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Quantum Monte Carlo Techniques
(with a focus on quantum spins)
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- exact diagonalization (small systems - be careful!)
- DMRG, 1D systems, recent progress in 2D
- tensor networks, progress in 2D, 3D may be possible
  (still convergence issues, can become unbiased in principle)
- QMC, for sign-problem free models, any D, large systems

Obtain definite results for “prototypical” model hamiltonians
(“Ising models of quantum many-body physics”)
- some realized in solid-state materials
- some realizable in cold atoms
- some corresponding to key quantum field theories
- unbiased tests of various analytical calculations
- tools for exploration/discoveries

Role of numerics/simulations 
in studies of many-body ground states and criticality

“Unbiased” methods
(no approximations except finite size)
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Outline
• Path integrals in quantum statistical mechanics
• The series-expansion representation
• Stochastic Series Expansion (SSE) algorithm for the Heisenberg model
• The valence-bond basis for S=1/2 systems
• Ground-state projector algorithm with valence bonds

Stochastic Series Expansion and 
Ground State Projection

Reference: AIP Conf. Proc. 1297, 135 (2010); arXiv:1101.3281
Detailed lecture notes on quantum spin models and methods

Numerical and Analytical Methods for Strongly Correlated Systems
Benasque, Spain, August 24 - September 13, 2014
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Path integrals in quantum statistical mechanics

⇤A⌅ =
1
Z

Tr{Ae��H}

We want to compute a thermal expectation value

where β=1/T (and possibly T→0). How to deal with the exponential operator?

Z =
�

�0

�

�1

· · ·
�

�L�1

⇥�0|e��� H |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� H |�0⇤

Choose a basis and insert complete sets of states;

Z = Tr{e��H} = Tr

�
L⇤

l=1

e��� H

⇥
“Time slicing” of the partition function

�� = �/L

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧

Use approximation for imaginary time evolution operator. Simplest way

Leads to error           . Limit                 can be taken �� � 0� ��
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Example: hard-core bosons

H = K = �
�

�i,j⇥

Kij = �
�

�i,j⇥

(a†jai + a†iaj) ni = a†iai � {0, 1}

Equivalent to S=1/2 XY model 
H = �2

�

⇥i,j⇤

(Sx
i Sx

j + Sy
i Sy

j ) = �
�

⇥i,j⇤

(S+
i S�

j + S�
i S+

j ), Sz = ±1
2
⇤ ni = 0, 1

world line moves for 
Monte Carlo sampling

“World line” representation of

Z =
�

{�}

W ({�}), W ({�}) = �nK
⇥ nK = number of “jumps”

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧
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⇥A⇤ =
1
Z

�

{�}

⇥�0|e��� |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� HA|�0⇤

Expectation values

⇧A⌃ =

�
{�} A({�})W ({�})
�

{�} W ({�}) �⇥ ⇧A⌃ = ⇧A({�})⌃W

We want to write this in a form suitable for MC importance sampling

W ({�}) = weight
A({�}) = estimatorFor any quantity diagonal in the 

occupation numbers (spin z):

A({�}) = A(�n) or A({�}) =
1
L

L�1�

l=0

A(�l)

There should be of the order βN “jumps” (regardless of approximation used)

Kinetic energy (here full energy). Use

Ke��� K � K
1
0
1

Kij({�}) =
⇧�1|Kij |�0⌃

⇧�1|1 ���K|�0⌃
⇥ {0,

1
��

}

Average over all slices → count number of kinetic jumps

⇤K⌅ ⇥ N � ⇤nK⌅ ⇥ �N⇥Kij⇤ =
⇥nij⇤

�
, ⇥K⇤ = �⇥nK⇤

�
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Including interactions
For any diagonal interaction V (Trotter, or split-operator, approximation)

e��� H = e��� Ke��� V + O(�2
� ) ⇥ ⌅�l+1|e��� H |�l⇧ � e��� Vl⌅�l+1|e��� K |�l⇧

Product over all times slices →

W ({�}) = �nK
� exp

�
���

L�1⇤

l=0

Vl

⇥

local updates (problem when Δτ→0?)
•consider probability of inserting/removing 

events within a time window

The continuous time limit
Limit Δτ→0: number of kinetic jumps remains finite, store events only

Special methods (loop
and worm updates)
developed for efficient
sampling of the paths
in the continuum

⇐ Evertz, Lana, Marcu (1993), Prokofev et al (1996)
     Beard & Wiese (1996)

Pacc = min
⇤
�2

�exp
�
�Vnew

Vold

⇥
, 1

⌅
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e��H =
⇥�

n=0

(��)n

n!
Hn

Similar to the path integral;                          and weight factor outside   1���H ⇥ H

Z =
⇥�

n=0

(�⇥)n

n!

�

{�}n

⇤�0|H|�n�1⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅

Series expansion representation

Start from the Taylor expansion

For hard-core bosons the (allowed) path weight is W ({�}n) = ⇥n/n!

C = ⇥n2⇤ � ⇥n⇤2 � ⇥n⇤

From this follows: narrow n-distribution with ⇥n⇤ � N�, ⇥n �
�

N�

(approximation-free
method from the outset)

For any model, the energy is

one more “slice” to sum over here

relabel terms to “get rid of” extra slice

E =
1
Z

⇥�

n=0

(�⇥)n

n!

�

{�}n+1

⇤�0|H|�n⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅

= � 1
Z

⇥�

n=1

(�⇥)n

n!
n

⇥

�

{�}n

⇤�0|H|�n�1⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅ =
⇤n⌅
⇥

this is the operator we “measure”

�
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Fixed-length scheme
• n fluctuating → varying size of the configurations
• the expansion can be truncated at some nmax=M (exponentially small error)
• cutt-off at n=M, fill in operator string with unit operators H0=I

- conisider all possible locations in the sequence
- overcounting of actual (original) strings, correct by combinatorial factor:

=�

Here n is the number of Hi, i>0  instances in the sequence of M operators

✓
M

n

◆�1

=
n!(M � n)!

M !

Z =
X

{↵}M

X

{Hi}

(��)n(M � n)!

M !
h↵0|Hi(M)|↵M�1i · · · h↵1|Hi(1)|↵0i
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Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

H = J
Nb�

b=1

Si(b) · Sj(b),

H1,b = 1
4 � Sz

i(b)S
z
j(b),

H2,b = 1
2 (S+

i(b)S
�
j(b) + S�i(b)S

+
j(b)).

Diagonal (1) and off-diagonal (2) bond operators

H = �J
Nb�

b=1

(H1,b �H2,b) +
JNb

4

⇤�i(b)⇥j(b) |H1,b| �i(b)⇥j(b)⌅ = 1
2 ⇤⇥i(b)�j(b) |H2,b| �i(b)⇥j(b)⌅ = 1

2

⇤⇥i(b)�j(b) |H1,b| ⇥i(b)�j(b)⌅ = 1
2 ⇤�i(b)⇥j(b) |H2,b| ⇥i(b)�j(b)⌅ = 1

2

Four non-zero matrix elements

2D square lattice
bond and site labels

Z =
⌅

�

⇥⌅

n=0

(�1)n2
⇥n

n!

⌅

Sn

⇥
�

�����

n�1⇧

p=0

Ha(p),b(p)

����� �

⇤Partition function

Sn = [a(0), b(0)], [a(1), b(1)], . . . , [a(n� 1), b(n� 1)]Index sequence:

n2 = number of a(i)=2
(off-diagonal operators)
in the sequence
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Propagated states: |�(p)⇥ �
p�1�

i=0

Ha(i),b(i) |�⇥

For fixed-length scheme (string length = L now)

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

In a program:

s(p) = operator-index string
• s(p) = 2*b(p) + a(p)-1
• diagonal; s(p) = even
• off-diagonal; s(p) = off

σ(i) = spin state, i=1,...,N
• only one has to be stored

W>0 (n2 even) for bipartite lattice 
Frustration leads to sign problem

SSE effectively provides a discrete representation of the time continuum 
• computational advantage; only integer operations in sampling

Z =
⌅

�

⌅

SL

(�1)n2
⇥n(L� n)!

L!

⇥
�

�����

L�1⇧

p=0

Ha(p),b(p)

����� �

⇤
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Linked vertex storage

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

The “legs” of a  vertex represents 
the spin states before (below) and 
after (above) an operator has acted

X( ) = vertex list
• operator at p→X(v)
   v=4p+l, l=0,1,2,3
• links to next and
   previous leg

Spin states between operations are redundant; represented by links
• network of linked vertices will be used for loop updates of vertices/operators
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Monte Carlo sampling scheme

Change the configuration; (�, SL)� (��, S�
L)

Attempt at p=0,...,L-1. Need to know |α(p)>
• generate by flipping spins when off-diagonal operator

Diagonal update: [0, 0]p � [1, b]p

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

Paccept([0, 0]⇥ [1, b]) = min
�

�Nb

2(L� n)
, 1

⇥

Paccept([1, b]⇥ [0, 0]) = min
�
2(L� n + 1)

�Nb
, 1

⇥

Acceptance probabilities

W (a = 0)
W (a = 1)

=
L� n + 1

�/2
W (a = 1)
W (a = 0)

=
�/2

L� n

n is the current power
• n → n+1 (a=0 → a=1)
• n → n-1  (a=1 → a=0)

Pselect(a = 0� a = 1) = 1/Nb, (b ⇥ {1, . . . , Nb})
Pselect(a = 1� a = 0) = 1

Paccept = min
�
W (��, SL)
W (�, SL)

Pselect(��, S�
L � �, SL)

Pselect(�, SL � ��, S�
L)

, 1
⇥
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Off-diagonal updates

Operator-loop 
update
• Many spins  

and operators 
can be 
changed 
simultaneously

• can change 
winding 
numbers

Local update
Change the type
of two operators
• constraints
• inefficient
• cannot change 

winding 
numbers
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Determination of the cut-off L
• adjust during equilibration
• start with arbitrary (small) n

Keep track of number of operators n
• increase L if n is close to current L
• e.g., L=n+n/3

Example 
•16×16 system, β=16 ⇒
• evolution of L
• n distribution after 
equilibration

• truncation is no 
approximation
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Does it work?
Compare with exact results
• 4×4 exact diagonalization
• Bethe Ansatz; long chains

⇐ Energy for long 1D chains
• SSE results for 106 sweeps
• Bethe Ansatz ground state E/N
• SSE can achieve the ground
   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒
• SSE results from 1010 sweeps
• improved estimator gives smaller
   error bars at high T (where the
   number of loops is larger)
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Outline
• The valence-bond basis for S=1/2 systems
• Ground-state projector algorithm with valence bonds

Valence bonds and 
Ground State Projection

Numerical and Analytical Methods for Strongly Correlated Systems
Benasque, Spain, August 24 - September 13, 2014

Anders W Sandvik, Boston University
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|Vr� =
N/2�

b=1

(irb, jrb), r = 1, . . . (N/2)!

The valence bond basis for S=1/2 spins
(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/

⌃
2Valence-bonds between sublattice  A, B sites

A
B

Basis states; singlet products

|�� =
�

r

fr|Vr�

The valence bond basis is overcomplete and non-orthogonal
• expansion of arbitrary singlet state is not unique

(all fr positive for non-frustrated system)

�Vl|Vr⇥|Vr�|Vl�

All valence bond states overlap with each other
�Vl|Vr⇥ = 2N��N/2 N� = number of loops in overlap graph

Spin correlations from loop structure
⇤Vl|⇤Si · ⇤Sj |Vr⌅

⇤Vl|Vr⌅
=

�
3
4 (�1)xi�xj+yi�yj

0
(i,j in same loop)

(i,j in different loops)

More complicated matrix elements 
(e.g., dimer correlations) are also 
related to the loop structure
K.S.D. Beach and  A.W.S., 
Nucl. Phys. B 750, 142 (2006)
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(-H)n projects out the ground state from an arbitrary state

H =
�

�i,j⇥

⌅Si · ⌅Sj = �
�

�i,j⇥

Hij , Hij = (1
4 � ⌅Si · ⌅Sj)

S=1/2 Heisenberg model

Project with string of bond operators
�

{Hij}

n⇥

p=1

Hi(p)j(p)|�⇥ � r|0⇥ (r = irrelevant)

Simple reconfiguration of bonds (or no change; diagonal)
• no minus signs for A→B bond ‘direction’ convetion 
• sign problem does appear for frustrated systems

Action of bond operators

Hab|...(a, b)...(c, d)...� = |...(a, b)...(c, d)...�

Hbc|...(a, b)...(c, d)...� =
1
2

|...(c, b)...(a, d)...�
A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/
⌃

2

Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(�H)n|�⇤ = (�H)n
�

i

ci|i⇤ ⇥ c0(�E0)n|0⇤
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Expectation values: �A⇥ = �0|A|0⇥
Strings of singlet projectors

Pk =
n�

p=1

Hik(p)jk(p), k = 1, . . . , Nn
b (Nb = number of interaction bonds)

We have to project bra and ket states
�

k

Pk|Vr⇤ =
�

k

Wkr|Vr(k)⇤ ⇥ (�E0)nc0|0⇤

�

g

⇤Vl|P �
g =

�

g

⇤Vl(g)|Wgl ⇥ ⇤0|c0(�E0)n

|Vr��Vl| A

- Monte Carlo sampling 
   of operator strings
- Estimators based on 
   transition graphs

6-spin chain example: �A⇥ =
�

g,k�Vl|P �
g APk|Vr⇥�

g,k�Vl|P �
g Pk|Vr⇥

=
�

g,k WglWkr�Vl(g)|A|Vr(k)⇥
�

g,k WglWkr�Vl(g)|Vr(k)⇥
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Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)
• good valence-bond trial wave functions can be used
• larger systems accessible
• sample spins, but measure using the valence bonds

|����|

A

More efficient ground state QMC algorithm → larger lattices 
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T>0 and T=0 algorithms side-by-side

• Computer implementations similar

p 1
1

1
0 9 8 7 6 5 4 3 2 1 0

i 
 =

1
2

3
4

5
6

7
8

s(
p
)

4 0 9 1
3 6 0 0 4 1
3 0 9 1
4

i 
 =

1
2

3
4

5
6

7
8

s(
p
) 5 0 8 1

3 6 0 0 5 1
3 0 8 1
4
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Finite-temperature QMC 
(world lines, SSE,...)

!22"# and there is no explicit dependence in Eq. !26" on the
operator string !! ," ,e , f" and spin !i , j" indices. An example
configuration is shown in Fig. 4. On a bipartite lattice, the
weights are positive since minus signs present in the states
$Eq. !6"# compensate those arising from an odd number of
off-diagonal operators $Eq. !25"# !or, equivalently, all signs
could be eliminated by a sublattice rotation2".

C. Sampling method

We now briefly describe the Monte Carlo sampling pro-
cedures. Starting with VB configurations Vr , Vl !where nor-
mally one would take Vr=Vl for simplicity" and compatible
spin configurations Zr=Zl, an initial string containing only
diagonal operators Hab!1" can be used !consistent with the
constraint that each operator must act on two antiparallel
spins". Successive configurations maintaining the constraints
are generated with three types of updates.

In the first update—the “diagonal update”—the combined
string P!"

ef
= !P"

f
"TP!

e
!where the transpose T of an operator

sequence just corresponds to writing it in the reverse order,
corresponding to acting with it on a bra state instead of a ket"
containing 2m operators is traversed and each diagonal op-
erator in it is updated !moved to a randomly selected bond",
under the condition that it acts on antiparallel spins. This step
corresponds to changing the vertex breakup in the original
world-line loop scheme.1,2 As in the SSE method,5,10 the con-
straints are checked by keeping the single state Z!p−1",
which is needed for moving a diagonal operator at location p
in the string. This state is obtained by acting on the originally
stored ket spin configuration Zr!0"=Zr with the first p opera-
tors in the sequence. It is changed !by flipping two spins"
whenever an off-diagonal operator is encountered in the
course of traversing the positions p=1, . . . ,2m. At the end of
this procedure, the stored bra state is obtained, Zr!2m"=Zl,
for a valid configuration.

In a second updating stage—the loop update—a linked
list of operator vertices is first constructed. A vertex consists
of the spin states “entering” and “exiting” an operator, as
shown in Fig. 4. They connect, forming loops. The only dif-
ference with respect to the operator loops in the SSE method
is that a loop can now be connected to the ket or bra VB
state, and the valence bonds constitute parts of such loops

!replacing the periodic boundary conditions used at T#0".
To keep nonzero !indeed, constant" matrix elements of the
operators Hab, all spins on a loop have to be flipped together,
in the process changing also Hab!1"↔Hab!2". Each loop is
flipped with probability 1/2. In practice, all loops are con-
structed, and the random decision of whether or not to flip a
loop is made before the loop is constructed. Vertices in a
loop that is not to be flipped are just flagged as visited so that
the same loop is not traversed more than once !i.e., a loop
construction is always started from a vertex leg that has not
yet been visited".

The reason for constructing all the clusters and flipping
each with probability 1/2, instead of generating single clus-
ters starting from random seed locations and flipping them
with probability 1 !as in the classical Wolff method31", is that
the de facto loop structure is only changed when performing
the diagonal updates. One would therefore potentially gener-
ate the same cluster several times, which would lead to lower
efficiency compared to uniquely identifying all clusters and
flipping each at most once. In principle, one could modify
the algorithm with combined diagonal and cluster updates
but this is more complicated and would probably not lead to
improvements in efficiency in most cases.

A flipped loop including one or several VBs will cause
spin flips in the stored spin configurations Zl or Zr. In the
loop updating procedure, we do not have to explicitly keep
track of any other spins than those in Zl and Zr. The four
spins at the operators !the vertex legs" are irrelevant at the
loop updating stage because all the vertices automatically
involve only operations on antiparallel spins, both before and
after a loop flip. For each vertex encountered when con-
structing a loop, we therefore simply have to change the
operator-type index, 1↔2, in the list of operators !i.e., the
same list P!"

ef
used in the diagonal update and to construct

the linked vertex list".
The third type of update—the state update—is identical to

the VB reconfigurations described in Sec. III for the varia-
tional calculation. Normally one would use an amplitude-
product state with coefficients in Eq. !9", which enter in the
weight $Eq. !26"#. Reconfigurations of the bonds can be car-
ried out with either two-bond or bond-loop moves, as ex-
plained in Sec. III. They only change the loop connections at
the VB “end caps.”

D. Measuring observables

When measuring operator expectation values, one can go
back to a pure VB !=loop" representation, using the estimator
$Eq. !23"#. This corresponds to summing over all loop orien-
tations. Most quantities of interest can be expressed in terms
of the loops in the transposition graph corresponding to
%Vl!"" &Vr!!"'.2,23,29,30 Note that these transposition-graph
loops can also be obtained from the “space-time” loops con-
structed in the updates, by connecting the sites !in practice,
just assigning a label, the loop number $i" crossed by the
same loop at the propagation midpoint !indicated by a
dashed line in Fig. 4". The space-time loops can also provide
access to imaginary-time correlation functions2 in the ground
state !see Sec. IV A". Since there are no differences in the

FIG. 4. !Color online" A VB-spin-operator configuration con-
tributing to %%&!−H"2m&%' for a four-site system with m=2. The
arcs to the left and right indicate VB states %Vl&, &Vr' and the two
columns of filled and open circles represent ↑ and ↓ spins of com-
patible spin states %Zj

l
&, &Zj

r
'. The spins at the four operators !verti-

ces" are also indicated. There are three loops, part of which consist
of VBs. Expectation values are evaluated at the midpoint indicated
by the dashed line.

ANDERS W. SANDVIK AND HANS GERD EVERTZ PHYSICAL REVIEW B 82, 024407 !2010"
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open boundaries capped by 
valence bonds (2-spin singlets)
[AWS, HG Evertz, 2010]

Ground state projection

Trial state can conserve relevant 
ground state quantum numbers 
(S=0, k=0,...)
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Nonmagnetic and Critical Ground States
of 2D Quantum Spin Systems

SA
SB

FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ΔS ∼ S(S+1)/N above the ground state.

thus allowing for the symmetry breaking that is the starting point for spin-wave theory. In
the thermodynamic limit, the direction of the ordering vector is fixed (as the time scale
associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
The effective coupling Jeff in (219) for a given system can be determined if we can

relate it to some physical quantity which depends on the rotor excitations. An obvious
choice is the uniform magnetic susceptibility, χ = d〈mz〉/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T & 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

ΔS =
S(S+1)
3χN

, (220)

where χ should be evaluated in the limitN→∞ (first) and T → 0. Note that I= (3/2)Nχ
here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):

1
χ(S,N)

=
3NS(ES−E0)
S(S+1)

. (221)

Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ΔS with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior

252

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

~Si
("i#j � #i"j)/

p
2

Numerical and Analytical Methods for Strongly Correlated Systems
Benasque, Spain, August 24 - September 13, 2014

23



Outline
Conventional quantum phase transition in 2D antiferromagnets
- Néel to non-degenerate quantum paramagnet

SA
SB

FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ΔS ∼ S(S+1)/N above the ground state.

thus allowing for the symmetry breaking that is the starting point for spin-wave theory. In
the thermodynamic limit, the direction of the ordering vector is fixed (as the time scale
associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
The effective coupling Jeff in (219) for a given system can be determined if we can

relate it to some physical quantity which depends on the rotor excitations. An obvious
choice is the uniform magnetic susceptibility, χ = d〈mz〉/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T & 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

ΔS =
S(S+1)
3χN

, (220)

where χ should be evaluated in the limitN→∞ (first) and T → 0. Note that I= (3/2)Nχ
here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):

1
χ(S,N)

=
3NS(ES−E0)
S(S+1)

. (221)

Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ΔS with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior
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Unconventional transition (deconfined quantum criticality?)
- Néel to valence-bond-solid (4-fold degenerate ground state)
- Sign-free QMC realization: “J-Q” models

Studies of criticality in J-Q models
- Finite-size scaling

Universality: Correspondence in frustrated spin models?
- comparisons with recent results for J1-J2 Heisenberg model
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Starting point: S=1/2 antiferromagnetic Heisenberg model
H = J

�

�i,j⇥

Si · Sj

Long-range order: <ms2> > 0 for N→∞

⌃ms =
1
N

N�

i=1

�i
⌃Si, �i = (�1)xi+yi (2D square lattice)

Sublattice magnetization

 Quantum Monte Carlo 
- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young 1988
ms = 0.30(2)
� 60 % of classical value
AWS & HG Evertz 2010

ms = 0.30743(1)

L⨉L lattices up to 256⨉256, T=0
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T=0 Néel-paramagnetic quantum phase transition
Example: Dimerized S=1/2 Heisenberg models
• every spin belongs to a dimer (strongly-coupled pair)
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class; QMC confirmed

Singlet formation on strong bonds ➙ Néel - disordered transition
  Ground state (T=0) phases

� = spin gaps

weak interactions

strong interactions

Experimental realization (3D coupled-dimer system): TlCuCl3
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FIGURE 5. QMC results for the squared sublattice magnetization in the two-dimensional Heisenberg
model with columnar dimerization. (a) shows results versus the coupling ratio g for different lattice sizes
and (b) shows the size dependence for several values of g. A quantum phase transition where the Néel
order vanishes occurs at g≈ 1.9.

renormalization-group treatments of one such field theory—the nonlinear σ -model in
2+1 dimensions [5, 84]. Based on symmetry arguments alone, one would then expect
the transition to be in the universality class of the 3D classical Heisenberg model. There
are, however, subtle issues in the quantum-classical mapping, and QMC simulations are
therefore needed to test various predictions. We will see examples of such comparisons
between results of simulations and field theories in Sec. 5.While results for the transition
in the bilayer (a) [85] and columnar dimer (b) [86] systems in Fig. 4 (and several
other cases [87, 88]) are in good agreement with the expectations, recent studies of
the staggered dimers (c) show unexpected deviations [89] that are still not understood.

2.4.2. Frustrated systems

The prototypical example of frustration is a system with antiferromagnetic inter-
actions on a triangular lattice. Looking at this problem first within the Ising model,
the spins on a single triangle cannot simultaneously be anti-parallel to both their
neighbors—there are six configurations with minimum energy, and these all have one
“frustrated” bond (two parallel neighbors), as shown in Fig. 6. Being a consequence of
the lattice, this is often referred to as geometric frustration. Upon increasing the system
size, the ground-state degeneracy grows with the system size, and in the ensemble in-
cluding all these configurations there is no order of any kind [90, 91]. In the case of the
classical XY (planar vector) or Heisenberg (vectors in three dimensions) model, there is,
however, order at T = 0 (but not at T > 0, according to the Mermin-Wagner theorem).
The energy is minimized by arranging the spins in a plane at 120◦ angle with respect
to their neighbors on the same triangle, as shown for a single triangle in Fig. 6. This is
referred to as a three-sublattice Néel state. There have been many studies of the S = 1/2
variant of this model. This was, in fact, the system for which the RVB spin-liquid state
was initially proposed [92]. There is now, however, compelling numerical evidence for
the three-sublattice Néel order actually surviving the quantum fluctuations [93, 94].

149

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

Example of finite-size scaling scaling studies; dimerized Heisenberg
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FIGURE 75. Binder cumulant (left) and spin stiffness (in the x direction) multiplied by the system
length (right) of the dimerized Heisenberg model. The crossing points of these curves for different L tend
toward the critical value of the coupling ratio g. Error bars are much smaller than the symbols.

quantities of interest. This approach is discussed for various dimerized systems in, e.g.,
Refs. [85, 88] (as well as in many older works). Another approach is to study systems
at inverse temperature β = Lz, where z is the dynamic critical exponent (which we dis-
cussed in Sec. 3.6) [231]. This is motivated in the following way, by a generalization of
the finite-size scaling hypothesis (64): In a quantum system the scaling function f (ξ/L)
should be replaced by a function with two arguments, f (ξ/L,ξτ/Lτ), where the correla-
tion length in the imaginary time dimension depends on the spatial correlation length ξ
according to ξτ ∼ ξ z (which defines the dynamic exponent) and the length of the system
in the imaginary time direction is Lτ = c/T ∼ β (where c is a velocity). If we choose
β ∝ Lz, then the scaling function can be written as f [ξ/L,(ξ/L)z], which is a function
of the single argument ξ/L. Thus, the finite-size scaling procedures can be used exactly
as in the classical systems discussed in Sec. (3.3.2). This is the case also if we take the
limit β → ∞ for each L (in practice finite β large enough for convergence to this limit),
because then ξτ/Lτ → 0, and there is again only one argument ξ/L left in the scaling
function.
There is plenty of evidence already that z = 1 in dimerized Heisenberg models, and

we will here use systems with β = L. This allows for studies of larger systems than in
the β → ∞ limit, although it is not a priori clear which approach is in the end better,
since the corrections to the leading finite-size scaling behavior can be different. Here we
use L up to L = 128. We will also test explicitly that systems with β = L exhibit behavior
consistent with z = 1, by studying quantities which depend on z.
We first locate the critical coupling by examining quantities that should be size

independent at gc. Fig. 75 shows the g dependence of both the Binder cumulant and the
spin stiffness, with the latter multiplied by L to compensate for the expected quantum
critical scaling form ρs ∼ 1/L, obtained the classical form (99) with d→ d + z = 3.
The Binder cumulant is defined according to (77), with the number of components

n = 3. Note, however, that (77) is defined with the full scalar product m2 = m ·m in
(75), whereas with the SSE method we here only compute the z component expectation
values 〈m2z 〉 and 〈m4z 〉 (the off-diagonal components being more difficult to evaluate
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Allows accurate determination of the 
critical point (curve crossings)

According to theory, spin stiffness 
at the critical point should scale 
according to (T=0)
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FIGURE 5. QMC results for the squared sublattice magnetization in the two-dimensional Heisenberg
model with columnar dimerization. (a) shows results versus the coupling ratio g for different lattice sizes
and (b) shows the size dependence for several values of g. A quantum phase transition where the Néel
order vanishes occurs at g≈ 1.9.

renormalization-group treatments of one such field theory—the nonlinear σ -model in
2+1 dimensions [5, 84]. Based on symmetry arguments alone, one would then expect
the transition to be in the universality class of the 3D classical Heisenberg model. There
are, however, subtle issues in the quantum-classical mapping, and QMC simulations are
therefore needed to test various predictions. We will see examples of such comparisons
between results of simulations and field theories in Sec. 5.While results for the transition
in the bilayer (a) [85] and columnar dimer (b) [86] systems in Fig. 4 (and several
other cases [87, 88]) are in good agreement with the expectations, recent studies of
the staggered dimers (c) show unexpected deviations [89] that are still not understood.

2.4.2. Frustrated systems

The prototypical example of frustration is a system with antiferromagnetic inter-
actions on a triangular lattice. Looking at this problem first within the Ising model,
the spins on a single triangle cannot simultaneously be anti-parallel to both their
neighbors—there are six configurations with minimum energy, and these all have one
“frustrated” bond (two parallel neighbors), as shown in Fig. 6. Being a consequence of
the lattice, this is often referred to as geometric frustration. Upon increasing the system
size, the ground-state degeneracy grows with the system size, and in the ensemble in-
cluding all these configurations there is no order of any kind [90, 91]. In the case of the
classical XY (planar vector) or Heisenberg (vectors in three dimensions) model, there is,
however, order at T = 0 (but not at T > 0, according to the Mermin-Wagner theorem).
The energy is minimized by arranging the spins in a plane at 120◦ angle with respect
to their neighbors on the same triangle, as shown for a single triangle in Fig. 6. This is
referred to as a three-sublattice Néel state. There have been many studies of the S = 1/2
variant of this model. This was, in fact, the system for which the RVB spin-liquid state
was initially proposed [92]. There is now, however, compelling numerical evidence for
the three-sublattice Néel order actually surviving the quantum fluctuations [93, 94].
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quantities of interest. This approach is discussed for various dimerized systems in, e.g.,
Refs. [85, 88] (as well as in many older works). Another approach is to study systems
at inverse temperature β = Lz, where z is the dynamic critical exponent (which we dis-
cussed in Sec. 3.6) [231]. This is motivated in the following way, by a generalization of
the finite-size scaling hypothesis (64): In a quantum system the scaling function f (ξ/L)
should be replaced by a function with two arguments, f (ξ/L,ξτ/Lτ), where the correla-
tion length in the imaginary time dimension depends on the spatial correlation length ξ
according to ξτ ∼ ξ z (which defines the dynamic exponent) and the length of the system
in the imaginary time direction is Lτ = c/T ∼ β (where c is a velocity). If we choose
β ∝ Lz, then the scaling function can be written as f [ξ/L,(ξ/L)z], which is a function
of the single argument ξ/L. Thus, the finite-size scaling procedures can be used exactly
as in the classical systems discussed in Sec. (3.3.2). This is the case also if we take the
limit β → ∞ for each L (in practice finite β large enough for convergence to this limit),
because then ξτ/Lτ → 0, and there is again only one argument ξ/L left in the scaling
function.
There is plenty of evidence already that z = 1 in dimerized Heisenberg models, and

we will here use systems with β = L. This allows for studies of larger systems than in
the β → ∞ limit, although it is not a priori clear which approach is in the end better,
since the corrections to the leading finite-size scaling behavior can be different. Here we
use L up to L = 128. We will also test explicitly that systems with β = L exhibit behavior
consistent with z = 1, by studying quantities which depend on z.
We first locate the critical coupling by examining quantities that should be size

independent at gc. Fig. 75 shows the g dependence of both the Binder cumulant and the
spin stiffness, with the latter multiplied by L to compensate for the expected quantum
critical scaling form ρs ∼ 1/L, obtained the classical form (99) with d→ d + z = 3.
The Binder cumulant is defined according to (77), with the number of components

n = 3. Note, however, that (77) is defined with the full scalar product m2 = m ·m in
(75), whereas with the SSE method we here only compute the z component expectation
values 〈m2z 〉 and 〈m4z 〉 (the off-diagonal components being more difficult to evaluate
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g = J2/J1
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• non-trivial non-magnetic ground states are possible, e.g.,
➡ resonating valence-bond (RVB) spin liquid
➡ valence-bond solid (VBS)

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·
More complex non-magnetic states; systems with 1 spin per unit cell

Non-magnetic states often have natural descriptions with valence bonds

= (⇥i⇤j � ⇤i⇥j)/
⌅

2
i j

• non-magnetic states dominated 
   by short bonds

�

�

The basis including bonds of all lengths 
is overcomplete in the singlet sector

Spontaneous symmetry breaking 
(different from dimerized Hamiltonian)
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Non-magnetic states from frustrated spin interactions
Quantum phase transitions as some coupling (ratio) is varied
• J1-J2 Heisenberg model is the prototypical example

H =
�

�i,j⇥

Jij
⌅Si · ⌅Sj

= J1

= J2

g = J2/J1

• Ground states for small and large g are well understood
‣ Standard Néel order up to g≈0.45; collinear magnetic order for g>0.6 

0 � g < 0.45 0.45 � g < 0.6 g > 0.6

• A non-magnetic state exists between the magnetic phases
‣ Most likely a VBS (what kind? Columnar or plaquette?)
‣ Some recent calculations suggest spin liquid (but I doubt it...).

• 2D frustrated models are challenging: QMC sign problems
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The Heisenberg interaction is equivalent to a singlet-projector

Cij |�s
ij⇥ = |�s

ij⇥, Cij |�tm
ij ⇥ = 0 (m = �1, 0, 1)

Cij = 1
4 � ⇤Si · ⇤Sj

VBS states from multi-spin interactions (AWS, PRL 2007)

• we can construct models with products of singlet projectors
• no frustration in the conventional sense (QMC can be used)
• correlated singlet projection reduces the antiferromagnetic order

+ all translations
   and rotations

The “J-Q” model with two projectors is
H = �J

�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Has Néel-VBS transition, appears to be continuous
• Not a realistic microscopic model for materials
• Intended to study VBS and Néel-VBS transition (universal physics)
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Here, v is a spin-wave velocity, and s,u are parameters whose values
are adjusted to obtain Néel order in the ground state. In mean-field
theory, this happens for s < 0, where we have |h8i| = (�s)/(2u)
by minimization of the action S8. A standard computation of
the fluctuations about this saddle point shows that the low-energy
excitations are spin waves with two possible polarizations and an
energy ✏ that vanishes at small wavevectors k, ✏ = vk. These spin
waves correspond to local oscillations of 8 about an orientation
chosen by spontaneous breaking of the spin-rotation symmetry
in the Néel state, but which maintain low energy by fixing the
magnitude |8|. The spin waves also interact weakly with each other,
and the form of these interactions can also be described by S8.
All eVects of these interactions are completely captured by a single
energy scale, ⇢s, which is the ‘spin stiVness’, measuring the energy
required to slowly twist the orientation of the Néel order across a
large spatial region. At finite temperatures, the thermal fluctuations
of the interacting spin waves can have strong consequences. We
will not describe these here (because they are purely consequences
of classical thermal fluctuations), apart from noting4 that all these
thermal eVects can be expressed universally as functions of the
dimensionless ratio kBT/⇢s.

For future analysis, it is useful to have an alternative description
of the low-energy states above the Néel ordered state. For the
Néel state, this alternative description is, in a sense, a purely
mathematical exercise: it does not alter any of the low-energy
physical properties, and yields an identical low-temperature theory
for all observables when expressed in terms of kBT/⇢s. The key step
is to express the vector field 8 in terms of an S = 1/2 complex
spinor field z↵, where ↵ ="# by

8 = z⇤
↵� ↵�z� (3)

where � are the 2⇥2 Pauli matrices. Note that this mapping from
8 to z↵ is redundant. We can make a space-time-dependent change
in the phase of z↵ by the field ✓(x,⌧)

z↵ ! ei✓z↵ (4)

and leave 8 unchanged. All physical properties must therefore
also be invariant under equation (4), and so the quantum field
theory for z↵ has a U(1) gauge invariance, much like that found
in quantum electrodynamics. The eVective action for z↵ therefore
requires the introduction of an ‘emergent’ U(1) gauge field Aµ

(where µ = x,⌧ is a three-component space-time index). The field
Aµ is unrelated to the electromagnetic field, but is an internal
field that conveniently describes the couplings between the spin
excitations of the antiferromagnet. As we have noted above, in the
Néel state, expressing the spin-wave fluctuations in terms of z↵

and Aµ is a matter of choice, and the above theory for the vector
field 8 can serve us equally well. The distinction between the two
approaches appears when we move out of the Néel state across
quantum critical points into other phases (as we will see later):
in some of these phases, the emergent Aµ gauge field is no longer
optional, but an essential characterization of the ‘quantum order’ of
the phase. As we did for S8, we can write the quantum field theory
for z↵ and Aµ by the constraints of symmetry and gauge invariance,
which now yields

Sz =
Z

d2rd⌧


|(@µ � iAµ)z↵|2 + s|z↵|2 +u(|z↵|2)2

+ 1

2e2
0

(✏µ⌫l@⌫Al)
2

�
. (5)

For brevity, we have now used a ‘relativistically’ invariant notation,
and scaled away the spin-wave velocity v; the values of the couplings

s,u are diVerent from, but related to, those in S8. The Maxwell
action for Aµ is generated from short-distance z↵ fluctuations,
and it makes Aµ a dynamical field; its coupling e0 is unrelated
to the electron charge. The action Sz is a valid description of
the Néel state for s < 0 (the critical upper value of s will have
fluctuation corrections away from 0), where the gauge theory enters
a Higgs phase with hz↵i 6= 0. This description of the Néel state
as a Higgs phase has an analogy with the Weinberg–Salam theory
of weak interactions—in the latter case, it is hypothesized that
the condensation of a Higgs boson gives a mass to the W and Z
gauge bosons, whereas here the condensation of z↵ quenches the
Aµ gauge boson.
1. Triangular lattice. There have been numerous recent studies5 of
the spin excitations of the insulator Cs2CuCl4. Just as in La2CuO4,
the dominant spin excitations are S = 1/2 spins on the Cu ions,
but now they reside on the vertices of a triangular lattice, as
shown in Fig. 1b. Such an antiferromagnet is well described by
the hamiltonian H0, with a nearest-neighbour exchange J and i
on the sites of the triangular lattice. From numerical studies of
such spin systems6, and also from observations5 in Cs2CuCl4, the
ground state of H0 also has broken spin-rotation symmetry, but the
pattern of spin polarization is now quite diVerent. We now replace
equation (1) by

hSji = N1 cos(K · rj)+N2 sin(K · rj), (6)

where ri is the position of site i, and K = (4⇡/3a)(1,
p

3) for the
ordering pattern in Fig. 1b on a triangular lattice of spacing a. The
most important diVerence from equation (1) is that we now require
two orthogonal vectors N1,2 (N1 ·N2 = 0) to specify the degenerate
manifold of ground states. As for the square lattice, we can write
an eVective action for N1,2 constrained only by the symmetries of
the hamiltonian. Minimization of such an action shows that the
ordered state has N2

1 =N2
2 fixed to a value determined by parameters

in the hamiltonian, but are otherwise arbitrary. Moving on to
the analogue of the spinor representation in equation (3), we now
introduce another spinor w↵, which parameterizes N1,2 by7

N1 + iN2 = "↵� w�� ↵�w�, (7)

where "↵� is the antisymmetric tensor. It can be checked that w↵

transforms as an S = 1/2 spinor under spin rotations, and that
under translations by a lattice vector y w↵ ! e�iK ·y/2w↵. Apart
from these global symmetries, we also have the analogue of the
gauge invariance in equation (4). From the relationship of w↵ to
the physical observables in equation (7), we now find a Z2 gauge
transformation

w↵ ! ⌘w↵, (8)

where ⌘(r, ⌧) = ±1. This Z2 gauge invariance will play an
important role in the discussion in Section IID. The low-energy
theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2

or w↵. We will not write it out explicitly here, deferring it also to
Section IID.

B. COUPLED-DIMER ANTIFERROMAGNET

This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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also be invariant under equation (4), and so the quantum field
theory for z↵ has a U(1) gauge invariance, much like that found
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Aµ is unrelated to the electromagnetic field, but is an internal
field that conveniently describes the couplings between the spin
excitations of the antiferromagnet. As we have noted above, in the
Néel state, expressing the spin-wave fluctuations in terms of z↵

and Aµ is a matter of choice, and the above theory for the vector
field 8 can serve us equally well. The distinction between the two
approaches appears when we move out of the Néel state across
quantum critical points into other phases (as we will see later):
in some of these phases, the emergent Aµ gauge field is no longer
optional, but an essential characterization of the ‘quantum order’ of
the phase. As we did for S8, we can write the quantum field theory
for z↵ and Aµ by the constraints of symmetry and gauge invariance,
which now yields

Sz =
Z

d2rd⌧


|(@µ � iAµ)z↵|2 + s|z↵|2 +u(|z↵|2)2

+ 1

2e2
0

(✏µ⌫l@⌫Al)
2

�
. (5)
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and scaled away the spin-wave velocity v; the values of the couplings

s,u are diVerent from, but related to, those in S8. The Maxwell
action for Aµ is generated from short-distance z↵ fluctuations,
and it makes Aµ a dynamical field; its coupling e0 is unrelated
to the electron charge. The action Sz is a valid description of
the Néel state for s < 0 (the critical upper value of s will have
fluctuation corrections away from 0), where the gauge theory enters
a Higgs phase with hz↵i 6= 0. This description of the Néel state
as a Higgs phase has an analogy with the Weinberg–Salam theory
of weak interactions—in the latter case, it is hypothesized that
the condensation of a Higgs boson gives a mass to the W and Z
gauge bosons, whereas here the condensation of z↵ quenches the
Aµ gauge boson.
1. Triangular lattice. There have been numerous recent studies5 of
the spin excitations of the insulator Cs2CuCl4. Just as in La2CuO4,
the dominant spin excitations are S = 1/2 spins on the Cu ions,
but now they reside on the vertices of a triangular lattice, as
shown in Fig. 1b. Such an antiferromagnet is well described by
the hamiltonian H0, with a nearest-neighbour exchange J and i
on the sites of the triangular lattice. From numerical studies of
such spin systems6, and also from observations5 in Cs2CuCl4, the
ground state of H0 also has broken spin-rotation symmetry, but the
pattern of spin polarization is now quite diVerent. We now replace
equation (1) by

hSji = N1 cos(K · rj)+N2 sin(K · rj), (6)

where ri is the position of site i, and K = (4⇡/3a)(1,
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3) for the
ordering pattern in Fig. 1b on a triangular lattice of spacing a. The
most important diVerence from equation (1) is that we now require
two orthogonal vectors N1,2 (N1 ·N2 = 0) to specify the degenerate
manifold of ground states. As for the square lattice, we can write
an eVective action for N1,2 constrained only by the symmetries of
the hamiltonian. Minimization of such an action shows that the
ordered state has N2
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2 fixed to a value determined by parameters

in the hamiltonian, but are otherwise arbitrary. Moving on to
the analogue of the spinor representation in equation (3), we now
introduce another spinor w↵, which parameterizes N1,2 by7
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from these global symmetries, we also have the analogue of the
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where ⌘(r, ⌧) = ±1. This Z2 gauge invariance will play an
important role in the discussion in Section IID. The low-energy
theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2
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This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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A is a U(1) symmetric gauge field • CP1 action (non-compact)

- proposed as critical theory separating Neel and VBS states

= 〈!Si · !Sj〉

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·

VBS states and “deconfined” quantum criticality
Read, Sachdev (1989),....,Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

Neel-VBS transition in 2D
• generically continuous
• violating the “Landau rule”

stating 1st-order transition
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Here, v is a spin-wave velocity, and s,u are parameters whose values
are adjusted to obtain Néel order in the ground state. In mean-field
theory, this happens for s < 0, where we have |h8i| = (�s)/(2u)
by minimization of the action S8. A standard computation of
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Néel state, this alternative description is, in a sense, a purely
mathematical exercise: it does not alter any of the low-energy
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as a Higgs phase has an analogy with the Weinberg–Salam theory
of weak interactions—in the latter case, it is hypothesized that
the condensation of a Higgs boson gives a mass to the W and Z
gauge bosons, whereas here the condensation of z↵ quenches the
Aµ gauge boson.
1. Triangular lattice. There have been numerous recent studies5 of
the spin excitations of the insulator Cs2CuCl4. Just as in La2CuO4,
the dominant spin excitations are S = 1/2 spins on the Cu ions,
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shown in Fig. 1b. Such an antiferromagnet is well described by
the hamiltonian H0, with a nearest-neighbour exchange J and i
on the sites of the triangular lattice. From numerical studies of
such spin systems6, and also from observations5 in Cs2CuCl4, the
ground state of H0 also has broken spin-rotation symmetry, but the
pattern of spin polarization is now quite diVerent. We now replace
equation (1) by
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where ri is the position of site i, and K = (4⇡/3a)(1,
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3) for the
ordering pattern in Fig. 1b on a triangular lattice of spacing a. The
most important diVerence from equation (1) is that we now require
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manifold of ground states. As for the square lattice, we can write
an eVective action for N1,2 constrained only by the symmetries of
the hamiltonian. Minimization of such an action shows that the
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the analogue of the spinor representation in equation (3), we now
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theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2
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B. COUPLED-DIMER ANTIFERROMAGNET

This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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Description of critical point with spinor field 
(2-component complex vector) 

S!r · S!r+x̂ ! Re"!VBS#$− 1%x,

S!r · S!r+ŷ ! Im"!VBS#$− 1%y , $1.4%

and r= $x ,y% (here columnar states have !VBS
4 real and posi-

tive, while plaquette states have !VBS
4 real and negative). In

these states there is an energy gap for spin-carrying S=1
quasiparticle excitations; these “triplons”14 are quite distinct
from spin waves, and are instead adiabatically connected to
spin excitons in band insulators. A second class of more ex-
otic paramagnetic states is also possible15–19 in principle: in
these states the valence bond configurations resonate
amongst each other and form a “liquid.” The resulting state
has been argued to possess excitations with fractional spin
1/2 and interesting topological structure.
Our focus will be on the nature of the evolution of the

ground state between these various phases. Our primary ex-
ample is that between the ordered magnet and a valence
bond solid. We also discuss the phase transitions between
valence bond solid and “spin” liquid phases (see Sec. VIII).
Qualitatively similar phenomena will be shown to be ob-
tained at both these transitions.
Both the magnetic Néel state and the valence bond solid

are states of broken symmetry. The former breaks spin rota-
tion symmetry, and the latter the symmetry of lattice transla-
tions. The order parameters N! and !VBS associated with these
two different broken symmetries are very different. A LGW
picture of the evolution between these two distinct ground
states would be formulated in terms of an effective action
that is a functional of N! and !VBS. Such a construction would
suggest either a first-order transition, or passage through an
intermediate phase which breaks both kinds of symmetry or
an intermediate “disordered” state with neither order. A di-
rect second-order transition would be expected only by fur-
ther fine tuning to special multicritical points. Our central
thesis is that this expectation is wrong. A generic second-
order transition is possible between these two phases with
different broken symmetries. The resulting critical theory is,
however, unusual and not naturally described in terms of the
order-parameter fields of either phase. Instead, the natural
description is in terms of spin-1 /2 “spinon” or CP1 fields z"
("=1,2 is a spinor index). The Néel order parameter is bi-
linear in the spinons:

N! ! z†#! z . $1.5%

Here #! is the usual vector of Pauli matrices and multiplica-
tion of the spinor index is implied. The fields z" create single
spin-1 /2 quanta, “half” that of the spin-1 quanta created by
the Néel field N! .
Although we have proposed above that the critical theory

is naturally described in terms of the spinon fields and not
the order parameters of either phase, the reader may wonder
whether this is a unique theory, and that perhaps we have
overlooked some complicated formulation in terms of vari-
ables related to the two order parameters. It will become
clear from our analysis below that such a possibility is highly
unlikely, and we anticipate the main reasons here. As we

discuss below, a key point is that the topological defects
(namely the hedgehogs in space-time) of the Néel order pa-
rameter have the same quantum numbers of the order param-
eter of the VBS paramagnet. If we insisted on describing the
direct second-order transition between these phases in terms
of these order parameters, it would be necessary to associate
the VBS order parameter with the hedgehogs of the Néel
order parameter. This means that the two order-parameter
fields will have long-ranged “statistical” interactions with
each other. Consequently there will be no local theory which
includes only the two order-parameter fields (but no other
fields). It is these difficulties that force the necessity for an
alternate description which is conveniently provided by the
spinon degrees of freedom.
The spinon fields z" defined in Eq. (1.5) have a U$1%

“gauge” redundancy. Specifically the local phase rotation

z→ ei$$r,%%z $1.6%

leaves the Néel vector invariant and hence is a gauge degree
of freedom. Here % is the imaginary time coordinate. Thus
the spinons are coupled to a U$1% gauge field a&$r ,%% (we
will use the Greek indices & ,' , . . . to represent the three
space-time indices x ,y ,%). Our central thesis—substantiated
by a variety of arguments to follow—is that the critical field
theory for the Néel-VBS transition is just the simple con-
tinuum action Sz=&d2 rd% Lz, and

Lz ='
a=1

N

($!& − ia&%za(2 + s(z(2 + u$(z(2%2 + ($)&'(!'a(%2,

$1.7%

where N=2 is the number of z components (later we will
consider the case of general N), (z(2)'a=1

N (za(2, and the value
of s is to be tuned to a critical value s=sc so that Lz is at its
scale-invariant critical point. The same action with a simple
modification also describes the critical field theory for sys-
tems with easy-plane anisotropy, with the addition of the
simple term

Lep = w(z1(2(z2(2, $1.8%

with w*0. We will discuss in more detail later why these
would describe stable critical points—perhaps the most di-
rect evidence comes from the numerical simulations reported
in Ref. 23 of a lattice model of a CP1 field coupled to a
noncompact gauge field [a lattice version of Eq. (1.7)],
where a continuous transition was found in both the isotropic
and easy-plane cases.
How can this action describe the onset of VBS order

when it does not contain !VBS, and the z" are closely related
to the Néel order parameter? In writing Eq. (1.7), we have
tacitly assumed a& to be a single-valued continuous field. In
a more careful lattice implementation of Eq. (1.5), however,
the resulting gauge field that appears is compact, i.e., defined
only modulo 2+. This allows for the presence of topological
defects occurring at a single instant of space-time (“instan-
tons”) called monopoles, at which magnetic flux !xay−!yax is
created or destroyed in integer multiples of 2+. In general,
Eq. (1.7) should thus be supplemented by terms which create
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gauge redundancy:

• SU(N) generalization: large-N calculations for CPN-1 theory
   [can be carried out with similar QMC as SU(2) models]
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T=0 Néel-VBS transition in the J-Q model
Ground-state projector QMC calculations
(Sandvik, 2007; Lou, Sandvik, Kawashima, 2009)

VBS vector order parameter (Dx,Dy) (x and y lattice orientations)

Dx =
1
N

N�

i=1

(�1)xiSi · Si+x̂, Dy =
1
N

N�

i=1

(�1)yiSi · Si+ŷ

M2 = ⇥ ⌅M · ⌅M⇤, D2 = ⇥D2
x + D2

y⇤
No symmetry-breaking in simulations; study the squares

Data “collapse” for different system 
sizes L of AL1+η graphed vs (q-qc)L1/ν

⌅M =
1
N

�

i

(�1)xi+yi ⌅Si

Néel order parameter (staggered magnetization)

Finite-size scaling: a critical squared order parameter (A) scales as

coupling ratioA(L, q) = L�(1+�)f [(q � qc)L1/⇥ ]

q =
Q

J +Q
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J-Q2 model; qc=0.961(1)
�s = 0.35(2)
�d = 0.20(2)
⇥ = 0.67(1)

J-Q3 model; qc=0.600(3)
�s = 0.33(2)
�d = 0.20(2)
⇥ = 0.69(2)

Exponents universal 
(within error bars)

J �Q2

J �Q3

Comparable results for
honeycomb J-Q model 
Alet & Damle, PRB 2013
Block, Melko, Kaul, PRL 2013
Exponents drift for large L 
Kawashima et al, PRB 2013
- weak first-order transition?
- or large scaling corrections?
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H =
�

�i,j⇥

Jij
⌅Si · ⌅Sj

= J1

= J2

g = J2/J1

Universality of J-Q physics: Frustrated spin models

0 � g < 0.45 0.45 � g < 0.6 g > 0.6

Until recently, most calculations indicated VBS around J2/J1=1/2 

Recent DMRG calculations
claim a spin liquid

1) Jiang, Yao, Balents (PRB 2012)

2) Gong, Zhu, Sheng, Motrunich,
    Fisher (arXiv 2014)
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Plaquette ordered phase and quantum spin liquid in the spin-1
2 J1-J2 square Heisenberg model
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We study the spin- 1

2

Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic
interactions J

1

and J

2

, which possesses a nonmagnetic region that has been debated for many years and might
realize the interesting Z

2

spin liquid (SL). We use the density matrix renormalization group approach with
explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders
with different boundary conditions. With increasing J

2

, we find a Néel phase, a plaquette valence-bond (PVB)
phase with a finite spin gap, and a possible spin liquid in a small region of J

2

between these two phases. From the
finite-size scaling of the magnetic order parameter, we estimate that the Néel order vanishes at J

2

/J

1

' 0.44.
For 0.5 < J

2

/J

1

< 0.61, we find dimer correlations and PVB textures whose decay length grows strongly with
increasing system width, consistent with a long-range PVB order in the two-dimensional limit. The dimer-dimer
correlations reveal the s-wave character of the PVB order. For 0.44 < J

2

/J

1

< 0.5, both spin order, dimer
order, and spin gap are small on finite-size systems and appear to scale to zero with increasing system width,
which is consistent with a possible gapless SL or a near-critical behavior. We compare and contrast our results
with earlier numerical studies.

PACS numbers: 73.43.Nq, 75.10.Jm, 75.10.Kt

Introduction.—Quantum spin liquid (SL) is an exotic state
of matter where a spin system does not form magneti-
cally ordered state or break lattice symmetries even at zero
temperature[1]. Understanding spin liquids is important in
frustrated magnetic systems and may also hold clues to under-
stand non-Fermi liquid of doped Mott materials and high-T

c

superconductivity of strongly correlated systems[2]. The ex-
citing properties of spin liquids such as deconfined quasiparti-
cles and fractional statistics have been revealed in many artifi-
cially constructed systems such as quantum dimer models[3–
5], Kagome spin model in the easy axis limit[6–10], and Ki-
taev model[11]. The possibility of finding spin liquids in real-
istic Heisenberg models, which may be close to experimental
materials, has attracted much attention of the field over the last
twenty years. The prominent example is the Kagome antifer-
romagnet, where recent density matrix renormalization group
(DMRG) studies point to a gapped Z

2

SL[10, 12–15] char-
acterized by a Z

2

topological order and fractionalized spinon
and vison excitations[16–20].

One of the simplest candidate Heisenberg models for SL is
the spin- 1

2

J
1

-J
2

square lattice model. The Hamiltonian is

H = J
1

X

hi,ji

S
i

· S
j

+ J
2

X

hhi,jii

S
i

· S
j

, (1)

where the sums hi, ji and hhi, jii run over all the nearest-
neighbor (NN) and the next nearest-neighbor (NNN) bonds,
respectively. We set J

1

= 1 as energy scale. The frustrating
J

2

couplings suppress the Néel order and induce a nonmag-
netic region around the strongest frustration point J

2

= 0.5,
which has been studied extensively[21–42]. Different candi-
date states have been proposed based on various approximate
methods or small-size exact diagonalization calculations, such
as plaquette valence-bond (PVB) state[23, 26, 29, 30, 32, 35,
42], columnar valence-bond (CVB) state[21, 22, 25], or gap-
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FIG. 1: (color online) Phase diagram of spin- 1

2

J

1

-J
2

square Heisen-
berg model for J

2

< 0.61 obtained by our SU(2) DMRG studies.
With growing J

2

, the model has a Néel phase for J

2

< 0.44 and a
PVB phase for 0.5 < J

2

< 0.61. Between these two phases, there
is a small gapless region that exhibits no order in our calculations,
consistent with a gapless SL. The main panel shows Néel order pa-
rameter m

s

and spin gap �
T

in the thermodynamic limit. The inset
is a sketch for an RC4-6 cylinder; J

pin

shows the modified odd ver-
tical NN bonds providing the boundary pinning for dimer orders.

less SL[27, 28, 40, 41]. However, the true nature of the quan-
tum phase has remained unresolved.

Recent large-scale DMRG study of the J
1

-J
2

square lattice
model[37] proposed a gapped Z

2

SL for 0.41  J
2

 0.62
by establishing the absence of the magnetic and dimer orders,
by finding nonzero singlet and triplet gaps, and by measuring
a positive topological entanglement entropy term close to the
value � = ln 2 expected for a Z

2

SL[43, 44]. Very recent
VMC work[41] with two steps of Lanczos improvement pro-
posed a gapless Z

2

SL for 0.45 . J
2

. 0.6 with competitive

2

energies. On the other hand, recent DMRG studies[45–47] of
another bipartite frustrated system—the J

1

-J
2

spin-1/2 hon-
eycomb lattice Heisenberg model—found a PVB phase in the
nonmagnetic region, with a possible SL phase between the
Néel and PVB phases[47] or with a direct Néel to PVB transi-
tion characterized by a deconfined quantum critical point[45–
49]. These studies[46, 47] also found that in the nonmagnetic
region the convergence of DMRG in wider systems, which is
controlled by the number of states kept, is crucial for deter-
mining the true nature of the ground state.

In this Letter, we reexamine the J
1

-J
2

square lattice
Heisenberg model for J

2

< 0.61 using DMRG algorithm
with explicit implementation of the SU(2) spin rotation
symmetry[50] (we do not study the well known stripe anti-
ferromagnetic phase at larger J

2

). We find accurate results
on cylinders with system width up to 12 ⇠ 14 lattice spac-
ings by keeping as many as 36000 optimal U(1)-equivalent
states. We find Néel phase below J

2

' 0.44 and a nonmag-
netic region for 0.44 < J

2

< 0.61 by finite-size scaling of
the magnetic order parameter. In the nonmagnetic region, we
establish a PVB order for J

2

> 0.5—in contrast to the previ-
ous proposal [37] of a Z

2

SL—by observing that the PVB de-
cay length grows strongly with increasing system width. We
identify the PVB order as the s-wave plaquette[30] by study-
ing dimer-dimer correlations. For 0.44 < J

2

< 0.5, we find
that the magnetic order, valence-bond crystal (VBC) orders,
as well as spin excitation gap all vanish with increasing sys-
tem width, which suggests a possible gapless SL in agreement
with the VMC results[41] or a near-critical behavior.

We consider both torus and cylinder samples in DMRG cal-
culations, but all the phases are established based on high ac-
curacy results on cylinders[51]. We use two cylinder geome-
tries. The first is the rectangular cylinder (RC) with closed
boundary in the y direction and open boundaries in the x di-
rection. Such a system is denoted RCL

y

-L
x

, where L
y

and
L

x

are number of sites in the y and x directions; the width
of the cylinder is W

y

= L
y

. The inset of Fig. 1 shows an
RC4-6 cylinder. The RC cylinders preserve translational sym-
metry in the y direction. If we want to study VBC order with
dimers oriented in the y direction, we can induce such an or-
der near the open boundaries by modifying every other NN
vertical bond on the boundary to be J

pin

6= J
1

, which is also
illustrated in Fig. 1. The second geometry is the tilted cylinder
(TC) obtained by cutting cylinder edge along one diagonal di-
rection of the square lattice, as shown below in Fig. 4(a) when
discussing the PVB order.

Néel order.—Néel order parameter m2

s

is defined as m2

s

=
1

N

2

P
i,j

hS
i

· S
j

iei~q·(~ri�~rj) (N is the total number of sites)
with the antiferromagnetic ordering wave vector ~q = (⇡, ⇡).
We calculate m2

s

from the spin correlations of the L⇥ L sites
in the middle of the RCL-2L cylinder, which efficiently re-
duces boundary effects[37, 52]. In Fig. 2(a), we show m2

s

for
different systems with L = 4 to 14[53]. We fit the finite-size
data using the polynomial function up to fourth order, which
works quite well. The intercept with the vertical axis provides
an extrapolation of m2

s

to the two-dimensional (2D) limit, and
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FIG. 2: (color online) (a) m

2

s

plotted vs 1/L for RCL-2L cylinder
with L = 4, 6, 8, 10, 12, 14; lines are polynomial fits up to fourth
order. The inset is J

2

dependence of the obtained magnetic order
in the 2D limit m

2

s,1. (b) Same data shown as log-log plot of m

2

s

versus width L.

we show thus obtained m2

s,1 in the inset of Fig. 2(a). Such an
analysis suggests that the Néel order vanishes for J

2

> 0.44.
The estimated critical J

2

of spin order vanishing is differ-
ent from the point where the PVB order develops as found
below. One possibility is an intermediate SL phase. Another
possibility is that the system is near critical in the window
0.44 < J

2

< 0.5. In the latter case, to get some idea about
the criticality, Fig. 2(b) shows log-log plot of m2

s

versus L.
m2

s

approaches finite value in the Néel phase, and we see this
developing for J

2

= 0.35 and 0.4. On the other hand, we ex-
pect m2

s

(L) ⇠ L�(1+⌘) at a critical point and m2

s

(L) ⇠ L�2

in the nonmagnetic phase. The accelerated decay of m2

s

(L)
at J

2

= 0.55 is consistent with vanishing Néel order at this
point: from the two largest sizes at J

2

= 0.55, we estimate
m2

s

(L) ⇠ L�1.82, which is quite close to m2

s

(L) ⇠ L�2.
In the near-critical region, we can fit the J

2

= 0.44 data to
L�(1+0.15) and the J

2

= 0.5 data for L > 8 to L�(1+0.44).
This range of ⌘ is compatible with the findings in the J-Q mod-
els on the square (⌘ ' 0.26 � 0.35)[54–60] and honeycomb
(⌘ ' 0.3)[61] lattices, which show continuous Néel to VBC
transition argued to be in the deconfined criticality class, so
our model is compatible with this scenario as well.

Plaquette ordered phase and quantum spin liquid in the spin-1
2 J1-J2 square Heisenberg model

Shou-Shu Gong1, Wei Zhu1, D. N. Sheng1, Olexei I. Motrunich2, Matthew P. A. Fisher3
1Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
3Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

We study the spin- 1

2

Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic
interactions J

1

and J

2

, which possesses a nonmagnetic region that has been debated for many years and might
realize the interesting Z

2

spin liquid (SL). We use the density matrix renormalization group approach with
explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders
with different boundary conditions. With increasing J

2

, we find a Néel phase, a plaquette valence-bond (PVB)
phase with a finite spin gap, and a possible spin liquid in a small region of J

2

between these two phases. From the
finite-size scaling of the magnetic order parameter, we estimate that the Néel order vanishes at J

2

/J

1

' 0.44.
For 0.5 < J

2

/J

1

< 0.61, we find dimer correlations and PVB textures whose decay length grows strongly with
increasing system width, consistent with a long-range PVB order in the two-dimensional limit. The dimer-dimer
correlations reveal the s-wave character of the PVB order. For 0.44 < J

2

/J

1

< 0.5, both spin order, dimer
order, and spin gap are small on finite-size systems and appear to scale to zero with increasing system width,
which is consistent with a possible gapless SL or a near-critical behavior. We compare and contrast our results
with earlier numerical studies.
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Introduction.—Quantum spin liquid (SL) is an exotic state
of matter where a spin system does not form magneti-
cally ordered state or break lattice symmetries even at zero
temperature[1]. Understanding spin liquids is important in
frustrated magnetic systems and may also hold clues to under-
stand non-Fermi liquid of doped Mott materials and high-T

c

superconductivity of strongly correlated systems[2]. The ex-
citing properties of spin liquids such as deconfined quasiparti-
cles and fractional statistics have been revealed in many artifi-
cially constructed systems such as quantum dimer models[3–
5], Kagome spin model in the easy axis limit[6–10], and Ki-
taev model[11]. The possibility of finding spin liquids in real-
istic Heisenberg models, which may be close to experimental
materials, has attracted much attention of the field over the last
twenty years. The prominent example is the Kagome antifer-
romagnet, where recent density matrix renormalization group
(DMRG) studies point to a gapped Z

2

SL[10, 12–15] char-
acterized by a Z

2

topological order and fractionalized spinon
and vison excitations[16–20].

One of the simplest candidate Heisenberg models for SL is
the spin- 1

2

J
1

-J
2

square lattice model. The Hamiltonian is

H = J
1

X

hi,ji

S
i

· S
j

+ J
2

X

hhi,jii

S
i

· S
j

, (1)

where the sums hi, ji and hhi, jii run over all the nearest-
neighbor (NN) and the next nearest-neighbor (NNN) bonds,
respectively. We set J

1

= 1 as energy scale. The frustrating
J

2

couplings suppress the Néel order and induce a nonmag-
netic region around the strongest frustration point J

2

= 0.5,
which has been studied extensively[21–42]. Different candi-
date states have been proposed based on various approximate
methods or small-size exact diagonalization calculations, such
as plaquette valence-bond (PVB) state[23, 26, 29, 30, 32, 35,
42], columnar valence-bond (CVB) state[21, 22, 25], or gap-
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FIG. 1: (color online) Phase diagram of spin- 1

2

J

1

-J
2

square Heisen-
berg model for J

2

< 0.61 obtained by our SU(2) DMRG studies.
With growing J

2

, the model has a Néel phase for J

2

< 0.44 and a
PVB phase for 0.5 < J

2

< 0.61. Between these two phases, there
is a small gapless region that exhibits no order in our calculations,
consistent with a gapless SL. The main panel shows Néel order pa-
rameter m

s

and spin gap �
T

in the thermodynamic limit. The inset
is a sketch for an RC4-6 cylinder; J

pin

shows the modified odd ver-
tical NN bonds providing the boundary pinning for dimer orders.

less SL[27, 28, 40, 41]. However, the true nature of the quan-
tum phase has remained unresolved.

Recent large-scale DMRG study of the J
1

-J
2

square lattice
model[37] proposed a gapped Z

2

SL for 0.41  J
2

 0.62
by establishing the absence of the magnetic and dimer orders,
by finding nonzero singlet and triplet gaps, and by measuring
a positive topological entanglement entropy term close to the
value � = ln 2 expected for a Z

2

SL[43, 44]. Very recent
VMC work[41] with two steps of Lanczos improvement pro-
posed a gapless Z

2

SL for 0.45 . J
2

. 0.6 with competitive

Order-parameter extrapolations indicate
disordered phase, but extrapolations are
no reliable close to a critical point
- most likely dqc point as in J-Q

DMRG results should be compared in detail with J-Q QMC

arXiv:1311.5962v1
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Plaquette ordered phase and quantum phase diagram in
the S=1/2 J2-J1 square Heisenberg model

... New version of the paper [PRL 113, 027201 (2014)]

“The critical exponents obtained from the finite-size spin and dimer 
correlations could be compatible with the deconfined criticality”

Conclusion from studies of J-Q and frustrated square lattice
- the J-Q model can mimic the behavior of (some) frustrated systems!
- many more insights into deconfined criticality and VBS states obtained
  by large-scale QMC studies of J-Q models
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