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Non-local fermionic models are frequently encountered in physics, most prominently in quantum chemistry, but also when capturing quantum lattice systems. If strong correlations are present in the
system, traditional numerical methods such as HF, CI or CC are very limited. In these cases tensor-network methods provide a way out at the cost of being more expensive. The long-range nature
of the interaction of such systems, however, renders their straightforward numerical simulation using tensor-network methods difficult. When using a DMRG-based method, a suitable reordering of
the orbitals will already reduce the computational effort. Still, one has more freedom to preprocess the Hamiltonian by means of suitable linear maps from one set of fermionic modes to another,
aiming at minimising the entanglement present in the system. Here, we present an adaptive method that aims at combining advantages arising from suitable local mode transformations and
matrix-product updates “on the fly” in an iterative fashion. Our results – both for lattice models and for systems in quantum chemistry – show that by including such local mode transformations
and applying known reordering techniques, one finds good approximations of the ground state already for low bond dimensions and optimizes the entanglement structure present in the ground. In
addition, we are able to recover global mode transformation from the local ones for medium sized systems.

Type of problem and setting

Consider interacting long-range Hamiltonians in second quantised form with finitely many
fermionic modes
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with two-body interactions in terms of fermionic modes (c1, . . . , cn). Such systems can be
strongly correlated and are encountered in

quantum chemistry (open shell systems, bond formation and breaking, intermolecular
forces, transition metal complexes),

lattice systems (interacting lattice models such as Hubbard model).

Challenges

Using the Jordan-Wigner transformation the problem can be mapped to a long-range spin
model with Hilbert space (Cd)⊗n and treated with matrix-product approaches: But long
range nature demands high matrix-product state-bond dimension.

Tensor network algorithms favour local Hamiltonians, but in general we have
long range interactions

How to exploit the entanglement structure?

How to optimise the network?

How to compute expectations efficiently?

Entanglement qualifiers depend strongly on the chosen ordering of sites and the choice of
basis [1, 2, 3]. If Renyi entropies Sα(ρI ), α ∈ (0, 1), of subsystems I ⊂ {1, . . . , n} are
small (“satisfy area laws” [4]), matrix-product states of low bond dimension can be found [5].

“Preprocessing of Hamiltonian” seems desirable (see e.g. [6]), but how?

Idea

Combine the advantages of tensor network methods and suitable mode
transformations

1. Unitary mode transformations can be performed easily on the level of the Hamiltonian
and preserve the operator algebra: But they alter the Renyi entropy qualifiers and
necessary bond dimensions largely.

2. Matrix-product state (MPS) updates capture correlations of the interacting model.

Perform updates iteratively and adaptively, both in the MPS ansatz and in mode trans-
formations.

Consider a matrix-product state with physical dimension d
and maximal bond dimension Dmax = max{D (j)}.
For given j ∈ {1, . . . , n − 1}, minimize the energy

by jointly optimizing the tensors A(j) ∈ CD(j−1)×D(j)×d

and A(j+1) ∈ CD(j)×D(j+1)×d at sites j and j + 1

Jointly update A(j),A(j+1) with Hilbert space representations G (U)
of mode transformations U ∈ U(2 log2 d) on the respective
physical legs of the tensors, optimizing the Schmidt-spectrum

of A
(j ,j+1)
opt (U) over the cut j , j + 1 and truncate.

Update the operators with Uglobal := 1⊕ U ⊕ 1

e.g. the Hamiltonian
H 7→ H̃ := G (Uglobal)H G †(Uglobal)

exploiting their second quantized representation
H(T ,V ) 7→ H̃ = H(T̃ , Ṽ )
T 7→ T̃ := UglobalTU†global

V 7→ Ṽ :=
(
Uglobal ⊗ Uglobal

)
V
(
U†global ⊗ U†global

)
Go to next site j 7→ j ± 1 and iterate.

Build up a global non-trivial mode transformation by consecutive local mode transforma-
tions with overlapping support

At some point, fix the basis (which has now been optimised to the MPS ansatz and not
Renyi entropic qualifiers) and perform state-of-the art DMRG with large bond dimension.
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Details on mode transformations

The Hilbert space representation G (U) decomposes into a direct sum over different particle

number sectors G (U) =
⊕2 log2 d

i=0 Gi(U), where Gi(U) '
∧i U (

∧
denotes the exterior

product) and log2 d amounts to the number of fermion-species in the system.
E.g. d=2: G0(U) = 1, G1(U) ' U and G2(U) = detU = e iφ, φ ∈ [0, 2π).

If further symmetries are present U decomposes into different symmetry sectors U =
⊕

σ Uσ
E.g. d=4 and spin conservation: U = U↑ ⊕ U↓ with Uσ ∈ U(2).

Optimization-goal: identify a basis in which maximal required bond dimension is minimal.

Optimize ‖Σj ,j+1(U)‖α or Sα(ρ[j ](U)) where Σj ,j+1(U) corresponds to Schmidt-spectrum of
the U-transformed state when cut at j , j + 1.

Reduce optimization parameters by considering only relevant degrees of freedom for those
target functions by optimizing over the right cosets U(2 log2 d)\U(log2 d)⊕ U(log2 d).
E.g. d=2: ∀U ∈ U(2)/U(1)⊕ U(1) : U = e ix1σze ix2σy , optimize over x1, x2 brute-force.
Or d=4: U(4)\U(2)⊕ U(2) has 8 free parameters. Use either gradient of ‖Σj ,j+1(U)‖4

4 to
improve convergence of optimization or exploit symmetry if present (U(2)2\U(1)4 needs 4
parameters).

Results
Starting initially on purpose in a “wrong” basis, method auto-corrects the initial choice

case V = 0: mode transformations diagonalize T
case V 6= 0 and Dmax ≈ 1: recover HF orbitals

If symmetries of the system are not hard-coded into the state,
method identifies basis in which representing a state respecting
this symmetry even for low Dmax is possible.

Improves basis of interacting systems for Dmax � 1
beyond known techniques such that more accurate ground state approximations
are possible.
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Example from quantum chemistry: Be6-ring

system

Known to show strong correlation effects [7]

12 electrons in 24 spin-degenerate orbitals (d = 4)

Calculation performed with low bond dimension: Dmax = 90

Use adaptive mode transformation minimizing ‖Σj ,j+1(U↑ ⊕ U↓)‖1 respecting spin
conservation and one additional reordering based on the mutual information [7] at the
end of the calculation

results

standard basis vs transformed basis
energy and entropies of converged states:

Econv−EGS
EGS

= 7× 10−3

n∑
j=1

S1(ρ[j ]) = 20.65

Econv−EGS
EGS

= 2× 10−4

n∑
j=1

S1(ρ[j ]) = 10.88

mutual information: I (i , j) = S1(ρ{i}) + S1(ρ{j})− S1(ρ{i ,j})
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Conclusion and outlook

Local mode transformation provide black-box tool to improve basis used in tensor-network
calculations.

Method not restricted to MPS, can be used to optimize trees or 2d-systems combined with
fermionic networks [8, 9].
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