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Open quantum systems play an important role in quantum optics and condensed-matter physics and to study phenomena like transport
properties, the interplay between Hamiltonian and decoherent dynamics, as well as the formation of topological order induced by dissipation.
In this context we introduce a versatile numerically tool that allows for the simulation of one-dimensional open quantum systems while
ensuring positivity of the operators in every step of the algorithm. At the heart of the construction are matrix product density operators
(MPDO) capturing purifications of mixed states, for which we suggest a stable and efficient scheme of manipulation preserving the form of
the tensors and keeping both bond and Kraus dimensions fixed.

Systems

We want to study open quantum systems for example one-dimensional spin chains
with N spins. Evolution is given by a Lindblad operator

L(ρ) = −i
∑
i

[hi , ρ] +
∑
j

(
LjρL

†
j −

1

2
{L†jLj, ρ}

)
.

with 2-local Hamiltonian terms hi and on-site generators Li .

Locally purified MPO

MPO description of a state1

Locally purified MPO description

Mixed-state ansatz-class with two independent refinement parameters:

Bond-dimension D: Controls correlations

Kraus-dimension K : Controls mixedness

Physical dimension d

Action of local channel can be implemented on the level of local tensors.

⇔

Why worry about positivity?

We can not efficiently test it for a given state!2

Theorem

Even for physical dimension d = 2 to decide whether a given MPO is
positive semidefinite is NP-hard in the system size. For large enough
bond-dimension this even leads to an undecidable problem.

Hence, we keep positivity during the simulation in order to ensure that the result
is again a quantum state.
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Numerical method

Trotterize eτL into layers Ti of mutually commuting strictly local channels3

ρt+τ = eτL[ρt] = TL ◦ · · · ◦ T1[ρt] +O (poly(τ ))

Apply effective evolution to local tensors of locally purified initial state ρ0:
Ensures positivity of ρt for all times. Use DMRG-type algorithm in order to
compress ρt back to trackable bond- and Kraus-dimension after each Trotter step.

Compression scheme

Use SVDs to compress the bond- and Kraus-dimension independently:

Application I: Array of two Photon-Josephson-junctions

Model:

Two cavities, each coupled to a qubit

Cavities coupled via photons

System described by
Jaynes-Cummings-Hubbard model

Decoherence models particle loss in
each sub-system

7 Photon Josepson Junction 51

ωx = ωc = 1.0, J = 1.0, g = 0.48, γ = κ = 0.2236 (7.8)
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Figure 7.2: Populations of the PJJ on each site and in total. In the inlay the fit for eq. (7.7) is fit-
ted with N(0) = 3 and γ as free parameter. The fitted value is γ f it = 0.223081 for the
original input value γ = 0.2236. The system based on figure 7.1 has maximal bond
links of 25 for α and 15 for β -indices. 4000 time steps a 0.01 with measurements
after every ten steps are simulated with second order Trotter.

The total number of excitations in figure 7.2 decays exponential as predicted in equation (7.7).
The fit according to this equation leads to γ f it = 0.223081 with an asymptotic standard error of
0.001883%. The relative error compared to the input value is

ε = 0.24% (7.9)

In conclusion the error of the total number of excitations is about 0.24%.

The density matrix of this system is ρ ∈ C64x64. The time-evolution operator of | ρ〉〉 is then of
dimension 4096x4096. This can still be treated numerically and we can compare the results of
the MPDO with the results gained in the complete Hilbert space. The calculation is evaluated
via the Liouville transformation - equation (4.35) is applied to the master equation including
the hamiltonian - and the superoperator formalism. In figure the maximum relative error con-
sidering the population on each site and the total population is shown. Therefore we consider
the data of figure 7.2 compared to the results of the complete Hilbert space.
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Figure: Simulation with initially three photons in right,

zero photons in left cavity and qubits in groundstate.

(D = 40, K = 20, τ = 0.01, second order Trotter)

Application II: Transport in driven XXY-chain

Model:

Driven XXZ-chain

Decoherence given by Lindblad
generators L1 = σ+, L2 = σ−, which
couple to first or last spin, respectively.

Local magnetization in good
agreement with exact steady-state4
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Figure: Local magnetization of steadystate of driven

XXZ-chain. (D = 60, K = 60, τ = 0.1, 1000 time

steps, second order Trotter)

Outlook

Analyse different models for example Lai-Sutherland-chain

Method does not require translation invariance. Suited to consider disorder

Explore many-body localization in spin-chains

Extend to nearest neighbour Lindblad generators

Test preprocessing schemes of Lindblad before evolution


