Transfer Matrices and Excitations with Matrix Product States with Wen arXiv:1408.5140

CoQuS

Complex

Quantum

Systems

V. Zauner¹, D. Draxler¹, L. Vanderstraeten², M. Degroote², J. Haegeman², M.M Rams^{1,3}, V. Stojevic⁴, N. Schuch⁵, F. Verstraete^{1,2}

¹ Vienna Center for Quantum Technology, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria ² Department of Physics and Astronomy, Ghent University, Krijgslaan 281- S9, B-9000 Ghent, Belgium ³ Institute of Physics, Kraków University of Technology, Podchorazych 2, 30-084 Kraków, Poland ⁴ London Centre for Nanotechnology, University College London, Gordon St., London, WC1H 0AH, United Kingdom ⁵ Institut für Quanteninformation, RWTH Aachen University, D-52056 Aachen, Germany

Abstract

We investigate the relation between static correlations and low energy **excitations**. Being a central object in obtaining static correlations we show that the MPS Transfer Matrix (MPS-TM) of the ground state already contains important information about the location and magnitude of the dispersion's minima. We relate the MPS-TM to the quantum transfer matrix (QTM) at zero temperature and investigate the peculiar structure of its **eigenspectrum**. We also derive a **bound for the decay of momentum** filtered correlations as a function of the dispersion.

(c)MPS Transfer Matrix					
MPS-TM	cMPS-TM generator				
$\mathcal{T}_A = \sum_s \bar{A}^s \otimes A^s$	$\mathcal{P}_{Q,R} = \bar{Q} \otimes \mathbb{1} + \mathbb{1} \otimes Q + \bar{R} \otimes R$				
mixed MPS-TM	mixed cMPS-TM generator				
$\mathcal{T}_{A_1}^{A_2} = \sum_s \bar{A}_2^s \otimes A_1^s$	$\mathcal{P}_{Q_1,R_1}^{Q_2,R_2} = \bar{Q}_2 \otimes \mathbb{1} + \mathbb{1} \otimes Q_1 + \bar{R}_2 \otimes R_1$				

Numerical Observations

XΥ	Mode	v=0.3 c	2 = 0	D=40
	NUC		1-U.Z.	D - T U

XXZ Model, Δ =-0.5, h=1, D=100

Lieb-Liniger Model, $\gamma = c/\rho \sim 1.35$, D=64

Static Correlations

Shape of Eigenvalue spectrum

Eigenvalues cluster along lines with constant com**plex phase** → **Ornstein-Zernike Form** is recovered under certain assumptions

The Quantum Transfer Matrix

Imaginary Time Evolution $|\psi_0\rangle = \lim_{\beta \to \infty} \frac{e^{-\beta H} |\phi_{\text{init}}\rangle}{\|e^{-\beta H} |\phi_{\text{init}}\rangle\|}$

- Translation invariant MPO decomposition of $\exp(-\delta H) \rightarrow MPS$ matrix A^s is itself half-infinite MPO
- \mathcal{T}_A corresponds to quantum transfer matrix (QTM) at zero temperature

Truncation of Virtual System

• Small D MPS \tilde{A}^s can be understood as obtained from an RG procedure on \mathcal{T}_A on the virtual level \rightarrow **low energy representation** \mathcal{T}_A • RG network (e.g. MERA [5]) represents dominant eigenstate of \mathcal{T}_A

[1] J. Haegeman et al., Phys. Rev. B 85, 100408 (2012) [2] D. Draxler et al., Phys. Rev. Lett. **111**, 020402 (2013) [3] J. Haegeman et al., Phys. Rev. Lett. **111**, 080401 (2013)

[4] M.B. Hastings, Phys. Rev. Lett. **93**, 140402 (2004) [5] G. Evenbly, G. Vidal, arXiv:1307.0831, arXiv:1312.0303

variational state [3]:
$$|\phi_k(O^{(\ell)})\rangle = \frac{1}{\sqrt{V}} \sum_n e^{ikn} O_n^{(\ell)} |\psi_0\rangle$$

variational energy:
$$E_k = \frac{1}{2} \frac{\langle \psi_0 | [O_{-k}, [H, O_k]] | \psi_0 \rangle}{\langle \psi_0 | O_{-k} O_k | \psi_0 \rangle} = \frac{1}{2} \frac{F(k)}{S(k)}$$

structure factor (MPS): $S(k) \ge 2\Re\left(0 | \mathcal{J}_O \frac{U}{1 - e^{ik} \mathcal{T}_A} | \mathcal{J}_O | 0\right)$

 E_k becomes small whenever \mathcal{T}_A has eigenvalues with phase $\phi = \pm k$ and magnitude close to one.

Momentum Filtered Correlations

 $E^*(k,\delta)$

 δ

Defined as Fourier transform of static correlation times a gaussian

$$C_{k}(\ell) = N_{r} \sum_{n} e^{-\frac{n^{2}}{2r}} e^{ikn} (\langle A_{0}B_{\ell+n} \rangle - \langle A \rangle \langle B \rangle)$$

The correlation length ξ_{k} can be bounded (similar to [4]) as
 $\xi_{k} < \frac{1}{s} + \frac{v_{\text{LR}}}{E^{*}(l-s)}, \qquad E^{*}(k,\delta) = \min_{k \in I} E(k')$

 $|k-k'| < \delta$