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Integer quantum Hall effect

4

Pue ()

L andau levels

Benoit Estienne (LPTHE) Matrix Product State for FQHS Benasque 08/2014 2/32



Classical Hall effect

Hall effect : a 2D electron gas in
a perpendicular magnetic field.

= current | voltage
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Integer Quantum Hall effect (IQHE)
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IQHE : von Kilitzing (1980)

Quantized Hall conductance
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v is an integer up to O(107°)
Used in metrology
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Setup of the quantum Hall effect

Particles (fermions or bosons) confined in 2D, in a strong perpendicular
magnetic field, and low temperature
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@ Integer QHE : essentially a one-body problem

@ Fractional QHE : strongly correlated quantum system

Benoit Estienne (LPTHE) Matrix Product State for FQHS Benasque 08/2014

4/32



Landau levels on the plane
Two scales for the one-body problem :

_ |9B] | h
energy scale we=—, length scale /g =4/ —
m 9B
Hamiltonian in the plane N2
1 N hw,
H = hwe, (aTa + §> N hw,

Discrete spectrum, huge degeneracy

Lowest Landau level (LLL) wavefunctions
V,(z,z) = 2" e=72/43 n=0,1,---,00

= chirality : (x,y) —» z=(x+1iy)
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Magnetic translations and dimensional reduction

o Landau levels are degenerate, due to translation
invariance

@ translations do not commute!!!!
B —Y
2 %

Magnetic translations R; = eiaiAgiiV
Aharonov-Bohm effect : v
.ﬁ_, -
RiRy = €' " """ RyR; ._____a,_...-r

What is the meaning of the magnetic length ?

\ SO = =
‘X SIS S
‘i‘:‘::"i‘:‘:‘:‘\\‘:‘.\“‘“

“

in symmetric gauge A=

Projection to the LLL : x and y no longer commute [&, 9] = i /2

oxoy, >13/2  and  x~ I3k,
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LLL Wavefunctions on the cylinder (/g = 1)

; (x=k)? 2
Vo(x,y) =eY e 2 | k="2""

o

o

-«
@ the orbital with angular momentum

k= 2LL” is localized at x = k
@ the interorbital distance is 27/L L
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The IQHE : gapped bulk

Filling a Landau level is like a band insulator.

Energy

n=2

2nd band : ‘BulkGap

—_ x, ky,

= Bulk insulator.
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The IQHE : conducting edges

= Conducting edges

E .
S each channel contributes
Edge modes e?/h to the Hall conductance
2
Ep _ UXY:;F
TS ... 7T Tr Bulkgap™ =~~~ -
2nd band l .
%esscsesss o’ Chiral (and therefore
protected) massless edges
Ileﬂ edge right edge I

Topological insulator

This quantization is insensitive to disorder or strong periodic potential :

topological invariant : the Chern number
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Fractional filling

the many-body problem

/j// -

1
30

MAGNETIC FIELD (Tesla)

FQHE trial wavefunctions
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Fractional filling : N particles in Ny orbital /states

N body wavefunctions in the LLL : (anti)symmetric polynomials
filling fraction v = N/Ng < 1 = huge degeneracy (no gap!) J

Electrons interactions
@ Interactions can lift the degeneracy =
incompressible/gapped state
@ What are the low energy properties ?
Gapped bulk,
Massless edge

10 20
MAGNETIC FIELD (Tesla)

Strongly correlated systems, emergence of exotic phases :
fractional charges, non-abelian braiding.
What can we do ? Exact diagonalization, effective field theories,
trial wavefunctions

Benoit Estienne (LPTHE) Matrix Product State for FQHS Benasque 08/2014 11 /32




The Laughlin state

Let's consider N particles in the LLL, at positions {z;,- -, zy}.
e v =1 (filled band) :

1 1 1
7 2 zy
=1l -2)
i<j
N—-1 N—-1 -1
Z]. Z2 ZN

e v = 1/3 Laughlin ground-state :

Vi(z1,-zn) = [[(zi = z)?
i<j
Unique ground state of a model interaction (short range part of Coulomb).

— extremely high overlap with exact diagonalization!
— predicts excitations with fractional charge ¢/3.
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The Laughlin wave function :
Excitations with fractional charge % and fractional statistics

Bulk excitations

Add one flux quantum at wy = one
quasi-hole

\Uqh = H (WO — Z,') \UL(Zl, ...ZN)
i

e For given number of particles
and flux quanta, there is a
specific number of gh states

@ These numbers are a fingerprint
of the phase (related to the
statistics of the excitations).

Benoit Estienne (LPTHE)

excitations

@E=0

@ A chiral U(1) boson

Edge excitations

(b)E=1

(dE=2

(©E=1

(e)E=2

linear dispersion relation

@ The degeneracy of each energy
level is given by the sequence
171727375777"'
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Entanglement

Example : system made of two spins 1/2
A | B — v : ; —
‘ p = |V) (V|, reduced density matrix pa = Trgp

Entanglement spectrum : £ = —log()\) (A
eigenvalues of pa) as a function of S,

) 5 (11) + 141) LD+ /3 1)

The counting (i.e the number of non zero eigenvalue) also provides
informations about the entanglement
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Entanglement entropy and spectrum

e Divide your system into two parts A and B (cut of length L)

@ Compute the reduced density matrix or the Schmidt decomposition
W) =2 qexp(—6a/2) |A @) @B, )

e Entanglement entropy (Kitaev and Preskill 2005)

Sa=—Tr(palogpa) =al —~vy+---

OES Laughlin N=12, No=6 on a disk

Entanglement spectrum

Li and Haldane (2008) :

spectrum of £ = —log pa

(plot & vs momentum) p

Benoit Estienne (LPTHE) Matrix Product State for FQHS Benasque 08/2014 15 / 32



Conformal field theories (CFT)

Benoit Estienne (LPTHE) Matrix Product State for FQHS Benasque 08/2014 16 / 32



(2d) Conformal field theory : massless field theory (scale invariant)

@ massless quantum systems in 1 + 1 dimensions
(for instance a QH edge)

@ critical phenomena in 2 dimensions

The free boson

S= /dzz&p&p

The free fermion

S = / d’z (VOV + Wow)

Conformal symmetry = classification of possible 2d CFTs
CFTs are exactly solvable!
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The free boson a.k.a. U(1) CFT

The mode decomposition of the chiral free boson is

p(z) = po — iag log(z +/Z a,z”", with [an, am] = Mdnimpo
n7£0

Primary states/ vacua |Q) are defined by their U(1) charge Q

2/Q) = Q|Q),  axQ) =0 for n>0

The Hilbert space is simply a Fock space

Descendants are obtained with the lowering operators a}L, =a_, n>0

Q) =[[a-uwl@:  2lQ, 1) = QIQ, 1)

Withu12u22"'zun>0

v
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Topological phases

A system is in a topological phase if, at low energy, all observables are
invariant under smooth deformation of the underlying space-time manifold,
i.e. when its low energy effective field theory is a TQFT (with a gap).

@ Ground state degeneracy depends on the genus

o8

e Excitations (" quasi-holes”) with fractional charges, possibly
non-abelian anyons (non trivial action of the braid group)

a7 il Link between 2+1 TQFT and 1+ 1 CFT
v . \ . Quasi-hole wavefunctions are conformal blocks.
2 5 \

@ degeneracy = number of conformal blocks
@ braiding = monodromies
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FQH trial wave-function from CFT

Moore and Read (1990) proposed to write
FQH Trial wavefunctions as CFT correlators

V(z1, - zy) = (ulV(z1) - V(zn)|v)

e Operators or fields V(z) =) z"V,

e Infinite dimensional Hilbert space (graded by
momentum/conformal dimension)

n

Why is this ansatz sensible ?
@ correct entanglement behavior (area law and counting)
@ yields a consistent TQFT (pentagon and hexagon equations)

@ Laughlin state is of this form
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Laughlin state = free boson

[[@—2) = OV(z) - V(z)lo),  V(z)=: V3.

i<j

= (0|V(z1)- (Da a|) V(an)[0) = wivE

States per momentum sector :
1:1Q)
e 1:a1|Q)
°2:a2,]Q) a2(Q)
@ 3:2%,1Q), a2a1|Q), a_3|Q)
). a
)

OES Laughlin N=12, N5=6 on a disk

@ 5:2a*1Q), a_22%,|Q), 3%, |Q),
8738—1|Q, |Q>

07 Toee .
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Excitations of the Laughlin state

Bulk excitations

Wavefunction for p quasiholes

(Van(wi) -+ Van(wp)V(21) - - - V(2w))

@ For the Laughlin state

Vah(w) =: exp <\%¢(W)) :

@ we recover

1
H ( Wa— Wb) 3 H( Wa_Zi)\Uground—state

a<b a,i

Edge excitations

Yy, = (u[V(z1)--- V(2n)[0)

@ edge mode = CFT descendant

e for instance |u) = a_,|0) gives

v, = (Z Z,n> llIground—state
i

@ we recover 1,1,2,3,5,7,---
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Beyond Laughlin (for bosons)

e U(1) Laughlin state V(z) =: Ve
ground state — H - Z_/

i<j

e SU(2), Moore-Read state V(z) = V(2)® : e?(3)

e

1<J

wground-state =Pf <
Zi— %

e SU(2) Read-Rezayi state

V(z) = Jt(2) = Vi(2)® : e/ VH/Re2)
What about quasi-hole operators ?
Van(w) = o1(w) ® e’V 1/2ke(w) .= non-Abelian anyons
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Generic structure of the CFT Hilbert space
L, (modes of the stress-energy tensor) obey the Virasoro algebra

[Lny L] = (n— m)Lpym + E”( n’ 1)5n+m,0

Primary fields |A) are annihilated by the positive modes

Lo|A) = A|A), LJA)=0 n>0

Descendant states : lowering operators Lf, =L, n>0

|Aa >‘> = L—>\1 L—Az t L—An|A>

Two issues :
@ these states are not orthogonal
@ they might not even be independant!

= No closed formula, has to be implemented numerically.
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Matrix Product State (MPS)
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Limitations of exact diagonalizations and trial wf

— decomposition of a state |W) on a convenient occupation basis

|\U> = Z C{m,-} |m1, ceey mN¢>
{m;}

12345678

\ ===

What is the amount of memory needed to store the Laughlin state?

1e+10

1e+08

1e+06

10000 |-

100 f

Amount of memory (Mbytes)

1
10 12 14 16 18 20 22

Number of particles

The most powerful computer
in the world can't store more
than 21 particles!

Matrix Product State : more compact and computationally friendly
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Matrix Product States

Any state (W) =3 ¢ 1 C(m} Mo, .., M) can be written as

W) = Z ((u‘ Blml. .. glmn,,] ’v>) [my,...,mpn,,)
{mi}
m
_$_4£_i$_i_é_$_$_£_l_ y
B /'
m|

The BLﬁ matrices have two types of indices

12345678

@ [m] is the physical index : occupied (m = 1) or empty (m = 0) orbital
o (a,[3) are the bond indices (auxiliary space)
e Bond dimension y (dimension of the auxiliary space)

Area law = efficient MPS (x ~ expal)
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Matrix Product State for FQH trial wave-function
V(z1, -, 2zp) = (u|V(z1) - V(2p)|v) is a MPS in disguise !

Dubail, Read, Rezayi (2012)

W) =" ((ul B™B™ - B™ |v)) [my - my)
{m;}

Zaletel, Mong (2012)
y

@ the matrices B™ are operators in the underlying CFT

o the auxiliary space is the (infinite dimensional) CFT Hilbert space ...

@ ... which can be truncated with arbitrary large precision

Why is this formalism interesting ?
Many quantities (correlation functions, entanglement spectrum, ...) can
be computed in the (relatively small) auxiliary space.
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Where does this MPS structure
come from?
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Start with a trial wavefunction given by a CFT correlator

\U(Z]_, 0oo 7ZN) =] <U| V(Z]_) 000 V(ZN)’V) = Z C(m1,'“,mn) ’mla o 7mn>
m,-:O,l

with electron operator V(z) in some chiral 1 +1 CFT .

@ Insert a complete basis of states

Y. {ulV(@)law) (| V(z)|az) - - (an-1]V(zn)|v)

a1, 0N —1

e Project to |my,- -+, m,)
One gets an infinite MPS (on any genus 0 geometry)
Clm, i) = {1 B LIB™[2] -+ B™[]|) J

Site/orbital dependent matrices :
(|B°[ler) = da s (|B iller) < 0a  p0t e [V (1))
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Translation invariant MPS on the cylinder

Uniform background charge = site independant MPS

BO _ e—ﬁwo, Bl — VO e—ﬁwo

where
@ (g is the bosonic zero mode (By shifts the electric charge by 1/q)

@ V{ is the matrix of the electron operator

(o/IVola) = da,, an+n(/|V(1)])

What is required for a numerical implementation ?
@ build the basis |«) (auxiliary space) + truncation scheme

@ compute the matrix elements (o/|B™|«)
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Summary

FQHE : hard many-body problem
/ N\

Exact diagonalization Trial wavefunctions
effective TQFTs

!
2d Conformal Field Theories

!

Matrix Product States
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