Fractional Quantum Hall States : From trial wavefunctions to Matrix Product States

Benoit Estienne

LPTHE Université Pierre et Marie Curie, CNRS Paris

Numerical and analytical methods for strongly correlated systems

Benasque 08/2014

Integer quantum Hall effect

Classical Hall effect

Hall effect : a 2D electron gas in a perpendicular magnetic field.

 \Rightarrow current \perp voltage $R_{xy} \propto B$

Integer Quantum Hall effect (IQHE)

IQHE : von Klitzing (1980) Quantized Hall conductance $\sigma_{xy} = \nu \frac{e^2}{h}$ $\nu \text{ is an integer up to } O(10^{-9})$ Used in metrology

Setup of the quantum Hall effect

Particles (fermions or bosons) confined in 2D, in a strong perpendicular magnetic field, and low temperature

$$H = \frac{1}{2m} \sum_{i} \left(\vec{p}_i - q\vec{A} \right)^2 + \sum_{i < j} V(\vec{x}_i - \vec{x}_j)$$

- Integer QHE : essentially a one-body problem
- Fractional QHE : strongly correlated quantum system

Landau levels on the plane

Two scales for the one-body problem :

energy scale
$$\omega_c = \frac{|qB|}{m}$$
, length scale $I_B = \sqrt{\frac{\bar{h}}{|qB|}}$

Hamiltonian in the plane

$$H=\hbar\omega_{c}\left(a^{\dagger}a+rac{1}{2}
ight)$$

Discrete spectrum, huge degeneracy

Lowest Landau level (LLL) wavefunctions

$$\Psi_n(z,\bar{z}) = z^n e^{-z\bar{z}/4l_B^2} \qquad n = 0, 1, \cdots, \infty$$

$$\Rightarrow$$
 chirality : $(x, y) \rightarrow z = (x + iy)$

Benoit Estienne (LPTHE)

Magnetic translations and dimensional reduction

- Landau levels are degenerate, due to translation invariance
- translations do not commute!!!! in symmetric gauge $\vec{A} = \frac{B}{2} \begin{pmatrix} -y \\ x \end{pmatrix}$

Aharonov-Bohm effect :

$$R_{\vec{u}}R_{\vec{v}} = e^{i\frac{qB}{h}\vec{u}\wedge\vec{v}}R_{\vec{v}}R_{\vec{u}}$$

What is the meaning of the magnetic length?

Projection to the LLL : x and y no longer commute $[\hat{x}, \hat{y}] = i l_B^2$

$$\sigma_x \, \sigma_y \geq l_B^2/2 \qquad \text{and} \qquad x \sim l_B^2 k_y$$

Benoit Estienne (LPTHE)

Matrix Product State for FQHS

LLL Wavefunctions on the cylinder $(I_B = 1)$ $\Psi_n(x, y) = e^{iyk}e^{-\frac{(x-k)^2}{2}}, \qquad k = \frac{2\pi n}{L}$

• the orbital with angular momentum $k = \frac{2\pi n}{L}$ is localized at x = k

• the interorbital distance is $2\pi/L$

<u>2</u>π L

The IQHE : gapped bulk

Filling a Landau level is like a band insulator.

The IQHE : conducting edges

Topological insulator

This quantization is insensitive to disorder or strong periodic potential :

topological invariant : the Chern number

Benoit Estienne (LPTHE)

Matrix Product State for FQHS

FQHE trial wavefunctions

Fractional filling : N particles in N_{Φ} orbital/states

N body wavefunctions in the LLL : (anti)symmetric polynomials filling fraction $\nu = N/N_{\phi} < 1 \Rightarrow$ huge degeneracy (**no gap**!)

Electrons interactions

- Interactions can lift the degeneracy \Rightarrow incompressible/gapped state
- What are the low energy properties? Gapped bulk, Massless edge

Strongly correlated systems, emergence of exotic phases : fractional charges, non-abelian braiding. What can we do? Exact diagonalization, effective field theories, trial wavefunctions

The Laughlin state

Let's consider N particles in the LLL, at positions $\{z_1, \dots, z_N\}$.

• $\nu = 1$ (filled band) :

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ z_1 & z_2 & & z_N \\ \vdots & & \ddots & \\ z_1^{N-1} & z_2^{N-1} & & z_N^{N-1} \end{vmatrix} = \prod_{i < j} (z_i - z_j)$$

• $\nu = 1/3$ Laughlin ground-state :

$$\Psi_L(z_1,\cdots,z_N)=\prod_{i< j}(z_i-z_j)^3$$

Unique ground state of a model interaction (short range part of Coulomb).

\rightarrow extremely high overlap with exact diagonalization ! \rightarrow predicts excitations with fractional charge e/3.

Benoit Estienne (LPTHE)

Matrix Product State for FQHS

The Laughlin wave function : excitations Excitations with fractional charge $\frac{+e}{3}$ and fractional statistics

Bulk excitations

Add one flux quantum at w_0 = one quasi-hole

$$\Psi_{qh} = \prod_{i} (w_0 - z_i) \quad \Psi_L(z_1, ... z_N)$$

- For given number of particles and flux quanta, there is a specific number of qh states
- These numbers are a fingerprint of the phase (related to the statistics of the excitations).

Edge excitations

- A chiral *U*(1) boson linear dispersion relation
- The degeneracy of each energy level is given by the sequence 1, 1, 2, 3, 5, 7, · · ·

Entanglement

Example : system made of two spins 1/2

The counting (i.e the number of non zero eigenvalue) also provides informations about the entanglement

Entanglement entropy and spectrum

- Divide your system into two parts A and B (cut of length L)
- Compute the reduced density matrix or the Schmidt decomposition $|\Psi\rangle = \sum_{\alpha} \exp(-\xi_{\alpha}/2) |A, \alpha\rangle \otimes |B, \alpha\rangle$
- Entanglement entropy (Kitaev and Preskill 2005)

$$S_A = -\operatorname{Tr}(\rho_A \log \rho_A) = \alpha L - \gamma + \cdots$$

Conformal field theories (CFT)

(2d) Conformal field theory : massless field theory (scale invariant)

- massless quantum systems in 1 + 1 dimensions (for instance a QH edge)
- critical phenomena in 2 dimensions

The free boson

$$S = \int \mathrm{d}^2 z \, \partial \varphi \bar{\partial} \varphi$$

The free fermion

$$S = \int \mathrm{d}^2 z \, \left(\Psi \bar{\partial} \Psi + \bar{\Psi} \partial \bar{\Psi}
ight)$$

Conformal symmetry \Rightarrow classification of possible 2*d* CFTs CFTs are exactly solvable!

Benoit Estienne (LPTHE)

Matrix Product State for FQHS

Benasque 08/2014 17 / 32

The free boson a.k.a. U(1) CFT

The mode decomposition of the chiral free boson is

$$\varphi(z) = \varphi_0 - ia_0 \log(z) + i \sum_{n \neq 0} \frac{1}{n} a_n z^{-n}, \quad \text{with} \quad [a_n, a_m] = n \delta_{n+m,0}$$

Primary states/ vacua $|Q\rangle$ are defined by their U(1) charge Q

$$|a_0|Q
angle=Q|Q
angle, \qquad a_n|Q
angle=0 ext{ for } n>0$$

The Hilbert space is simply a Fock space

Descendants are obtained with the lowering operators $a_n^{\dagger} = a_{-n}$, n > 0

$$|Q,\mu
angle = \prod_{i=1}^{n} a_{-\mu_i} |Q
angle, \qquad a_0 |Q,\mu
angle = Q |Q,\mu
angle$$

with $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n > 0$

Topological phases

A system is in a topological phase if, at low energy, all observables are invariant under smooth deformation of the underlying space-time manifold, i.e. when its low energy effective field theory is a TQFT (with a gap).

• Ground state degeneracy depends on the genus

• Excitations ("quasi-holes") with fractional charges, possibly non-abelian anyons (non trivial action of the braid group)

Link between 2 + 1 TQFT and 1 + 1 CFT Quasi-hole wavefunctions are conformal blocks. • degeneracy = number of conformal blocks

• braiding = monodromies

FQH trial wave-function from CFT

Moore and Read (1990) proposed to write FQH Trial wavefunctions as CFT correlators

 $\Psi(z_1,\cdots,z_N)=\langle u|V(z_1)\cdots V(z_N)|v\rangle$

• Operators or fields $V(z) = \sum_n z^n V_n$

Infinite dimensional Hilbert space (graded by momentum/conformal dimension)

Why is this ansatz sensible?

- correct entanglement behavior (area law and counting)
- yields a consistent TQFT (pentagon and hexagon equations)
- Laughlin state is of this form

Laughlin state = free boson

$$\prod_{i< j} (z_i - z_j)^3 = \langle 0 | V(z_1) \cdots V(z_N) | 0 \rangle, \qquad V(z) =: e^{i\sqrt{3}\varphi(z)}:$$

$$\Psi = \langle 0 | V(z_1) \cdots \left(\sum_{\alpha} | \alpha \rangle \langle \alpha | \right) \cdots V(z_N) | 0 \rangle = \sum_{\alpha} \Psi_{\alpha}^{A} \Psi_{\alpha}^{B}$$

States per momentum sector :

• 1 : |*Q*>

• 7 · · · ·

- 1 : $a_{-1} | Q \rangle$
- 2 : $a_{-1}^2 |Q\rangle$, $a_{-2} |Q\rangle$
- 3 : $a_{-1}^3 |Q\rangle$, $a_{-2}a_{-1}|Q\rangle$, $a_{-3}|Q\rangle$
- 5: $a_{-1}^4 |Q\rangle$, $a_{-2}a_{-1}^2 |Q\rangle$, $a_{-2}^2 |Q\rangle$, $a_{-3}a_{-1} |Q\rangle$, $a_{-4} |Q\rangle$

Excitations of the Laughlin state

Bulk excitations

Wavefunction for p quasiholes

 $\langle V_{\mathsf{qh}}(w_1) \cdots V_{\mathsf{qh}}(w_p) V(z_1) \cdots V(z_N) \rangle$

• For the Laughlin state

$$V_{\mathsf{qh}}(w) =: \exp\left(\frac{i}{\sqrt{3}}\varphi(w)\right):$$

we recover

$$\prod_{a < b} (w_a - w_b)^{\frac{1}{3}} \prod_{a,i} (w_a - z_i) \Psi_{\text{ground-state}}$$

Edge excitations

$$\Psi_{\boldsymbol{u}} = \langle \boldsymbol{u} | V(z_1) \cdots V(z_N) | 0 \rangle$$

- edge mode = CFT descendant
- for instance $|u
 angle=a_{-n}|0
 angle$ gives

$$\Psi_{u} = \left(\sum_{i} z_{i}^{n}\right) \Psi_{\text{ground-state}}$$

• we recover
$$1, 1, 2, 3, 5, 7, \cdots$$

Beyond Laughlin (for bosons)

• U(1) <u>Laughlin state</u> $V(z) =: e^{i\sqrt{r}\varphi(z)}:$ $\Psi_{\text{ground-state}} = \prod_{i < j} (z_i - z_j)^r$ • $SU(2)_2$ <u>Moore-Read state</u> $V(z) = \Psi(z) \otimes : e^{i\varphi(z)}:$ $\Psi_{\text{ground-state}} = Pf\left(\frac{1}{z_i - z_j}\right) \prod_{i < j} (z_i - z_j)$

• $SU(2)_k$ Read-Rezayi state

$$V(z) = J^+(z) = \Psi_1(z) \otimes : e^{i\sqrt{2/k}\varphi(z)} :$$

What about quasi-hole operators?

$$V_{qh}(w) = \sigma_1(w) \otimes e^{i\sqrt{1/2k}arphi(w)} :\Rightarrow$$
 non-Abelian anyons

Generic structure of the CFT Hilbert space

 L_n (modes of the stress-energy tensor) obey the Virasoro algebra

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2-1)\delta_{n+m,0}$$

Primary fields $|\Delta\rangle$ are annihilated by the positive modes

$$L_0|\Delta\rangle = \Delta |\Delta\rangle, \qquad \qquad L_n|\Delta\rangle = 0 \qquad n > 0$$

Descendant states : lowering operators $L_n^{\dagger} = L_{-n}$, n > 0

$$|\Delta,\lambda\rangle = L_{-\lambda_1}L_{-\lambda_2}\cdots L_{-\lambda_n}|\Delta\rangle$$

Two issues :

- these states are not orthogonal
- they might not even be independant !

\Rightarrow No closed formula, has to be implemented numerically.

Benoit Estienne (LPTHE)

Matrix Product State for FQHS

Matrix Product State (MPS)

Limitations of exact diagonalizations and trial wf

 \rightarrow decomposition of a state $|\Psi\rangle$ on a convenient occupation basis

$$\left|\Psi
ight
angle = \sum_{\left\{m_{i}
ight\}}c_{\left\{m_{i}
ight\}}\left|m_{1},...,m_{N_{\Phi}}
ight
angle$$

What is the amount of memory needed to store the Laughlin state?

The most powerful computer in the world can't store more than 21 particles !

Matrix Product State : more compact and computationally friendly

Matrix Product States

The $B_{\alpha,\beta}^{[m]}$ matrices have two types of indices

- [m] is the physical index : occupied (m = 1) or empty (m = 0) orbital
- (α, β) are the bond indices (auxiliary space)
- Bond dimension χ (dimension of the auxiliary space)

Area law \Rightarrow efficient MPS ($\chi \sim \exp \alpha L$)

Matrix Product State for FQH trial wave-function $\Psi(z_1, \dots, z_n) = \langle u | V(z_1) \dots V(z_n) | v \rangle$ is a MPS in disguise!

Dubail, Read, Rezayi (2012)

$$|\Psi\rangle = \sum_{\{m_i\}} \left(\langle u | B^{m_1} B^{m_2} \cdots B^{m_n} | v \rangle \right) | m_1 \cdots m_n \rangle$$

Zaletel, Mong (2012)

- the matrices B^m are operators in the underlying CFT
- the auxiliary space is the (infinite dimensional) CFT Hilbert space ...
- ... which can be truncated with arbitrary large precision

Why is this formalism interesting?

Many quantities (correlation functions, entanglement spectrum, ...) can be computed in the (relatively small) auxiliary space.

Benoit Estienne (LPTHE)

Matrix Product State for FQHS

Where does this MPS structure come from ?

Start with a trial wavefunction given by a CFT correlator

$$\Psi(z_1,\cdots,z_N)=\langle u|V(z_1)\cdots V(z_N)|v\rangle=\sum_{m_i=0,1}c_{(m_1,\cdots,m_n)}|m_1,\cdots,m_n\rangle$$

with electron operator V(z) in some chiral 1+1 CFT .

• Insert a complete basis of states

$$\sum_{\alpha_1,\cdots,\alpha_{N-1}} \langle u|V(z_1)|\alpha_1\rangle \langle \alpha_1|V(z_2)|\alpha_2\rangle \cdots \langle \alpha_{N-1}|V(z_N)|v\rangle$$

• Project to $|m_1, \cdots, m_n
angle$

One gets an infinite MPS (on any genus 0 geometry)

$$c_{(m_1,\cdots,m_n)} = \langle u | B^{m_1}[1] B^{m_2}[2] \cdots B^{m_n}[n] | v \rangle$$

Site/orbital dependent matrices :

$$\langle \alpha' | B^{0}[j] | \alpha \rangle = \delta_{\alpha',\alpha}, \qquad \langle \alpha' | B^{1}[j] | \alpha \rangle \propto \delta_{\Delta_{\alpha'},\Delta_{\alpha}+h+j} \langle \alpha' | V(1) | \alpha \rangle$$

Translation invariant MPS on the cylinder

Uniform background charge \Rightarrow site independant MPS

$$B^0=e^{-rac{i}{\sqrt{q}}arphi_0},\qquad B^1=V_0\,e^{-rac{i}{\sqrt{q}}arphi_0}$$

where

- φ_0 is the bosonic zero mode (B_0 shifts the electric charge by 1/q)
- V₀ is the matrix of the electron operator

$$\langle lpha' | V_0 | lpha
angle = \delta_{\Delta_{lpha'}, \Delta_{lpha} + h} \langle lpha' | V(1) | lpha
angle$$

What is required for a numerical implementation?

- build the basis |lpha
 angle (auxiliary space) + truncation scheme
- compute the matrix elements $\langle lpha' | B^m | lpha
 angle$

Summary

