function of energy transfer. The width of these line scans,
determined by fits, can be found in Supplementary Fig. 3. In Fig. 3b,
Smag(Q, v) is integrated over 1 # Bv # 11 meV and compared with the
calculated equal-time Smag(Q, v) for uncorrelated nearest-neighbour
singlets. The solid line corresponds to the result of the uncorrelated
nearest-neighbour singlet model multiplied by jF(Q)j2, where F(Q) is
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Figure 1 | Inelastic neutron scattering from the spin excitations, plotted in
reciprocal space. a–c, Measurements were made at T 5 1.6 K on a single-
crystal sample of ZnCu3(OD)6Cl2. The dynamic structure factor, Stot(Q, v), is
plotted for Bv 5 6 meV (a) and Bv 5 2 meV (b) with Ef 5 5.1 meV and
Bv 5 0.75 meV (c) with Ef 5 3.0 meV. The background was measured with an
empty sample holder and subtracted. The diffuse scattering is mostly magnetic
in origin, because the phonon contribution to the signal is small (except near
the (2, 2, 0)-type positions, where the fundamental Bragg peaks are strong).
d, The magnetic part of the dynamic structure factor, Smag(Q, v), integrated

over 1 # Bv # 9 meV. e, Calculation of the equal-time structure factor,
Smag(Q), for a model of uncorrelated nearest-neighbour dimers. The intensity
corresponds to 1/8 of the total moment sum rule S(S 1 1) for the spins on the
kagome lattice. The data presented in a–c are expressed in barn sr21 eV21 per
formula unit, as shown by the left colour bars. The data presented in parts d and
e are dimensionless, with the scale given by the right colour bar. The Brillouin
zone boundaries are drawn in the figure for clarity; they correspond to the
conventional unit cell with parameters a 5 b 5 6.83 Å, c 5 14.05 Å,
a 5 b 5 90u and c 5 120u.
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✎ Spin-1 KAF are less well studied....

Magnetically ordered?

or

hexagon valence bond solid state? 
[K. Hida, 2000]

fully trimerized crystal? 
[Z. Cai, 2009]

True for large S limit! 
[D.A. Huse et. al, PRB (1992)]
[C.L. Henley et. al, JMMM. (1995)]

Stable in spin-1 KAF [C. Xu et. al, 
PRB (2007)]

or

3 × 3
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Experimental studies of the spin-1 KAF 

Experiments show:
(a) No magnetic susceptibility peak [I & III] ➙ no magnetic transition, no SO(3) symmetry 
breaking

(b) Low-T susceptibility collapse to zero [I] ➙ gapped states

(c) Specific heat has a maximum around J/2 (J the AF coupling) [I] ➙ phase transition?

material reference comments

I m-MPYNN·BF4

(a) N. Wada, et. al, JPSJ (1997).

(b) T. Matsushita, et. al, JPSJ (2010).

(a) gapped antiferromagnet

(b) magnetization curve (0, 1/2 & 3/4 
plateaus)

II Ni3V2O8 G. Lawes, et. al, PRL (2004). kgaome staircase

III KV3Ge2O9 S. Hara, et. al, JPSJ (2012).

IV BaNi3(OH)2(VO4)2
 D.E. Freedman, et. al, Chem. 

Commun. (2012). AF & F couplings 
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Numerical simulations of the spin-1 KAF was ... few

✎ Coupled cluster calculation [Götze et. al., PRB (2012)]

Long-range magnetic order appears only for S>1.

➜ No             magnetic order in spin-1 KAF!

Spin-1 KAF GS energy estimated as E0 = −1.4031

✎ Until this year :
H.J. Changlani and A.M. Läuchli, Ground state of the spin-1 antiferromagnet on the kagome 
lattice, arXiv:1406.4767v1 (2014).

T. Liu, WL, A. Weichselbaum, J. von Delft, and G. Gu, Simplex valence-bond crystal in the spin-1 
kagome Heisenberg antiferromagnet, arXiv:1406.5905 (2014).

T. Picot, D. Poilblanc, Nematic and supernematic phases in Kagome quantum antiferromagnets 
under a magnetic field, arXiv:1406.7205 (2014).

3 × 3
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The Resonating AKLT-loop State
     

✎ Topological resonating AKLT-loop states and its PEPS representation

✎ The RAL family and its variational energies

related paper:

WL, S. Yang, M. Cheng, Z.-X. Liu, and H.-H. Tu
Topology and criticality in the resonating Affleck-Kennedy-Lieb-
Tasaki loop spin liquid states
Phys. Rev. B 89, 174411 (2014).
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Spin-1 system: Affleck-Kennedy-Lieb-Tasaki (AKLT) string state

✎ AKLT-string state has a natural Matrix-Product State representation.

s=1/2virtual particle
s=1/2

S=1 S=1 S=1 S=1 S=1 S=1

singlet pair
Bm,n

✎ Symmetry-Protected Topological Order: spinon carries spin-1/2, symmetry fractionalization

AKLT = Ps=1
⊗N ↑2i−1↓2i − ↓2i−1↑2i

i=1
∏

i labels site where physical spin-1 locates

Matrix-Product State, D=2

Ai
m=1 = 1 0

0 0
⎡

⎣
⎢

⎤

⎦
⎥,Ai

m=−1 = 0 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥,Ai

m=0 = 2
2

0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥

B2i−1,2i =
2

2
0 1
−1 0

⎡

⎣
⎢

⎤

⎦
⎥

On-site tensor A
Ai

I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 
(1987); Commun. Math. Phys. 115, 477, (1988).
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project 1/2⊗1/2 => spin-1

singlet
1
2
( ↑,↓ − ↓,↑ )

The singlets form a 
closed loop called 

AKLT loop.

spin-1 systems: Resonating AKLT-loop (RAL) State

Hong Yao, Liang Fu, and Xiao-Liang Qi
arXiv:1012.4470 (2010).

2

logical order, combined with (fractional) symmetry quan-
tum numbers, give a more refined classification of topo-
logical phases with symmetry. It is worth to mention that
Ref.[22, 23] has classified hundreds of distinct Z2 spin liq-
uids of spin-1/2 systems protected by space group sym-
metry, based on the projective symmetry group (PSG)
approach to study the variational ground state wave func-
tion obtained from slave-particle construction. The con-
nection between the PSG property of ground states and
the physical quantum number of quasiparticles is not per-
fectly understood. Moreover, the distinction between
spin liquids protected by spatial symmetry is not robust
against disorder, whereas our study dealing with time-
reversal symmetry is.
Resonating valence loops (RVL): For simplicity,

we shall consider a spin-1 system on the honeycomb lat-
tice first. On each site i, Sα

i = 1
2b

†
iµσ

α
µνbiν , where σ

α are
Pauli matrices and biµ are Schwinger bosons with the

constraint b†i↑bi↑ + b†i↓bi↓ = 2. In the spirit of AKLT,
each of two bosons on each site can form a singlet bond
with another boson on its nearest neighbor site - each
spin-1 can participate two singlet bonds. A spin singlet
bond on the link 〈ij〉 is created by B†

ij = εµνb†iµb
†
jν (εµν is

the Levi-Civita symbol). For reasons which will be clear
later, we are interested in the following states:

|Ψ〉RVL =
∑

c

|c〉 ; |c〉 = (−1)nc

∏

〈ij〉∈c

B†
ij |0〉 , (1)

where c is a loop-covering configuration which consists
of non-intercepting loops and which touches every site
by one and only one loop and nc counts the number of
singlet bonds of the loop configuration c on those ver-
tical links with upper site in sublattice A. |Ψ〉RVL is
an equal weight superposition of all loop-covering config-
urations, which we propose to call “resonating valence
loop” (RVL) state. A typical loop-covering configura-
tion is shown in Fig. 1. For the honeycomb (or any
other trivalent) lattice, there is a one-to-one correspon-
dence between loop-covering and dimer-covering config-

a
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6

i
=N(i)

i
=N

3
(i)

i
=N

2
(i)

i
=N

1
(i)

(a)

a

1 2
3

4

5
6

(b)

FIG. 1: (a) The schematic representation of the honeycomb
lattice and a typical loop-covering configuration. The black
(white) sites are in A (B) sublattices. Thick bond represent a
spin singlet created by B

†
ij (see text) and they forms a loop-

covering on the honeycomb lattice. A hexagon plaquette is
flippable if it has three thick and three thin bonds. For in-
stance, the loop configuration is flippable on the hexagon pla-
quette marked by a. (b) A typecal spin-1 dimer-covering con-
figuration in which each dimer consists of two singlet bonds.

urations: for any loop-covering c, a corresponding dimer
configuration is obtained by occupying a virtual dimer
on any link not covered by the loop; consequently, the
number of loop configurations is identical to the number
of dimer ones that increases exponentially with the size
of the lattice. Since B†

ij = −B†
ji, in Eq. (1), we take the

convention i(j) ∈ A(B) sublattices for all links 〈ij〉 such
that 〈c| c̃〉 < 0 where c̃ is obtained from |c〉 by flipping
singlet bonds which are flippable on some hexagon pla-
quette. The negative overlap[24] between |c〉 and |c̃〉 is
important for reasons which will become clear later.
Before dicussing properties of the RVL state, we shall

first introduce a microscopic model for which the RVL
state in Eq. (1) is the ground state. Since the RVL state
consists of loop configurations, it is desired to associate
an energy cost for non-loop states. To achive this, we
consider the following Klein term[25]

HK = J
∑

i

[

P3[N (i)] + P4[N (i)] +
3

∑

α=1

P3[Nα(i)]

]

,(2)

where J > 0, N (i) labels a cluster of four sites consisting
of i and three neighbors of i, Nα(i) a cluster of three
sites consisting of i and two neighbors of i, as shown in
Fig. 1(a). Here Ps[N (i)] is a projection operator onto
the sector of total spin-s of the cluster N (i), namely

Ps[N (i)] =
4
∏

r=0,r &=s

#S2
N (i) − r(r + 1)

s(s+ 1)− r(r + 1)
(3)

where #SN (i) =
∑

j∈N (i)
#Sj . Ps[Nα(i)] and other projec-

tion operators which will appear later are defined simi-
larly. Since HK is a sum of projection operators, it is
positive semi-definite. It is clear that HK |c〉 = 0; |c〉
is a ground state of HK . As usual, one question about
the Klein term is whether it is perfect, namely whether
there are non-loop configurations whose energy is zero.
Although lacking a rigorous proof[26], we believe that
the set of |c〉 forms the complete ground state manifold
of HK since there are no obvious non-loop states with
zero energy.
The dual description in terms of dimers tells us how

loop configurations resonate: if c has three separated sin-
glet bonds on a hexagon plaquette, c is said to be flip-
pable on that plaquette, as shown in Fig. 1(a). It is then
clear that the maximum possible value of the total spin
#Sa =

∑

i∈a
#Si of a hexagon a is 3 when a is flippable. For

all other configurations non-flippable on a, the maximum
possible spin on a is at most 2. This fact makes flippable
configuration unique and enables us to construct the fol-
lowing Hamiltonian for which we shall prove that |Ψ〉RVL
is its ground state.

HRVL = HK +HQ,

= HK + J ′
∑

a

P3(a) [P3(Ea) + P3(Oa)] , (4)

where Oa(Ea) represents the odd (even) sites, namely
the three A(B) sublattice sites, of plaquette a. Note that
P3(a), P3(Ea) and P3(Oa) commute with each other.

RAL = L
all loop configs
∑
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The spin-1 RAL on the kagome lattice

Loop config. on kagome lattice

 0 ⊕ 1/2 

α

𝛽

P

G

 0 ⊕ 1/2 ⊕ 1

T

T

𝜇
T

T

𝜇

x-direction

y-direction
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✎ No magnetic, dimer, or quadrupolar order.
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FIG. 13. The 18-site cluster used in the variational study of
spin-1 kagome Heisenberg model. Periodic boundary condi-
tions are assumed in both directions, and the cluster has 2⇥3
unit cells.
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FIG. 14. (Color online) Variational energy of the mixed RAL
states for spin-1 kagome Heisenberg model, computed using
iPEPS. Convergence has been checked against di↵erent Dc.
Sign convention 1 is illustrated in Fig. 2(c) and convention 2
in Fig. 2(d).

from the iPEPS calculations in the thermodynamic limit
is shown in Fig. 14. The best variational energy (per site)

�1.2696 is achieved at ↵ ⇡ 0.44 with the sign convention
given in Fig. 2(d).

VI. CONCLUSION

To conclude, we have systematically investigated a
family of resonating AKLT-loop states on square, honey-
comb, and kagome lattices. Using a natural PEPS rep-
resentation, we have shown that the RAL states are crit-
ical on square and honeycomb lattices, while on kagome
lattice it is a gapped Z

2

spin liquid. We also discussed
the realization of the SO(3) spin-rotation symmetry and
clarified its manifestation through explicitly constructing
the topological sectors and evaluating the corresponding
entanglement spectra on infinitely long cylinders. We
considered a one-parameter family of PEPS interpolat-
ing between the RAL and RVB states which have distinct
symmetry realizations. A critical point has been identi-
fied along this interpolation path. Lastly, we have used
the RAL states to obtain the best-to-date variational en-
ergy for the spin-1 Heisenberg model on a kagome lattice.
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spinon line
“electric”  Wilson loop

0

0

0

V

0

0

spinon on the boundary

V=diag(1,-1,-1,1,1,1)

flux (vison) line
“magnetic”  Wilson loop

One can constructed 4 topological sectors on infinite cylinder, they are 
labeled by {Pv=even/odd, Gv=±1}.

The kagome RAL states: the topological sectors
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Variational energies of four topological sectors
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✎ Four constructed states are degenerate in the thermodynamic limit.

D. Poilblanc, et al, PRB 86, 014404 (2012)
D. Poilblanc, et al, PRB 87, 140407 (2013)
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Topological Entanglement Entropy  
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Odd sector, Gv=+1
a 5 −0.83

✎ 𝛾≈ln(2) verifies the existence of 
ℤ2 topological order.

SE =αL − γ + ...

sub-leading term, owing to 
long range entanglement.

Leading term, proportional 
to entanglement surface.
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picture of (1) shown in Fig. 1 also becomes transpar-
ent, as each configuration contains di↵erent patterns of
fully packed spin-1 AKLT loops covering the whole lat-
tice. Since the projector in (2) gives the same weight
to all allowed ways of combining two spin-1/2’s into a
physical spin-1, the wave function (1) can be viewed as
an equal weight superposition (up to a sign depending on
the sign convention) of all possible AKLT-loop configu-
rations, which was first proposed in Ref. [25].

At this point, we note that our PEPS representa-
tion naturally generalizes to more complicated resonat-
ing loop states, where the loops carry other 1D matrix-
product states (e.g. SO(2n+ 1) AKLT state35).

B. RAL states on the kagome lattice

A straightforward construction of the RAL state on
the kagome lattice proceeds along the description in the
previous subsection. As shown in Fig. 3(a), there are
four virtual particles on each vertex, in the representation
0� 1/2, and the on-site projection operator P is exactly
the same as Eq. (3).

For the RAL state on the kagome lattice, this PEPS
representation has a redundancy which can be revealed
by the following procedure: we group the two virtual
particles belonging to the same triangle (see e.g. �, ⌧ in
Fig. 3(a)) and block them into a single virtual particle
(see ⌫ in Fig. 3(b)). It turns out that not all virtual
degrees of freedom survive after this blocking procedure.
After removing this redundancy, we find that the new
virtual particle ⌫ is in the SU(2) representation 0�1/2�
1 and has dimension D = 6 (see Fig. 3(b)), instead of
D = 9 from a naive counting of the dimension of the
tensor product (0 � 1/2) ⌦ (0 � 1/2). Let us note that
this procedure is exact and the removal of redundancy
allows us to reduce computational costs in our numerical
calculations.

Furthermore, in our framework it is straightforward
to introduce a one-parameter family of PEPS, which in-
terpolates between the RAL and the spin-1 RVB states.
This is done by extending the virtual representation [�, ⌧
in Fig. 3 (a)] from 0� 1/2 to 0� 1/2� 1. Thus, the vir-
tual bonds in (1) are modified as |✏

mix

i = |0, 0i+ |1, 2i�
|2, 1i+ (|3, 5i � |4, 4i+ |5, 3i)/

p
3, where |3, 4, 5i denotes

the three states in the virtual spin-1 space. Accordingly,
the projector P in (2) has to be modified as

P 0 = (1� ↵)P + ↵W, (4)

whereW is a local projector which maps one virtual spin-
1 state, out of the four virtual spin-1 particles, onto the
physical spin-1 Hilbert space. Its explicit form is given
by

W =
4X

l=1

Wl, (5)

where, for instance, W
1

is defined as

W
1

=
X
m

X
µ1µ2µ3µ4

Cm
µ1,0�µ2,0�µ3,0�µ4,0|mihµ

1

, µ
2

, µ
3

, µ
4

|.

(6)
Here Cm

µ,0 store the trivial CG coe�cients C1

3,0 = C0

4,0 =

C�1

5,0 = 1. In this one-parameter PEPS, we recover the
RAL state (1) for ↵ = 0 and the RVB state for ↵ = 1.
Hence we have a continuous family of “mixed” RAL
states parametrized by the weight ↵ controlling the den-
sity of the spin-1 valence bonds in the mixed loop-dimer
configuration. Like in the pure RAL state, we can com-
bine two virtual particles �, ⌧ into a single virtual particle
⌫ (see Fig. 3). As a result, the virtual particle ⌫ is also
in the representation 0 � 1/2 � 1 and thus the resulting
PEPS has bond dimension D = 6.

FIG. 3. (Color online) (a) The PEPS construction of the pure
kagome RAL state. (b) The simplified PEPS construction
based on combining virtual particles.

FIG. 4. (Color online) Boundary-MPS contraction scheme in
the iPEPS algorithm. The double-layer tensor network is con-
tracted iteratively, by successively contracting the boundary
MPS with the transfer operator. The boundary MPS is trans-
lationally invariant and includes AL and AR. The correlation
function can be evaluated by sandwiching two (converged)
boundary MPS with one column of the transfer operators, in-
cluding impurity tensors Oi(j) denoting the operator at site
i(j).
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✎ mRAL state interpolate the 
RAL and spin-1 RVB states 
(controlled by parameter 𝛼).
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Variational Energies of the RAL states
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FIG. 13. The 18-site cluster used in the variational study of
spin-1 kagome Heisenberg model. Periodic boundary condi-
tions are assumed in both directions, and the cluster has 2⇥3
unit cells.
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FIG. 14. (Color online) Variational energy of the mixed RAL
states for spin-1 kagome Heisenberg model, computed using
iPEPS. Convergence has been checked against di↵erent Dc.
Sign convention 1 is illustrated in Fig. 2(c) and convention 2
in Fig. 2(d).

from the iPEPS calculations in the thermodynamic limit
is shown in Fig. 14. The best variational energy (per site)

�1.2696 is achieved at ↵ ⇡ 0.44 with the sign convention
given in Fig. 2(d).

VI. CONCLUSION

To conclude, we have systematically investigated a
family of resonating AKLT-loop states on square, honey-
comb, and kagome lattices. Using a natural PEPS rep-
resentation, we have shown that the RAL states are crit-
ical on square and honeycomb lattices, while on kagome
lattice it is a gapped Z

2

spin liquid. We also discussed
the realization of the SO(3) spin-rotation symmetry and
clarified its manifestation through explicitly constructing
the topological sectors and evaluating the corresponding
entanglement spectra on infinitely long cylinders. We
considered a one-parameter family of PEPS interpolat-
ing between the RAL and RVB states which have distinct
symmetry realizations. A critical point has been identi-
fied along this interpolation path. Lastly, we have used
the RAL states to obtain the best-to-date variational en-
ergy for the spin-1 Heisenberg model on a kagome lattice.
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FIG. 2. (Color online) The variational ground state energy per site
e0. The squares are iPEPS data from infinite 2D lattice calculations,
while the triangles are calculated on XC8 cylinders with perimeter
Ly = 4. e0 decreases with increasing D and converges well for D �
12, towards e0 ' �1.409. The inset shows the energy convergence
with dc for various bond dimensions D.

phase transition between the SVBC and ferro-quadrupolar
states is observed at ✓c ⇡ �0.04⇡.

Model and Method.— We consider the quantum spin-1
KAH model with only nearest-neighbor isotropic exchange
interactions, whose Hamiltonian is H =

P
hi, ji Si · S j, with

spin operator Si on sites i, while hi, ji stands for the nearest-
neighbor link on a lattice. We use the projected entangled-
pair state (PEPS) as a wavefunction ansatz [26], and invoke
an imaginary-time evolution (through the Trotter-Suzuki de-
composition [27]) to seek the best variational ground state.
The initial tensor network [Fig. 1(a)] is set up as a honeycomb
lattice, with two kinds of tensors, TA and TB, associated with
all A and all B triangles of the lattice, respectively. TA (blue
circle) has three physical and three geometric indices. TB (red
circle) only has three geometric indices. Such a tensor net-
work ansatz is also called projected entangled simplex state
[28].

After each step of the imaginary time evolution, we have
to reallocate the three physical indices (from TA to TB, or the
other way round) and truncate the state space dimension D.
Here we use the single-triangle (ST) and double-triangle (DT)
Bethe-lattice approximations for truncations [23, 24], follow-
ing Refs. 25, 28, and 29 (supplementary materials). These
simple (cluster) update schemes are local optimizations of the
tensors, while the agreements of the ST and DT calculations
convince us that they are adequate for determining accurately
the ground state of the spin-1 kagome model. In the practical
calculations, we perform projections until the energy expecta-
tions converge within a prescribed accuracy of, say, 10�10.

In the following, we mainly consider two kinds of geome-
tries: (a) an infinitely large 2D lattice and (b) an infinitely long
X-cylinder with finite circumference (Fig. 3). For case (a),
we adopt the infinite PEPS (iPEPS) technique [31–33] to con-
tract the double-layer tensor network (for evaluating observ-
ables). During the iPEPS contractions, the geometric bond

FIG. 3. (Color online) (a) Illustration of the X-cylinder. LX is the
length along the horizontal direction (open boundary condition, with
length unit ax), Ly is the circumference of the cylinder (periodic
boundary condition, with length unit ay). (b,c) Implementation of
SU(2) symmetry in local tensors, M labels the number of multiplets
included. The spin quantum numbers of acillas are also shown, and
the arrows indicate how the spin multiplets are fused together [30].

of the boundary matrix product state (MPS) is truncated to at
most dc bond states. For case (b), we perform contractions
exactly.

Ground state energy and valence-bond crystal.— Fig. 2
presents our results of energy per site e0. The inset shows
that the energy results are well converged for boundary MPS
bond dimension dc = 40. The main panel, where dc = 40,
shows that the energy decreases monotonically with increas-
ing bond dimension D, converging for D � 12. The value
e0 ' �1.409 obtained for D = 14 constitutes our best estimate
of the ground state energy in the thermodynamic limit.

In addition, we also wrap the tensor networks on the X-
cylinder with Ly = 4 shown in Fig. 3 (a) (and denoted XC8
in previous work on kagome cylinder [10, 11]). We start from
both ends, contract the boundary vector [V in Fig. 3 (a)] with
a column of tensors, and repeat this process until convergence
is reached. The cylinder results for e0 are also presented in
Fig. 2, they are slightly lower than the iPEPS data, owing to
the finite circumference. In contrast to the approximate iPEPS
contraction, the exact contraction is fully controlled and yields
a true variational upper bound e0 on a given cylinder.

In Fig. 4, we show the spin-spin, dimer-dimer, and chi-
ral correlation functions, all evaluated between two triangles
belonging to the same kind, say, A triangles. The dimer-
dimer correlation function is defined by hDiDji = h(S z

i S
z
i+1) ·

(S z
jS

z
j+1)i � hS z

i S
z
i+1i · hS z

jS
z
j+1i, where i and j belong to dif-

ferent triangles. The chiral correlation function is defined as
hCm Cni = h[Sm1 · (Sm2 ⇥ Sm3 )][Sn1 · (Sn2 ⇥ Sn3 )]i, where m, n
label positions of two triangles, and mi, ni label the positions
of the three sites within a triangle. Fig. 4 shows that all these
correlation functions decay exponentially, implying that the
ground state of spin-1 KAH model is gapped and there is non-
magnetic.

Fig. 5 shows the energy di↵erence�E = 2
3 |EA�EB| between
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The RAL states: conclusions

✎ Resonating AKLT-loop state: a family of states with natural PEPS 
representation.

✎ The kagome RAL states have no magnetic order, no dimer crystal 
order, or any other symmetry breaking orders, but they are 
topologically ordered.

✎ The RAL states serve as variational wavefunctions of the spin-1 
KAF.

✎ However, the variational energy is still high, Eg = -1.2696.

✎ Tune more parameters in the RAL family ➜ lowest Eg ~-1.38
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PEPS simulations of the spin-1 KAF

✎ Simple update & (double-triangle) cluster update

✎ Non-abelian symmetry in PEPS

✎ Ground state properties

Related paper:

T. Liu, WL, A. Weichselbaum, J. von Delft, and G. Su
Simplex valence-bond crystal in the spin-1 kagome Heisenberg antiferromagnet
arXiv:1406.5905 (2014).
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Tensor network states

Simplex valence-bond crystal in the spin-1 kagome Heisenberg antiferromagnet

Tao Liu1, Wei Li2, Andreas Weichselbaum2, Jan von Delft2, and Gang Su1⇤
1Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory,

School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
2Physics Department, Arnold Sommerfeld Center for Theoretical Physics,

and Center for NanoScience, Ludwig-Maximilians-Universität, 80333 Munich, Germany
(Dated: September 3, 2014)

We investigate the ground state properties of a spin-1 kagome antiferromagnetic Heisenberg (KAH) model
using tensor-network methods. We find a ground state with trimerization (simplex) valence-bond order, and
obtain the energy per site e0 ' �1.409 by accurate calculations directly in the thermodynamic limit. The
symmetry between the two kinds of triangles is spontaneously broken, with a relative energy di↵erence of � ⇡
20%. The spin-spin, dimer-dimer, and chiral correlation functions are found to decay exponentially with a rather
short correlation length, showing that the ground state is gapped. We thus identify the ground state be a simplex
valence-bond crystal (SVBC). We also discuss the spin-1 bilinear-biquadratic Heisenberg model on a kagome
lattice, and determine its ground state phase diagram, find a quantum phase transition between the SVBC and a
ferro-quadrupolar nematic state.

PACS numbers: 75.10.Jm, 75.10.Kt, 05.10.Cc

Introduction.— Geometrical frustration, as a particularly
interesting phenomenon in quantum antiferromagnets, has
raised enormous interest recently [1]. It arises when any clas-
sical (Ising) spin configuration cannot satisfy simultaneously
all the local terms in the Hamiltonian, which leads to a macro-
scopic degeneracy and thus greatly enhances quantum fluctu-
ations. Frustration might melt semiclassical spin orders (in-
cluding magnetic or valence bond order, etc.), driving the sys-
tem into an exotic quantum state called quantum spin liquid
[2, 3]. Some typical frustrated antiferromagnets include the
spin-1/2 and spin-1 Heisenberg models on the triangular lat-
tice [4, 5], spin-1/2 J1-J2 square [6–8], and the pyrochlore [9]
lattices. Among others, the spin-1/2 kagome antiferromag-
netic Heisenberg (KAH) model is one of the most intriguing
frustrated models: its ground state is widely believed to be a
spin liquid [10–14], but its nature is still under debate [15].

KAH models with higher spins [16] are less well-studied,
despite their physical realizations in experiments [17, 18],
where the synthesized materials have spin-spin couplings
which can be e↵ectively described by a Heisenberg model.
The ground state properties of the relevant spin-1 KAH are
still far from clear. Interesting variational wavefunctions have
been proposed (for instance, the static or resonating loop
states [19–21], or the hexagon solid state [22]), yielding some
preliminary advances towards understanding the nature of the
ground state. Notably, Cai et al. considered a fully trimerized
variational wavefunction on the kagome lattice [21], with all
the spin-1’s in each A (or B) triangle forming a SU(3) singlet
(trimerization) . However, the corresponding variational en-
ergy of this trimerized state is e0 = �1 per site, much higher
than that of the resonating A✏eck-Kennedy-Lieb-Tasaki loop
(RAL) state (e0 ⇡ �1.27), a Z2 spin liquid which retains the
vertex-centered inversion symmetry [20]. The nature of the
true ground state of the spin-1 KAH model is still an open
question.

In this work, we employ state-of-the-art tensor network al-
gorithms to study the properties of spin-1 KAH model. We

(a)

AT

BT
D

(b)

A

B

FIG. 1. (Color online) (a) Kagome lattice (dotted lines) and the initial
setup of the tensor-network wavefunction (solid lines). TA and TB

are triangle tensors and D is the bond dimension. (b) Illustration
of the simplex valence-bond crystal. The two kinds of triangles or
“simplexes” [of type A (blue) and B (pink)] have di↵erent energies,
and a lattice inversion symmetry is spontaneously broken

use imaginary-time evolution and adopt the Bethe-lattice ap-
proximation (i.e., the simple update scheme) for truncation
[23–25] to obtain a tensor-network variational ground state
wavefunction. We then insert the resulting tensors into an in-
finitely large two-dimensional (2D) lattice [Fig. 1 (a)], and
determine the variational ground state energy as e0 ' �1.409.
Lattice inversion (reflection) symmetry is found to be broken,
where the two kinds of triangles (or simplexes) have di↵erent
energy expectation values [See Fig. 1 (b)]. We thus call the
ground state a simplex valence-bond crystal (SVBC). We roll
up the tensor networks on cylinders with various circumfer-
ences, and evaluate their variational energies, as well as the
entanglement entropies, through exact contractions. The en-
tanglement entropy shows that the ground state of the spin-1
KAH model may have a nontrivial topology. We also consider
the spin-1 bilinear-biquadratic (BLBQ) Heisenberg model on
the kagome lattice, and obtain its ground state phase diagram.
We find the SVBC state to be the ground state throughout an
extended regime in the phase diagram, and observe a quantum

✎ Take the RAL state as a starting point of further optimizations.
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Update the tensors
✎ Adopt the same tensor-network structure as the RAL state.

✎ Take imaginary time evolution for updating the tensors.

Ta

Tb

TbTb

Tb

A

B

B B

X

Y

Z

H.-C. Jiang, Z.-Y. Weng, and T. Xiang, PRL, 2008.
WL, J. von Delft, and T. Xiang, PRB, 2012.

Z.-Y. Xie, J. Chen, J.-F. Yu, X. Kong, B. Normand, T. Xiang, PRX, 2014.
T. Liu, S.-J. Ran, WL, X. Yan, Y. Zhao and G. Su, PRB, 2014.
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Variational energy (per site)

✎ eg ≃ -1.409 [with D=14, dc=40]
✽ Lower than the CC result [-1.4031, Götze et al. PRB (2012)] 
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✎ Roll the wavefunction on a cylinder and perform exact contractions.
❋ Variational energy on cylinder.

Variational energy (per site)
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Trimerization Order

✎ The ground state breaks the lattice symmetry.
❋ A simplex (triangle) valence bond crystal (SVBC).

A

B
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The SVBC phase

✎ The SVBC order is rather robust, and extends to a phase.

0.37ʌ

FM

FQ

AFQ

Trimerization

-0
.75
ʌ

-0.04ʌ

0.5ʌ

3

FIG. 4. (Color online) Spatial dependence of various correlation
functions (symbols) on a log-linear scale, together with exponential
fits (solid lines) that yield the correlation length ⇠. The correlation
functions are calculated by iPEPS on an infinite kagome lattice. x is
the distance between triangles with length unit ax.

0.37ʌ

FM

FQ

AFQ

Trimerization

-0
.7
5ʌ

-0.04ʌ

0.5ʌ
（a） （b）

FIG. 5. (Color online) (a) Energy di↵erence �E = 2(EA �EB)/3, be-
tween A and B triangles, evaluated at Heisenberg point (✓ = 0) on an
infinite lattice with iPEPS, and plotted as function of D. Both the ST
(single-triangle) and DT (double-triangle) data show clearly the pres-
ence of a trimerization order, and the ST date are well convergenced
for D � 12. The inset shows that �E vanishes when ✓ < �0.04⇡,
where ferromagnetic quadrupolar order (Q1) sets in. (b) Ground state
phase diagram of the spin-1 bilinear-biquadratic Heisenberg model
on the Kagome lattice.

A and B triangles, as a function of D. For D � 12 it converges
to �E ' 0.283 (with a relative di↵erence � = �E/e0 ⇡ 20%).
The fact that �E is nonzero implies that the ground state spon-
taneously breaks lattice inversion symmetry. Note, although
our method is initially biased in its treatment of A and B tri-
angles, by the end of the projections we reduce the Trotter
slice to 10�5, restoring the equivalence between the two kinds
of triangles. Therefore, we believe that the observed sponta-
neous trimerization is not a artifact. In fact, we do not find
any symmetry breaking when using small bond dimensions
(say, D  7); the trimerization sets in only when we increase
the bond dimension and get a variational energy close to the
“true” ground state value.

Bilinear-biquadratic Heisenberg model.— We also studied
the spin-1 BLBQ Heisenberg model with Hamiltonian

H =
X

<i j>

[cos ✓ (Si · S j) + sin ✓ (Si · S j)2], (1)
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(b)

XC, D*=3

XC, D*=3, DT

XC, D*=4

iPEPS, D=10

iPEPS, D=12

D*=3, even

D*=3, odd

D*=3, DT, uniform

D*=4, even

D*=4, odd

eg=−1.4104

FIG. 6. (Color online) (a) Energy per site and (b) von Neumann
entanglement entropies of the tensor-network variational wavefunc-
tions on cylinders. For Ly = 2 or 4, we used the XC4 or XC8 cylinder,
respectively.

which recovers the KAH model when ✓ = 0. When we tune ✓
away from the Heisenberg point, we see that the SVBC state
belongs to an extended phase. The results are shown in the
inset of Fig. 5 (a). The energy di↵erences are verified to be
robust for various ✓’s. Interestingly, when we tune ✓ to the
negative side, a phase transition occurs at the transition point
✓c ' �0.04, where the trimerization vanishes, and the system
turns into a ferro-quadrupolar (FQ) phase, with Q1 = hS 2

x �
S 2

yi , 0.
In Fig. 5 (b) shows the ground state phase diagram of the

spin-1 kagome BLBQ Heisenberg model obtained by explor-
ing other ✓ values. There are four phases in total: a FQ phase
(�3/4⇡ < ✓ < �0.04⇡), a SVBC phase (�0.04⇡ < ✓ < 0.37⇡),
an antiferro-quadrupolar (AFQ) phase (0.37⇡ < ✓ < 1/2⇡,
Qtot =

P
i24Qi = 0, but Qi , 0), and a ferromagetic (FM)

phase (1/2⇡ < ✓ < 5/4⇡). Note that the SU(3) point (✓ = ⇡/4)
lies in the SVBC phase, thus the SU(3) Heisenberg model also
has a trimerized ground state. This observation is in agree-
ment with a previous study of the SU(3) model [34, 35].

SU(2) PEPS algorithm.— We have implemented non-
abelian SU(2) symmetry in the local tensors, which facilitates
both the imaginary time projection and exact contraction pro-
cesses, improving the e�ciency and robustness of the algo-
rithms. To this end, we employed the “QSpace” tensor library,
which implements non-abelian symmetries in tensor networks
in a transparent framework [36]. We considered two cases,
namely D⇤ = 3 and D⇤ = 4, where D⇤ labels number of re-
tained multiplets on the geometric bonds [see Fig. 3 (b,c)].
The D⇤ = 3 state contains the spin multiplets 0�1/2�1 in the
geometric bond (equivalent to D = 6 plain tensors used be-
fore), and D⇤ = 4 means 0�0�1�2 (D = 10) or 0�1�1�2

π
4

SU(3) point with trimerization order 
[P. Corboz, et al, PRB 2012]

The bilinear biquadratic model:
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QSpace tensor library
& the SU(2) PEPS algorithm

Non-abelian symmetries in tensor network models
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SFB  TR12 /A8
Symmetries and Universality

in Mesoscopic Systems

1 Motivation
Symmetries imply a sparse structure of a Hamiltonian, and hence
are crucial for the numerical implementation of strongly corre-
lated quantum-many-body systems. Non-zero matrix elements,

• can be grouped into smaller non-sparse data spaces (Hamilto-
nian becomes block-diagonal ; abelian symmetries).

• for non-abelian symmetries, typically are not independent of
each other (c.f. Wigner Eckart theorem), hence can be
strongly reduced by considering symmetry multiplets only.

Example (NRG)

Multi-channel Anderson impurity model (fully screened, N = 3
fermionic channels with local Hunds coupling JH):

Ĥ ⌘ �JHŜ2dot + BŜz
dot +

NX
i=1

X
k�

�q2�
⇡ (d̂

†
i�ĉik� + h.c.) + "kĉ

†
ik�ĉik�

�
Di↵erent symmetry settings by now routinely implemented
within the Numerical Renormalization Group (NRG)1

symmetry set d⇤ (1 site) D⇤ (2 sites) avg. D/D⇤

all abelian (U(1)spin ⌦ U(1)⌦3
charge) 64 4096 1

SU(2)spin ⌦ SU(2)⌦3
charge 13 388 > 20

SU(2)spin ⌦ U(1)charge ⌦ SU(3)channel 10 260 > 30
SU(2)spin ⌦ Sp(6)charge+channel 4 61 > 250

) drastic reduction of e↵ective dimensions in multiplet space!

) generic, e�cient, and transparent implementation of
non-abelian symmetries through QSpace tensor library.2

2 QSpace tensor library

spin SU(2) 
particle number 

channel SU(3) 
… 

C
G

C
 C

G
C

 

CGC 

i j 



qn
 

qn qn 

Given: set of m compact
simple symmetries {S�},

S ⌘
mO
�=1

S�.

State space decomposi-
tion via composite index
|ii ⌘ |Qn;Qzi, with
multiplet labels Q ⌘ [q1, . . . , qm] and z-labels (weights) Qz ⌘
[z1, . . . , zm] (implicitly present only by the index into the gener-
alized Clebsch-Gordan coe�cients (CGCs),

C
[Q̃z]
QzQ0

z
⌘

nY
i=1

(qiqiz; q̃iq̃iz|q0iq0iz)

• explicitly evaluated based on the respective Lie algebra
i.e. the generators of the symmetry (thus generic).

• got decomposition of full matrix elements which allows for
arbitrary tensor contractions,

A⌫ ⌦ {C}⌫ ⌘ A⌫ ⌦
� mO
s=1

Cs;⌫
�

Elementary ingredients: (i) state space decomposition:

|Q0n0;Q0
zi =

X
Qn;Qz

X
Q̃ñ;Q̃z

�
A
[Q̃]
QQ0

�[ñ]
nn0 · C [Q̃z]

QzQ0
z
|Qn;Qzi|Q̃ñ; Q̃zi

(ii) operator representation (cf. Wigner-Eckart theorem):

hQ0n0;Q0
z|F̂ Q̃

Q̃z
|Qn;Qzi =

�
F
[Q̃]
QQ0

�[1]
nn0 · C [Q̃z]

QzQ0
z
,

3 PEPS construction
Projected entangled pair states (PEPS)3,4 generalize the A✏eck-
Kennedy-Lieb-Tasaki (AKLT)5 construction for a quantum-
many-body ground state from 1D to more complex tensor net-
works, such as 2D networks:

The 5-dimensional tensor in (e) can be constructed by simple
sequential coupling of the constituting state spaces.

4 Spin-1 Heisenberg on 2D Kagome lattice6

Bilinear biquadratic antiferromagnetic Heisenbergmodel

Ĥ =
X
hi,ji

⇥
cos✓ · (Ŝi · Ŝj)sin✓ · (Ŝi · Ŝj)2

lattice
(cylinder) phase diagram trimerized phase

Using PEPS with SU(2)spin symmetry on a cylinder, four phases
are found (independently confirmed also by ED/DMRG [7]):

• spontaneously symmetry broken trimerized phase (gapped; en-
tanglement properties suggest that this phase possesses non-
trivial topological order),

• antiferro-quadrupolar (AFQ; Q1 = hŜ2
x � Ŝ2

yi),
• ferromagnetic (FM), and

• ferro-quadrupolar (FQ).

The benefits of using SU(2)spin symmetric tensors:

• a clearly more e�cient numerical simulation [the numerical
cost of PEPS on a 2D lattice scales like O(D10)!]

• detailed information also about the multiplet structure along
the bonds, obtained variationally through simple update.8

5 Outlook
Improved CGC performance through tabulation of contractions.
Applications to fermionic PEPS.9
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Symmetries and Universality

in Mesoscopic Systems

1 Motivation
Symmetries imply a sparse structure of a Hamiltonian, and hence
are crucial for the numerical implementation of strongly corre-
lated quantum-many-body systems. Non-zero matrix elements,

• can be grouped into smaller non-sparse data spaces (Hamilto-
nian becomes block-diagonal ; abelian symmetries).

• for non-abelian symmetries, typically are not independent of
each other (c.f. Wigner Eckart theorem), hence can be
strongly reduced by considering symmetry multiplets only.

Example (NRG)

Multi-channel Anderson impurity model (fully screened, N = 3
fermionic channels with local Hunds coupling JH):

Ĥ ⌘ �JHŜ2dot + BŜz
dot +

NX
i=1

X
k�

�q2�
⇡ (d̂

†
i�ĉik� + h.c.) + "kĉ

†
ik�ĉik�

�
Di↵erent symmetry settings by now routinely implemented
within the Numerical Renormalization Group (NRG)1

symmetry set d⇤ (1 site) D⇤ (2 sites) avg. D/D⇤

all abelian (U(1)spin ⌦ U(1)⌦3
charge) 64 4096 1

SU(2)spin ⌦ SU(2)⌦3
charge 13 388 > 20

SU(2)spin ⌦ U(1)charge ⌦ SU(3)channel 10 260 > 30
SU(2)spin ⌦ Sp(6)charge+channel 4 61 > 250

) drastic reduction of e↵ective dimensions in multiplet space!

) generic, e�cient, and transparent implementation of
non-abelian symmetries through QSpace tensor library.2

2 QSpace tensor library

spin SU(2) 
particle number 

channel SU(3) 
… 

C
G

C
 C

G
C

 

CGC 

i j 



qn
 

qn qn 

Given: set of m compact
simple symmetries {S�},

S ⌘
mO
�=1

S�.

State space decomposi-
tion via composite index
|ii ⌘ |Qn;Qzi, with
multiplet labels Q ⌘ [q1, . . . , qm] and z-labels (weights) Qz ⌘
[z1, . . . , zm] (implicitly present only by the index into the gener-
alized Clebsch-Gordan coe�cients (CGCs),

C
[Q̃z]
QzQ0

z
⌘

nY
i=1

(qiqiz; q̃iq̃iz|q0iq0iz)

• explicitly evaluated based on the respective Lie algebra
i.e. the generators of the symmetry (thus generic).

• got decomposition of full matrix elements which allows for
arbitrary tensor contractions,

A⌫ ⌦ {C}⌫ ⌘ A⌫ ⌦
� mO
s=1

Cs;⌫
�

Elementary ingredients: (i) state space decomposition:

|Q0n0;Q0
zi =

X
Qn;Qz

X
Q̃ñ;Q̃z

�
A
[Q̃]
QQ0

�[ñ]
nn0 · C [Q̃z]

QzQ0
z
|Qn;Qzi|Q̃ñ; Q̃zi

(ii) operator representation (cf. Wigner-Eckart theorem):

hQ0n0;Q0
z|F̂ Q̃

Q̃z
|Qn;Qzi =

�
F
[Q̃]
QQ0

�[1]
nn0 · C [Q̃z]

QzQ0
z
,

3 PEPS construction
Projected entangled pair states (PEPS)3,4 generalize the A✏eck-
Kennedy-Lieb-Tasaki (AKLT)5 construction for a quantum-
many-body ground state from 1D to more complex tensor net-
works, such as 2D networks:

The 5-dimensional tensor in (e) can be constructed by simple
sequential coupling of the constituting state spaces.

4 Spin-1 Heisenberg on 2D Kagome lattice6

Bilinear biquadratic antiferromagnetic Heisenbergmodel

Ĥ =
X
hi,ji

⇥
cos✓ · (Ŝi · Ŝj)sin✓ · (Ŝi · Ŝj)2

lattice
(cylinder) phase diagram trimerized phase

Using PEPS with SU(2)spin symmetry on a cylinder, four phases
are found (independently confirmed also by ED/DMRG [7]):

• spontaneously symmetry broken trimerized phase (gapped; en-
tanglement properties suggest that this phase possesses non-
trivial topological order),

• antiferro-quadrupolar (AFQ; Q1 = hŜ2
x � Ŝ2

yi),
• ferromagnetic (FM), and

• ferro-quadrupolar (FQ).

The benefits of using SU(2)spin symmetric tensors:

• a clearly more e�cient numerical simulation [the numerical
cost of PEPS on a 2D lattice scales like O(D10)!]

• detailed information also about the multiplet structure along
the bonds, obtained variationally through simple update.8

5 Outlook
Improved CGC performance through tabulation of contractions.
Applications to fermionic PEPS.9
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The benefits of using SU(2)spin symmetric tensors:

✎ A clearly more efficient numerical simulation [the numerical cost of PEPS 

on a 2D lattice scales like O(D10~12)!]

✎ Detailed information also about the multiplet structure along the bonds, 
obtained variationally through update methods.

Samstag, 6. September 14



Ly
(a) X-cylinder

LxV

(b) D*=3 (c) D*=41

0⊕0⊕1⊕2

1

0⊕1⊕1⊕2P P

TB

TA

P

ax=1

ay=1

0⊕1⊕1 0⊕1⊕2

Samstag, 6. September 14



3

FIG. 4. (Color online) Spatial dependence of various correlation
functions (symbols) on a log-linear scale, together with exponential
fits (solid lines) that yield the correlation length ⇠. The correlation
functions are calculated by iPEPS on an infinite kagome lattice. x is
the distance between triangles with length unit ax.
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FIG. 5. (Color online) (a) Energy di↵erence �E = 2(EA �EB)/3, be-
tween A and B triangles, evaluated at Heisenberg point (✓ = 0) on an
infinite lattice with iPEPS, and plotted as function of D. Both the ST
(single-triangle) and DT (double-triangle) data show clearly the pres-
ence of a trimerization order, and the ST date are well convergenced
for D � 12. The inset shows that �E vanishes when ✓ < �0.04⇡,
where ferromagnetic quadrupolar order (Q1) sets in. (b) Ground state
phase diagram of the spin-1 bilinear-biquadratic Heisenberg model
on the Kagome lattice.

A and B triangles, as a function of D. For D � 12 it converges
to �E ' 0.283 (with a relative di↵erence � = �E/e0 ⇡ 20%).
The fact that �E is nonzero implies that the ground state spon-
taneously breaks lattice inversion symmetry. Note, although
our method is initially biased in its treatment of A and B tri-
angles, by the end of the projections we reduce the Trotter
slice to 10�5, restoring the equivalence between the two kinds
of triangles. Therefore, we believe that the observed sponta-
neous trimerization is not a artifact. In fact, we do not find
any symmetry breaking when using small bond dimensions
(say, D  7); the trimerization sets in only when we increase
the bond dimension and get a variational energy close to the
“true” ground state value.

Bilinear-biquadratic Heisenberg model.— We also studied
the spin-1 BLBQ Heisenberg model with Hamiltonian

H =
X

<i j>

[cos ✓ (Si · S j) + sin ✓ (Si · S j)2], (1)
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XC, D*=4

iPEPS, D=10
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D*=3, DT, uniform
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eg=−1.4104

FIG. 6. (Color online) (a) Energy per site and (b) von Neumann
entanglement entropies of the tensor-network variational wavefunc-
tions on cylinders. For Ly = 2 or 4, we used the XC4 or XC8 cylinder,
respectively.

which recovers the KAH model when ✓ = 0. When we tune ✓
away from the Heisenberg point, we see that the SVBC state
belongs to an extended phase. The results are shown in the
inset of Fig. 5 (a). The energy di↵erences are verified to be
robust for various ✓’s. Interestingly, when we tune ✓ to the
negative side, a phase transition occurs at the transition point
✓c ' �0.04, where the trimerization vanishes, and the system
turns into a ferro-quadrupolar (FQ) phase, with Q1 = hS 2

x �
S 2

yi , 0.
In Fig. 5 (b) shows the ground state phase diagram of the

spin-1 kagome BLBQ Heisenberg model obtained by explor-
ing other ✓ values. There are four phases in total: a FQ phase
(�3/4⇡ < ✓ < �0.04⇡), a SVBC phase (�0.04⇡ < ✓ < 0.37⇡),
an antiferro-quadrupolar (AFQ) phase (0.37⇡ < ✓ < 1/2⇡,
Qtot =

P
i24Qi = 0, but Qi , 0), and a ferromagetic (FM)

phase (1/2⇡ < ✓ < 5/4⇡). Note that the SU(3) point (✓ = ⇡/4)
lies in the SVBC phase, thus the SU(3) Heisenberg model also
has a trimerized ground state. This observation is in agree-
ment with a previous study of the SU(3) model [34, 35].

SU(2) PEPS algorithm.— We have implemented non-
abelian SU(2) symmetry in the local tensors, which facilitates
both the imaginary time projection and exact contraction pro-
cesses, improving the e�ciency and robustness of the algo-
rithms. To this end, we employed the “QSpace” tensor library,
which implements non-abelian symmetries in tensor networks
in a transparent framework [36]. We considered two cases,
namely D⇤ = 3 and D⇤ = 4, where D⇤ labels number of re-
tained multiplets on the geometric bonds [see Fig. 3 (b,c)].
The D⇤ = 3 state contains the spin multiplets 0�1/2�1 in the
geometric bond (equivalent to D = 6 plain tensors used be-
fore), and D⇤ = 4 means 0�0�1�2 (D = 10) or 0�1�1�2

Energy & Entanglement on cylinders

In agreement with previous PEPS 
calculation without symmetry 

implementation.

𝛾≈0 suggests a topologically trivial state.
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Conclusions
• We employ the tensor network algorithm (with/without SU2 

symmetry) to perform a variational study of the spin-1 KAF model. 

• The ground state has a simplex valence-bond crystal order, with GS 
energy determined as Eg ≃ -1.409.

☀1st (?) example that SU2 symmetry pays off in PEPS calculations. 

Just in its beginning!

☀ SVBC picture is consistent with experimental 

observations: gapped, non-magnetic, & 
symmetry breaking low-T phase
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Collaborators of the RAL project

9

FIG. 13. The 18-site cluster used in the variational study of
spin-1 kagome Heisenberg model. Periodic boundary condi-
tions are assumed in both directions, and the cluster has 2⇥3
unit cells.
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sign convention 1, Dc=24
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FIG. 14. (Color online) Variational energy of the mixed RAL
states for spin-1 kagome Heisenberg model, computed using
iPEPS. Convergence has been checked against di↵erent Dc.
Sign convention 1 is illustrated in Fig. 2(c) and convention 2
in Fig. 2(d).

from the iPEPS calculations in the thermodynamic limit
is shown in Fig. 14. The best variational energy (per site)

�1.2696 is achieved at ↵ ⇡ 0.44 with the sign convention
given in Fig. 2(d).

VI. CONCLUSION

To conclude, we have systematically investigated a
family of resonating AKLT-loop states on square, honey-
comb, and kagome lattices. Using a natural PEPS rep-
resentation, we have shown that the RAL states are crit-
ical on square and honeycomb lattices, while on kagome
lattice it is a gapped Z

2

spin liquid. We also discussed
the realization of the SO(3) spin-rotation symmetry and
clarified its manifestation through explicitly constructing
the topological sectors and evaluating the corresponding
entanglement spectra on infinitely long cylinders. We
considered a one-parameter family of PEPS interpolat-
ing between the RAL and RVB states which have distinct
symmetry realizations. A critical point has been identi-
fied along this interpolation path. Lastly, we have used
the RAL states to obtain the best-to-date variational en-
ergy for the spin-1 Heisenberg model on a kagome lattice.
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