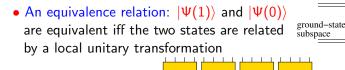
Highly entangled quantum states of matter - a general theory of gapped quantum liquids

Xiao-Gang Wen, June 24, 2014

伺 と く き と く き と

Gapped quantum phases and local unitary transformations



• Two kinds of equivalence class: Zeng-Wen 14

 $\{|\Psi_{\alpha}(1)\rangle\} =$

- stable class \rightarrow **emergence of unitarity**

 $|\Psi_{\alpha}\rangle$ remain to be orthogonal under a small local non-unitary transformation.

A local non-unitary evolution induces a local unitary evolution in the ground state subspace.

- un-stable class: example $\{|\uparrow\uparrow ...\rangle, |\downarrow\downarrow ...\rangle\}$.

Conjecture: a gapped quantum liquid phase is a <u>stable</u> equivalence class of local unitary transformations.

 Δ ->finite gap

 $\epsilon \rightarrow 0$

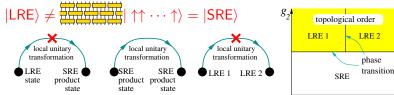
 $\{|\Psi_{\alpha}(0)\rangle\}$

Long-range entanglement and topological order

- There are long range entangled (LRE) states
- There are short range entangled (SRE) states

Long-range entanglement and topological order

- There are long range entangled (LRE) states \rightarrow many phases
- There are short range entangled (SRE) states \rightarrow one phase



- All SRE states belong to the same trivial phase
- LRE states can belong to different phases
 - = different long-range entanglements
 - = different topological orders

Chen-Gu-Wen 10

ロ と く 聞 と く き と く き と …

 g_1

$\mathsf{LRE} \leftrightarrow \mathsf{topological} \ \mathsf{order} \leftrightarrow \mathsf{emergence} \ \mathsf{of} \ \mathsf{unitarity}$

 \rightarrow fault tolerant topological quantum computation

How to make long range entanglements (topo. orders)

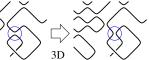
To make topological order, we need to sum over many different product states, but we should not sum over everything. $\sum_{\text{all spin configurations}} |\uparrow\downarrow\downarrow\downarrow\uparrow\ldots\rangle = |\rightarrow\rightarrow\rightarrow\rightarrow\ldots\rangle$

 Sum over a subset of spin configurations: sum over all the "string" states", where the up-spins form strings:

 $|\Phi_{\mathsf{string-net}}\rangle = \mathsf{sum} \mathsf{ over string-nets} \left| \bigotimes \right\rangle$

- \rightarrow string-net condensation Levin-Wen 05 (string-net liquid).
- Different amplitudes of string wave function $\Phi\left(\bigotimes \bigotimes \right)$ give rise to different topological orders.
- How to determine the string wave function $\Phi(\tilde{X}\tilde{X})$?

A quantitative description of long-range entanglement Local dancing rule \rightarrow global dancing pattern



• Local dancing rules of a string liquid: (1) Dance while holding hands (no open ends) (2) $\Phi_{str} (\square) = \Phi_{str} (\square), \Phi_{str} (\square) = \Phi_{str} (\square)$ \rightarrow Global dancing pattern $\Phi_{str} (\heartsuit) = 1 (Z_2 \text{ loop liquid})$

• Local dancing rules of another string liquid (exist only in 2+1D): (1) Dance while holding hands (no open ends) (2) Φ_{str} (\square) = Φ_{str} (\square), Φ_{str} (\square) = $-\Phi_{str}$ (\square) \rightarrow Global dancing pattern Φ_{str} ($\heartsuit \Diamond_{str}$) = $(-)^{\# \text{ of loops}}$

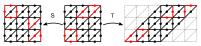
 Two string-net condensations → two topological orders devin-Wen 05 ₹ つへへ Xiao-Gang Wen, June 24, 2014
 Highly entangled quantum states of matter - a general theory

• Consider the ground states $|\Psi_{\alpha}\rangle$ on torus T^2 , and two maps, $\hat{S} = 90^{\circ}$ rotation and $\hat{T} =$ Dehn twist.

向下 イヨト イヨト

Heidar-Wen 13, He-Heidar-Wen 13

$$\begin{split} S_{\alpha\beta} e^{-f_{S}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{S} | \Psi_{\beta} \rangle \\ T_{\alpha\beta} e^{-f_{T}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{T} | \Psi_{\beta} \rangle \end{split}$$

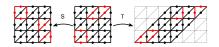


• Consider the ground states $|\Psi_{\alpha}\rangle$ on torus T^2 , and two maps, $\hat{S} = 90^{\circ}$ rotation and $\hat{T} =$ Dehn twist.

Heidar-Wen 13, He-Heidar-Wen 13

$$\begin{split} S_{\alpha\beta} e^{-f_{S}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{S} | \Psi_{\beta} \rangle \\ T_{\alpha\beta} e^{-f_{T}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{T} | \Psi_{\beta} \rangle \end{split}$$

• For the first topo. order: $\Psi_1(\boxtimes) = g^{\text{string-length}}$ $\Psi_2(\boxtimes) = (-)^{W_x} g^{\text{str-len}}$ $\Psi_3(\boxtimes) = (-)^{W_y} g^{\text{str-len}}$ $\Psi_4(\boxtimes) = (-)^{W_x+W_y} g^{\text{str-len}}$



伺 ト イヨト イヨト

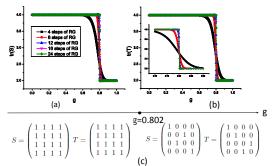
• Consider the ground states $|\Psi_{\alpha}\rangle$ on torus T^2 , and two maps, $\hat{S} = 90^{\circ}$ rotation and $\hat{T} =$ Dehn twist.

Heidar-Wen 13, He-Heidar-Wen 13

$$\begin{split} S_{\alpha\beta} e^{-f_{S}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{S} | \Psi_{\beta} \rangle \\ T_{\alpha\beta} e^{-f_{T}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{T} | \Psi_{\beta} \rangle \end{split}$$

• For the first topo. order: $\Psi_1(\aleph) = g^{\text{string-length}}$ $\Psi_2(\Sigma) = (-)^{W_x} g^{\text{str-len}}$ $\Psi_3(\mathbb{W}) = (-)^{W_y} g^{\text{str-len}}$ $\Psi_4(\boxtimes) = (-)^{W_x + W_y} g^{\text{str-len}}$

- g < 0.8 small-loop phase $|\Psi_{\alpha}\rangle$ are the same state
- g > 0.8 large-loop phase $|\Psi_{\alpha}\rangle$ are four diff. states



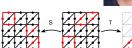
• Consider the ground states $|\Psi_{\alpha}\rangle$ on torus T^2 , and two maps, $\hat{S} = 90^{\circ}$ rotation and $\hat{T} =$ Dehn twist.

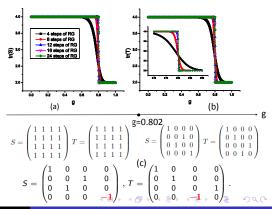
Heidar-Wen 13, He-Heidar-Wen 13

$$\begin{split} S_{\alpha\beta} e^{-f_{S}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{S} | \Psi_{\beta} \rangle \\ T_{\alpha\beta} e^{-f_{T}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{T} | \Psi_{\beta} \rangle \end{split}$$

• For the first topo. order: $\Psi_1(\boxtimes) = g^{\text{string-length}}$ $\Psi_2(\boxtimes) = (-)^{W_x} g^{\text{str-len}}$ $\Psi_3(\boxtimes) = (-)^{W_y} g^{\text{str-len}}$ $\Psi_4(\boxtimes) = (-)^{W_x + W_y} g^{\text{str-len}}$

- g < 0.8 small-loop phase $|\Psi_{lpha}
 angle$ are the same state
- g > 0.8 large-loop phase $|\Psi_{lpha}
 angle$ are four diff. states
- For the second topo. order:





Highly entangled quantum states of matter - a general theory

Short-range entanglements w/ symmetry \rightarrow SPT phases

For gapped systems with a symmetry $H = U_g H U_g^{\dagger}$, $g \in G$ Consider only states that do not break the symmetry G

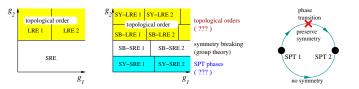
- \bullet there are LRE symmetric states \rightarrow many different phases
- there are SRE symmetric states → one phase (no symm. breaking)

- 本部 とくき とくき とうき

Short-range entanglements w/ symmetry \rightarrow SPT phases

For gapped systems with a symmetry $H = U_g H U_g^{\dagger}$, $g \in G$ Consider only states that do not break the symmetry G

- \bullet there are LRE symmetric states \rightarrow many different phases
- there are SRE symmetric states → many different phases
 We may call them symmetry protected trivial (SPT) phase



• SPT phases = equivalent class of *symmetric* LU transformations

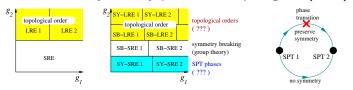
イロト イポト イヨト イヨト

Short-range entanglements w/ symmetry \rightarrow SPT phases

For gapped systems with a symmetry $H = U_g H U_g^{\dagger}$, $g \in G$ Consider only states that do not break the symmetry G

- \bullet there are LRE symmetric states \rightarrow many different phases
- there are SRE symmetric states \rightarrow many different phases

We may call them symmetry protected trivial (SPT) phase or symmetry protected topological (SPT) phase



- SPT phases = equivalent class of *symmetric* LU transformations
- 1D Haldane phase, Haldane 83 2D/3D topological insulators, Kane-Mele 05;

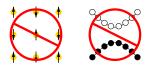
Bernevig-Zhang 06 Moore-Balents 07; Fu-Kane-Mele 07 are examples of SPT phases.

Highly entangled quantum states of matter – a general theory

A group-cohomology theory of SPT phase (a new math)

Chen-Liu-Wen 11, Chen-Gu-Liu-Wen 11

- \bullet Group theory \rightarrow symm. breaking phases
- What math \rightarrow SPT phases?



A group-cohomology theory of SPT phase (a new math)

Chen-Liu-Wen 11, Chen-Gu-Liu-Wen 11

- \bullet Group theory \rightarrow symm. breaking phases
- What math \rightarrow SPT phases?
- We want construct a state that is
 - symmetric under symmetry G
 - connected to a direct product state via LU transformations.

向下 イヨト イヨト

 g_{2}

- Consider a 1D system, states on each site given by $|g_i\rangle, g_i \in G$
- Start with a product state $\otimes_i |\phi_i\rangle$, $|\phi_i\rangle \equiv \sum_{g_i} |g_i\rangle$, or $\Phi_0(\{g_i\}) = 1$
- Perform LU trans: $U_{i,i+1}|g_i,g_{i+1}\rangle = \nu_2(g_i,g_{i+1},g^*)|g_i,g_{i+1}\rangle$
 - \rightarrow We obtain a wave function $\Psi(\{g_i\}) = \prod_i \nu_2(g_i, g_{i+1}, g^*)_{i=1}$

A group-cohomology theory of SPT phase (a new math)

Chen-Liu-Wen 11, Chen-Gu-Liu-Wen 11

- \bullet Group theory \rightarrow symm. breaking phases
- What math \rightarrow SPT phases?
- We want construct a state that is
 - symmetric under symmetry G
 - connected to a direct product state via LU transformations.

 g_{2}

- Consider a 1D system, states on each site given by $|g_i\rangle, g_i \in G$
- Start with a product state $\otimes_i |\phi_i\rangle, \ |\phi_i\rangle \equiv \sum_{g_i} |g_i\rangle$, or $\Phi_0(\{g_i\}) = 1$
- Perform LU trans: $U_{i,i+1}|g_i,g_{i+1}\rangle = \nu_2(g_i,g_{i+1},g^*)|g_i,g_{i+1}\rangle$
 - \rightarrow We obtain a wave function $\Psi(\{g_i\}) = \prod_i \nu_2(g_i, g_{i+1}, g^*) g_2$
- The wave function is symmetric $\Psi(\{hg_i\}) = \Psi(\{g_i\})_{g_1}$ if the phase factor $\nu_2(g_0, g_1, g_2)$ satisfies:
 - (1) $\nu_2(hg_0, hg_1, hg_2) = \nu_2(g_0, g_1, g_2), h \in G$
 - (2) $\frac{\nu_2(g_1,g_2,g_3)\nu_2(g_0,g_1,g_3)}{\nu_2(g_0,g_2,g_3)\nu_2(g_0,g_1,g_2)} = 1$
- The LU trans. is not symmetric $\nu_2(hg_0, hg_1, g_{\Box}^*) \neq \nu_2(g_0, g_1, g^*)$

Group cohomology theory for SPT states

- $\nu_2(g_0, g_1, g_2)$ satisfying eqn. (1) and (2) are 2-cocycles $\mathcal{Z}^2[G, U(1)] = \{\nu_2(g_0, g_1, g_2)\}.$
- Every cocycle gives rise to a SPT state.
- But, do two SPT states from two different cocycles belong to the same phase?

Two cocycles that can be connected within the space of cocycles are equivalent, and describe the same phase.

• The equivalent classes of cocycles = group cohomology classes $\mathcal{H}^2[G, U(1)].$

A subset of bosonic SPT states with symmetry G in d spatial dimensions are one-to-one described by group cohomology classes $\mathcal{H}^{d+1}[G, U(1)]$.

 $\mathcal{H}^{d+1}[G, U(1)] = \{a, b, c, \cdots\}$ is a set, whose elements label SPT phases. It is also an Abelian group: multiplication = stacking

$$a \otimes b = c \rightarrow c-SPT$$

 $b-SPT$

3. 3

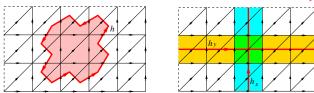
Group cohomology $\mathcal{H}^{d+1}[G, U_T(1)] \rightarrow \text{bosonic SPT phases}$

Symmetry G	<i>d</i> = 0	<i>d</i> = 1	<i>d</i> = 2	<i>d</i> = 3	systems	
$U(1) \rtimes Z_2^T$	Z	ℤ₂ (0)	\mathbb{Z}_2 (\mathbb{Z}_2)	\mathbb{Z}_2^2 (\mathbb{Z}_2)	bosonic	
$U(1) \rtimes Z_2^T imes trn$	Z	$\mathbb{Z} imes \mathbb{Z}_2$	$\mathbb{Z} imes \mathbb{Z}_2^3$	$\mathbb{Z} imes \mathbb{Z}_2^8$	topo. ins.	
$U(1) imes Z_2^T$	0	\mathbb{Z}_2^2	0	\mathbb{Z}_2^3	T -symmetric	
$U(1) imes Z_2^T imes trn$	0	\mathbb{Z}_2^2	\mathbb{Z}_2^4	\mathbb{Z}_2^9	spin systems	
Z_2^T	0	\mathbb{Z}_2 (\mathbb{Z})	0 (0)	$\mathbb{Z}_2(0)$	bosonic	
$Z_2^T imes trn$	0	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_2^4	topo. SC	
U(1)	Z	0	\mathbb{Z}	0	Hall effect	
$U(1) imes { m trn}$	Z	Z	\mathbb{Z}^2	\mathbb{Z}^4	in 2+1D	
Z _n	\mathbb{Z}_n	0	\mathbb{Z}_n	0		
$Z_n imes trn$	\mathbb{Z}_n	\mathbb{Z}_n	\mathbb{Z}_n^2	\mathbb{Z}_n^4		
$D_{2h} = Z_2 \times Z_2 \times Z_2^T$	\mathbb{Z}_2^2	\mathbb{Z}_2^4	\mathbb{Z}_2^6	\mathbb{Z}_2^9		
<i>SO</i> (3)	0	\mathbb{Z}_2	\mathbb{Z}	0	spin	
$SO(3) \times Z_2^T$	0	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}_2^3	systems	

Table of $\mathcal{H}^{d+1}[G, U_T(1)]$ g_{2} g₂ SY-LRE 1 SY-LRE 2 SET orders topological order (tensor category (tensor category) " Z_2^T ": time reversal, intrinsic topo, order w/ symmetry) LRE 1 LRE 2 SB-LRE 1 SB-LRE 2 "trn": translation. symmetry breaking SB-SRE 1 SB-SRE 2 others: on-site symm. (group theory) SRE $0 \rightarrow only trivial phase.$ SPT orderes SY-SRE 1 SY-SRE 2 (group cohomology $(\mathbb{Z}_2) \to \text{free fermion result}$ วัจ 🗠 0 theory) g, Xiao-Gang Wen, June 24, 2014 Highly entangled quantum states of matter – a general theory

Universal wavefunction overlap for SPT state: $S \ e^{-f_{S}L^{2}+o(L^{-1})} = \langle \Psi_{0}|\hat{S}|\Psi_{0}\rangle$ and $T \ e^{-f_{T}L^{2}+o(L^{-1})} = \langle \Psi_{0}|\hat{T}|\Psi_{0}\rangle$ $\rightarrow S = T = 1$, due to the trivial topological order in SPT state.

• To obtain non-trivial wavefunction overlap, we add symmetry twists: $H = \sum H_{ijk} \rightarrow H_h = \sum_{in \text{ bulk}} H_{ijk} + \sum_{on \text{ boundary}} H_{ijk}^h$

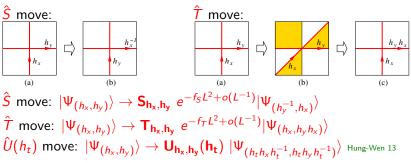


 $\sum_{\text{on boundary}} H_{ijk}^h$ is the *h*-symmetry twist.

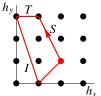
• Let $|\Psi_{(h_x,h_y)}\rangle$ be the ground state of H_{h_x,h_y} on T^2 with symmetry twists h_x, h_y in x- and y-directions.

 $|\Psi_{(h_{\rm x},h_{\rm y})}\rangle$ simulate the degenerate ground states for topological ordered states.

- 사례가 사용가 사용가 구용



- The product of $S, T, U \in U(1)$ around a closed orbit is universal.
- Conjecture: those phases (and their generalization) completely characterize the SPT states.



• For 2+1D Z_N SPT state labeled by $k \in H^3[Z_N, U(1)] = \mathbb{Z}_N$ $\langle h, g | T^N | h, g \rangle = e^{2\pi i (h-1)^2 k/N}$

Xiao-Gang Wen, June 24, 2014

Highly entangled quantum states of matter - a general theory

A 2+1D $Z_{N_1} \times Z_{N_2} \times Z_{N_3}$ SPT state

 $H^{3}[\prod_{i=1}^{3} Z_{N_{i}}, U(1)] = \mathbb{Z}_{N_{1}} \oplus \mathbb{Z}_{N_{2}} \oplus \mathbb{Z}_{N_{3}} \oplus \mathbb{Z}_{N_{12}} \oplus \mathbb{Z}_{N_{23}} \oplus \mathbb{Z}_{N_{13}} \oplus \mathbb{Z}_{N_{123}}$ where $N_{123} = \operatorname{gcd}(N_{1}, N_{2}, N_{3}).$

- We consider a SPT state labeled by $k \in \mathbb{Z}_{N_{123}}$ and assume $N_1 = N_2 = N_3 = N$.
- What is the SPT invariant $U_{h_x,h_y}(h_t)$?

- 4 周 と 4 ほ と 4 ほ と … ほ

A 2+1D $Z_{N_1} \times Z_{N_2} \times Z_{N_3}$ SPT state

 $H^{3}[\prod_{i=1}^{3} Z_{N_{i}}, U(1)] = \mathbb{Z}_{N_{1}} \oplus \mathbb{Z}_{N_{2}} \oplus \mathbb{Z}_{N_{3}} \oplus \mathbb{Z}_{N_{12}} \oplus \mathbb{Z}_{N_{23}} \oplus \mathbb{Z}_{N_{13}} \oplus \mathbb{Z}_{N_{123}}$ where $N_{123} = \operatorname{gcd}(N_{1}, N_{2}, N_{3}).$

• We consider a SPT state labeled by $k \in \mathbb{Z}_{N_{123}}$ and assume $N_1 = N_2 = N_3 = N$.

• What is the SPT invariant $U_{h_x,h_y}(h_t)$?

 $\begin{array}{l} U_{h_x,h_y}(h_t) \text{ is the fixed-point partition function on space-time} \\ T^3 = (S^1)^3 \text{ with symmetry twists in } x, y, t \text{ directions:} \\ Z_{\text{fixed-point}} = U_{h_x,h_y}(h_z) = e^{ik \frac{N_1N_2N_3}{(2\pi)^2N_{123}}\int A_1A_2A_3}, \quad \mathrm{d}A_i = 0, \end{array}$

where $\oint A_i = \frac{2\pi}{N_i} \times$ integer describes the Z_{N_i} twist. Wang-Gu-Wen 14

- The physical meaning of the SPT inv.: The intersection of the domain walls of Z_{N1} and Z_{N2} carries Z_{N3}-charge k.
- A mechanism for such a SPT state: bind $k Z_{N_3}$ -charge to the intersection of the domain walls of Z_{N_1} and Z_{N_2} , z_{N_3} the set z_{N_3} and z_{N_2} , z_{N_3} the set z_{N_3} and z_{N_3} .

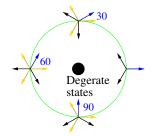
• Dimension reduction: $M_{\text{space}}^2 \rightarrow S^1 \times I$ and $\oint_{S^1} A_3 = 2\pi/N_3$: $Z_{\text{fixed-point}} = e^{ik\frac{N}{2\pi}\int A_1A_2}$

→ A 1+1D SPT state labeled by $k \in H^2[Z_{N_1} \times Z_{N_2}, U(1)] = \mathbb{Z}_{N_{12}}$. → degenerated states at the end of I that form a projective representation of $Z_{N_1} \times Z_{N_2}$.

• A Z_{N_3} "vortex" (end of Z_{N_3} symmetry twist) carries degenerated states that form a projective representation of $Z_{N_1} \times Z_{N_2}$.

• How to make Z₃-vortex:

- 1) Consider U(1) symm. break down to Z_3 symm.
- 2) A vortex of the order parameter = Z_3 -vortex.



• A mechanism for the above $1+1D Z_{N_1} \times Z_{N_2}$ SPT state: bind $k Z_{N_2}$ -charge to the domain wall of Z_{N_1} .

Gauge, gravity, and mixed gauge-gravity anomalies

• The SPT inv. is not gauge invariant when the space-time has a boundary: $A_3 \rightarrow A_3 + df_3$ $k \frac{N_1 N_2 N_3}{(2\pi)^2 N_{123}} \int_{M^3} A_1 A_2 A_3 \rightarrow k \frac{N_1 N_2 N_3}{(2\pi)^2 N_{123}} \left[\int_{M^3} A_1 A_2 A_3 + \int_{\partial M^3} A_1 A_2 f_3 \right]$ We need a non-trivial boundary theory with gauge anomaly to cancel the non-gauge invariance of the SPT inv. $Z_{\text{fixed-point}}(A_i) = e^{ik \frac{N_1 N_2 N_3}{(2\pi)^2 N_{123}} \int_{M^3} A_1 A_2 A_3 + \int_{\partial M^3} L_{\text{gauge anom.}}^{\text{boundary}}(A_i,\phi)}$

SPT order (group cohomology) \leftrightarrow gauge anomaly in one lower dimension (on the boundary)

• Similarly, a topologically ordered state also has a topo. inv. that is not diffeomorphism invariant when the space-time has a boundary. We need a non-trivial boundary theory with *gravitational anomaly* to cancel the non-diffeomorphism invariance of the bulk topo. inv.

 $Z_{\text{fixed-point}}(g_{\mu\nu}) = e^{ik \int_{M^3} CS_3(g_{\mu\nu}) + \int_{\partial M^3} L_{\text{grav. anom.}}^{\text{boundary}}(g_{\mu\nu}, \phi)}$

Topological order \leftrightarrow grav. anomaly in one lower dimension

SPT state from mixed gauge-grav. anomalies – beyond group cohomology

- Gauge topological term \rightarrow SPT states of group cohomology
- Gravitational topological term \rightarrow topologically ordered states
- Mixed gauge-grav. topological term \rightarrow new SPT states
- A new class of U(1) SPT state in 4+1D labeled by $k \in \mathbb{Z}$: $Z_{\text{fixed-point}}(A_i, g_{\mu\nu}) = e^{i \frac{1}{3(2\pi)} \int_{M^5} dA \wedge CS_3(g_{\mu\nu})}, CS_3 \text{ grav. CS term}$
 - Dimension reduction $M^5 = S^2 \times M^3$ and put a 2π -flux of U(1) through $S^2 \rightarrow Z_{\text{fixed-point}}(g_{\mu\nu}) = e^{i\frac{k}{3}\int_{M^3} CS_3(g_{\mu\nu})} \rightarrow k$ -copy of E_8 bosonic IQ state. Wang-Gu-Wen 14
- 3+1D Z_2^T SPT states, need to use non-orientable state to probe. - $Z_{\text{fixed-point}}(g_{\mu\nu}) = e^{i\frac{k_1}{2}\int_{M^4}[w_1(g_{\mu\nu})]^4}$
 - $\to Z_2^T$ SPT state described by $k_1 \in \mathcal{H}^4(Z_2^T, U_T(1)] = \mathbb{Z}_2$
 - $Z_{\text{fixed-point}}(g_{\mu\nu}) = e^{i \frac{k_2}{2} \int_{M^4} [w_2(g_{\mu\nu})]^2}$
 - $\rightarrow Z_2^T$ SPT state described by $k_2 = \mathbb{Z}_2$ beyond group cohomology.

Senthil-Vishwanath 12, Kapustin 14 Here w_i is the *i*th Stiefel-Whitney class

A classification of gapped quantum liquids

- Symmetry breaking phases: group theory No fractional statistics, no fractional quantum numbers Example: Ferromagnets, superfluids, *etc* Key: Symmetry breaking
- **Topo.** ordered phases: n-category theory (extended TQFT) Have fractional statistics, and fractional quantum numbers Example: FQH states, Z₂ spin liquid states, chiral spin liquid states, etc Koy: Long range entanglement (topological order)
 - Key: Long-range entanglement (topological order)
- SPT ordered phases: group cohomology theory and beyond No fractional statistics, no fractional quantum numbers Example: Haldane phase in 1+1D, topological insulators, *etc* Key: Symmetry protection
- The above three features can coexist.

Classify LRE/topological-order and gravitational anomaly

- 1+1D: there is no topological order Verstraete-Cirac-Latorre 05
 1+1D: anomalous topological order are classified by unitary fusion categories (UFC). Lan-Wen 13 (anomalous topological order = gapped 2D edge)
- 2+1D: Abelian topological order are classified by *K*-matrices 2+1D: topo. order with gappable edge are classified by *UFC* Levin-Wen 05

2+1D: topological order are classified by (UMTC, c) (?)

• Topological order with no non-trivial topo. excitations: κong-Wen 14

	1 + 1D	2 + 1D	3 + 1D	4 + 1D	5 + 1D	6 + 1D
Boson:	0	Z _{E8}	0	\mathbb{Z}_2	0	$\mathbb{Z}\oplus\mathbb{Z}$
Fermion:	\mathbb{Z}_2	\mathbb{Z}_{p+ip}	?	?	?	?