Participation Entropies and Spectroscopy for Quantum Spin Models

David Luitz, Fabien Alet and <u>Nicolas Laflorencie</u> CNRS - LPT Toulouse

This Talk

Shannon-Rényi (participation) entropies for quantum many-body systems

Participation spectra An alternative route for entanglement Hamiltonian and spectra

*<u>References</u>

D.J Luitz, F. Alet, NL, <u>Phys. Rev. Lett. 112, 057203 (2014)</u> D.J Luitz, F. Alet, NL, <u>Phys. Rev. B. 89, 165106 (2014)</u> D.J Luitz, NL, F. Alet, <u>JSTAT P08007 (2014)</u>

Shannon-Rényi (Participation) entropies

Expand a given state in a computational local basis

$$|\text{GS}\rangle = \sum_{i=1}^{\mathcal{N}} a_i |i\rangle$$
 Define $p_i = |a_i|^2$, $\sum_i p_i = 1$

$$S_q = \frac{1}{1-q} \ln \sum_{i} p_i^q \qquad S_1 = -\sum_{i} p_i \ln p_i$$

Simple expectations

$$p_i \propto \exp(-i/\xi) \Rightarrow S_q \approx \ln \xi$$
 localized
 $p_i \propto 1/\mathcal{N} \Rightarrow S_q \approx \ln \mathcal{N}$ delocalized

<u>Multifractality</u> $S_q = D_q \ln \mathcal{N}$ with $D_q < 1$

Quantum Monte Carlo sampling

- Importance sampling actually does the exact job !
- Probability of seeing configuration |i
 angle in Monte Carlo

• Replica trick for integer $q \ge 2$: Simulate q independent copies

- S_∞ is easily measured as $S_\infty = -\ln(p_{\max})$
- Measure Histogram $H(|i\rangle)$ and normalize to obtain all p_i and therefore all S_q

- Y. Atas and E. Bogomolny, Phys. Rev. E 86, 021104 (2012)
- J. Rodríguez-Laguna, P. Migdal, M. Ibáñez Berganza, M. Lewenstein, G. Sierra, <u>New J. Phys. 14, 053028 (2012)</u>

J.M Stephan, S. Furukawa, G. Misguich, V. Pasquier, <u>Phys. Rev. B 80, 184421 (2009)</u>

Universality in a single coefficient of the wave function ***** Quantum antiferromagnet $|\mathrm{GS}\rangle = a_{\mathrm{max}} \left(|\uparrow\downarrow\uparrow\cdots\downarrow\rangle + \mathrm{e}^{i\theta} |\downarrow\uparrow\downarrow\cdots\uparrow\rangle \right)$ $+a'_{\max}\left(|\uparrow\downarrow\downarrow\uparrow\uparrow\downarrow\uparrow\cdots\downarrow\rangle+\cdots\right)$ (id) u b | 14 Probability spectrum $\zeta_i =$ 0 7 9 8 0 7 $S_{\infty} = -\ln p_{\max}$ LL parameter 1 8.0 9.0 9.0 .2 $b_{\infty} = -\frac{1}{2}\ln K_{\rm LL}$ 3 0 rung coupling 2 10 20 30 50 60 40 System size N

A quite new field

Editors' Suggestion Shannon and entanglement entropies	of one- and two-	dimensional critical wave functions
Jean-Marie Stéphan, Shunsuke Furukawa, Grégoire Misguich, and Vincent Pasquier		Phase transition in the Rényi-Shannon entropy of Luttinger liquids Phys. Rev. B 84 , 195128 – Published 28 November 2011 Jean-Marie Stéphan, Grégoire Misguich, and Vincent Pasquier
Logarithmic Terms in Entanglement Entropies of Spin Chains Phys. Rev. Lett. 107 , 020402 – Published 5 July 201 Michael P. Zaletel, Jens H. Bardarson, and Joel E. Moore	Entropies of 2D Multifra Phys. Rev. Y. Y. Atas ar	Quantum Critical Points and Shannon ctality of eigenfunctions in spin chains E 86, 021104 – Published 3 August 2012 ad E. Bogomolny
Universal Behavior of the Shannon Mutual Inf Phys. Rev. Lett. 111 , 017201 – Published 2 July 2013 F. C. Alcaraz and M. A. Rajabpour Phy Davi		mation of Critical Quantum Chains ersal Behavior beyond Multifractality in Quantum Many-Body Systems ev. Lett. 112 , 057203 – Published 6 February 2014 Luitz, Fabien Alet, and Nicolas Laflorencie
Shannon-Rényi entropies and participa criticality Phys. Rev. B 89, 165106 – Published 7 April 2014 David J. Luitz, Fabien Alet, and Nicolas Laflorencie	ation spectra acro Editors' Suggestion Shannon and Rény Phys. Rev. B 90 , 045424 – P ean-Marie Stéphan	ss three-dimensional <i>O</i> (3) i mutual information in quantum critical spin chains
Universal behavior of the Shannon Phys. Rev. B 90 , 075132 – Published 19 August 2014 F. C. Alcaraz and M. A. Rajabpour	and Rényi mutua	al information of quantum critical chains

Full Participation Spectrum

* Spectral gap finite

$$\mathcal{G} = -\ln\left(\left[\frac{2E_{\rm gs}}{N_{\rm bonds}} + \frac{\Delta}{2}\right]^2\right)$$

$$= -\ln\left(\left[\frac{2(E_{\rm gs} - E_{\rm classical})}{N_{\rm bonds}}\right]^2\right)$$

Subsystems

ID subsystem in 2D dimerized S=1/2 Heisenberg model

Universal constant at the O(3) critical point

* <u>2D Quantum critical point</u>

***** <u>3D Classical transition at finite T</u>

Participation Spectra of subsystems

***** <u>Reduced density matrix</u>

$$\hat{\rho}_{\rm B} = \mathrm{Tr}_{\rm A} |\mathrm{GS}\rangle \langle \mathrm{GS}| = \exp(-\beta_{\rm eff} \mathcal{H}_E)$$

 $(-\ln \hat{\rho}_{\rm B}) \longrightarrow$ Entanglement Spectrum $\hat{\mathcal{H}}_E =$ Entanglement Hamiltonian

Very hard to compute in general cases

***** <u>Participation spectrum = diagonal of the RDM</u>

 $\epsilon_i^B = -\ln\left(\langle i|\hat{\rho}_B|i\rangle\right) ~ \begin{array}{l} \text{Accessible using QMC in a given} \\ \text{computational basis (e.g. {Sz})} \end{array}$

If \mathcal{H}_E is the correct Entanglement Hamiltonian and β_{eff} the correct effective temperature, then

$$\epsilon_{i}^{E} = -\ln\left(\langle i | \exp(-\beta_{\text{eff}} \hat{\mathcal{H}}_{E}) | i \rangle\right) = \epsilon_{i}^{B} \forall i, \text{ (i.e. 2^{N} numbers!)}$$

How much two spectra are close ?

Kulback-Leibler and <u>Rényi divergences</u>

***** Example for a gapped phase

How much two spectra are close ?

Kulback-Leibler and <u>Rényi divergences</u>

$$I_1(Q|P) = \sum_i Q_i \ln \frac{Q_i}{P_i}$$
$$I_q(Q|P) = \frac{1}{1-q} \ln \left(\sum_i \frac{Q_i^q}{P_i^{q-1}}\right)$$

Example for a gapped phase

$$\mathcal{H}_E = \sum_{i \in B} \vec{S}_i \cdot \vec{S}_{i+1}, \quad \text{and} \quad T_{\text{eff}} = \frac{1}{2J_2}$$

$$Entanglement \text{ Hamiltonian}$$

$$LADDERS: \text{ Poilblanc et al. 2012-2012, Lauchli and Schliemann}$$

$$(2012), \text{ Chen and Fradkin (2013)...}$$

Good agreement but can be improved

Across the gapped regime $Gapped_{(ij-1)} \xrightarrow{\text{Gapped} N \stackrel{\text{Neel}}{\longrightarrow}} J_2/J_1$

Effective parameters in the gapped regime

Perturbative expansion J2<<1 [Lauchli-Schlieman 2012]

 $\mathcal{H}_E = \vec{S}_i \cdot \vec{S}_{i+1} + \propto (-1)^r (J_2)^r \vec{S}_i \cdot \vec{S}_{i+1+r} + \text{multi} - \text{spin terms}$

restricting to
$$\mathcal{H}_E(\xi) = -\sum_{i,j\in B} (-1)^{r_{ij}} \mathrm{e}^{-\frac{(r_{ij}-1)}{\xi_E}} \vec{S}_i \cdot \vec{S}_j$$

Entanglement Spectrum of the Two-Dimensional Bose-Hubbard Model

Phys. Rev. Lett. 110, 260403 - Published 26 June 2013

Vincenzo Alba, Masudul Haque, and Andreas M. Läuchli

Entanglement spectroscopy of SU(2)-broken phases in two dimensions Phys. Rev. B 88, 144426 – Published 30 October 2013

F. Kolley, S. Depenbrock, I. P. McCulloch, U. Schollwöck, and V. Alba

$$\mathcal{H}_E \sim [\mathcal{H}_T + \mathcal{H}_{sw}]$$

Entanglement spectrum displays «tower of states» structure + spin-wave like spectrum E(k) ~ k

$$\mathcal{H}_E(\Lambda) = \sum_{\substack{i,j \in B \\ i > j}} (-1)^{r_{ij}} \left(\frac{\Lambda}{L} + \frac{1}{r_{ij}^3}\right) \vec{S}_i \cdot \vec{S}_j$$

*Participation spectra of subsystems can be quantitatively compared to spectra of trial Entanglement Hamiltonian at finite T