
Highly entangled quantum states of matter
– a general theory of gapped quantum liquids

Xiao-Gang Wen, June 24, 2014

Xiao-Gang Wen, June 24, 2014 Highly entangled quantum states of matter – a general theory of gapped quantum liquids



Gapped quantum phases and local unitary transformations

ground−state

ε −> 0

∆−>finite gap
subspace

• An equivalence relation: |Ψ(1)〉 and |Ψ(0)〉
are equivalent iff the two states are related
by a local unitary transformation

{|Ψα(1)〉} = {|Ψα(0)〉}

• Two kinds of equivalence class: Zeng-Wen 14

- stable class → emergence of unitarity
|Ψα〉 remain to be orthogonal under a small
local non-unitary transformation.
A local non-unitary evolution induces a local unitary
evolution in the ground state subspace.
- un-stable class: example {| ↑↑ ...〉, | ↓↓ ...〉}.
Conjecture: a gapped quantum liquid phase is a stable
equivalence class of local unitary transformations.
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Long-range entanglement and topological order

- There are long range entangled (LRE) states

→ many phases

- There are short range entangled (SRE) states

→ one phase

|LRE〉 6= | ↑↑ · · · ↑〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to different phases

= different long-range entanglements
= different topological orders
Chen-Gu-Wen 10

LRE ↔ topological order ↔ emergence of unitarity
→ fault tolerant topological quantum computation
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How to make long range entanglements (topo. orders)

To make topological order, we need to sum over many different
product states, but we should not sum over everything.∑

all spin configurations | ↑↓↓↑ ...〉 = | →→→→ ...〉

• Sum over a subset of spin configurations: sum over all the “string
states”, where the up-spins form strings:

|Φclosed string〉 = sum over loops
∣∣∣ 〉

|Φstring-net〉 = sum over string-nets

∣∣∣∣∣
〉

→ string-net condensation Levin-Wen 05 (string-net liquid).

• Different amplitudes of string wave function

Φ
( )

give rise to different topological orders.

• How to determine the string wave function Φ
( )

?
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A quantitative description of long-range entanglement
Local dancing rule → global dancing pattern

2D 3D

• Local dancing rules of a string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= Φstr

( )
→ Global dancing pattern Φstr

( )
= 1 (Z2 loop liquid)

• Local dancing rules of another string liquid (exist only in 2+1D):
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= −Φstr

( )
→ Global dancing pattern Φstr

( )
= (−)# of loops

• Two string-net condensations → two topological orders Levin-Wen 05
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Universal wavefunction overlap: “X-ray” for topo. order

• Consider the ground states |Ψα〉 on torus T 2, and
two maps, Ŝ = 90◦ rotation and T̂ = Dehn twist.
Heidar-Wen 13, He-Heidar-Wen 13

Sαβe
−fSL2+o(L−1) = 〈Ψα|Ŝ |Ψβ〉

Tαβe
−fTL2+o(L−1) = 〈Ψα|T̂ |Ψβ〉

TS

• For the first topo. order:
Ψ1( ) = g string-length

Ψ2( ) = (−)Wxg str-len

Ψ3( ) = (−)Wy g str-len

Ψ4( ) = (−)Wx+Wy g str-len

• g < 0.8 small-loop phase
|Ψα〉 are the same state

• g > 0.8 large-loop phase
|Ψα〉 are four diff. states

g
g=0.802

(a) (b)

(c)

• For the second topo. order: S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 − 1

 ,T =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 .
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Tαβe
−fTL2+o(L−1) = 〈Ψα|T̂ |Ψβ〉

TS

• For the first topo. order:
Ψ1( ) = g string-length

Ψ2( ) = (−)Wxg str-len

Ψ3( ) = (−)Wy g str-len

Ψ4( ) = (−)Wx+Wy g str-len

• g < 0.8 small-loop phase
|Ψα〉 are the same state

• g > 0.8 large-loop phase
|Ψα〉 are four diff. states

g
g=0.802

(a) (b)

(c)

• For the second topo. order: S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 ,T =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 .

Xiao-Gang Wen, June 24, 2014 Highly entangled quantum states of matter – a general theory of gapped quantum liquids



Universal wavefunction overlap: “X-ray” for topo. order

• Consider the ground states |Ψα〉 on torus T 2, and
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Short-range entanglements w/ symmetry → SPT phases

For gapped systems with a symmetry H = UgHU
†
g , g ∈ G

Consider only states that do not break the symmetry G

• there are LRE symmetric states → many different phases

• there are SRE symmetric states → one phase (no symm. breaking)

many different phases

We may call them symmetry protected trivial (SPT) phase

or symmetry protected topological (SPT) phase

1
g

2
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

SB−SRE 2

SY−SRE 2

g
1

LRE 2LRE 1

SRE
SPT phases

symmetry breaking

(group theory)

topological orders

( ??? )

( ??? )

topological order
topological order

symmetry
preserve

no symmetry

phase

transition

SPT 1 SPT 2

• SPT phases = equivalent class of symmetric LU transformations
• 1D Haldane phase,Haldane 83 2D/3D topological insulators,Kane-Mele 05;

Bernevig-Zhang 06 Moore-Balents 07; Fu-Kane-Mele 07 are examples of SPT phases.

1D 2D 3D
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A group-cohomology theory of SPT phase (a new math)
Chen-Liu-Wen 11, Chen-Gu-Liu-Wen 11

• Group theory → symm. breaking phases

• What math → SPT phases?

• We want construct a state that is
- symmetric under symmetry G
- connected to a direct product state

via LU transformations.

• Consider a 1D system, states on each site given by |gi 〉, gi ∈ G
• Start with a product state ⊗i |φi 〉, |φi 〉 ≡

∑
gi
|gi 〉, or Φ0({gi}) = 1

• Perform LU trans: Ui ,i+1|gi , gi+1〉 = ν2(gi , gi+1, g
∗)|gi , gi+1〉

→ We obtain a wave function Ψ({gi}) =
∏

i ν2(gi , gi+1, g
∗).

g
1 g

3

g5
g

4

g
2

g*

• The wave function is symmetric Ψ({hgi}) = Ψ({gi})
if the phase factor ν2(g0, g1, g2) satisfies:
(1) ν2(hg0, hg1, hg2) = ν2(g0, g1, g2), h ∈ G

(2) ν2(g1,g2,g3)ν2(g0,g1,g3)
ν2(g0,g2,g3)ν2(g0,g1,g2) = 1

• The LU trans. is not symmetric ν2(hg0, hg1, g
∗) 6= ν2(g0, g1, g

∗)
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Group cohomology theory for SPT states

• ν2(g0, g1, g2) satisfying eqn. (1) and (2) are 2-cocycles
Z2[G ,U(1)] = {ν2(g0, g1, g2)}.
• Every cocycle gives rise to a SPT state.

• But, do two SPT states from two different cocycles belong to the
same phase?

Two cocycles that can be connected within the space of cocycles
are equivalent, and describe the same phase.
• The equivalent classes of cocycles = group cohomology classes
H2[G ,U(1)].

A subset of bosonic SPT states with symmetry G in d spatial
dimensions are one-to-one described by group cohomology
classes Hd+1[G ,U(1)].

Hd+1[G ,U(1)] = {a, b, c, · · · } is a set, whose elements label SPT
phases. It is also an Abelian group: multiplication = stacking

a⊗ b = c →
a−SPT

b−SPT
c−SPT
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Group cohomology Hd+1[G ,UT (1)]→ bosonic SPT phases
Symmetry G d = 0 d = 1 d = 2 d = 3 systems

U(1) o ZT
2 Z Z2 (0) Z2 (Z2) Z2

2 (Z2) bosonic
U(1) o ZT

2 × trn Z Z× Z2 Z× Z3
2 Z× Z8

2 topo. ins.

U(1)× ZT
2 0 Z2

2 0 Z3
2 T -symmetric

U(1)× ZT
2 × trn 0 Z2

2 Z4
2 Z9

2 spin systems

ZT
2 0 Z2 (Z) 0 (0) Z2 (0) bosonic

ZT
2 × trn 0 Z2 Z2

2 Z4
2 topo. SC

U(1) Z 0 Z 0 Hall effect
U(1)× trn Z Z Z2 Z4 in 2+1D

Zn Zn 0 Zn 0
Zn × trn Zn Zn Z2

n Z4
n

D2h = Z2 × Z2 × ZT
2 Z2

2 Z4
2 Z6

2 Z9
2

SO(3) 0 Z2 Z 0 spin
SO(3)× ZT

2 0 Z2
2 Z2 Z3

2 systems

Table of Hd+1[G ,UT (1)]
“ZT

2 ”: time reversal,
“trn”: translation,
others: on-site symm.
0 → only trivial phase.
(Z2)→ free fermion result

2
g

1
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

g
1

SRE

SB−SRE 2

SY−SRE 2

symmetry breaking

(group theory)

(tensor category

(group cohomology

  theory)

LRE 1 LRE 2

SET orders

  w/ symmetry)

SPT orderes

intrinsic topo. order

topological  order
(tensor category)
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Universal wavefunction overlap: “X-ray” for SPT order

Universal wavefunction overlap for SPT state:
S e−fSL

2+o(L−1) = 〈Ψ0|Ŝ |Ψ0〉 and T e−fTL
2+o(L−1) = 〈Ψ0|T̂ |Ψ0〉

→ S = T = 1, due to the trivial topological order in SPT state.

• To obtain non-trivial wavefunction overlap, we add symmetry
twists: H =

∑
Hijk → Hh =

∑
in bulk Hijk +

∑
on boundary H

h
ijk

h

x

y

h

h

∑
on boundary H

h
ijk is the h-symmetry twist.

• Let |Ψ(hx ,hy )〉 be the ground state of Hhx ,hy on T 2 with symmetry
twists hx , hy in x- and y -directions.
|Ψ(hx ,hy )〉 simulate the degenerate ground states for topological
ordered states.
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Universal wavefunction overlap: “X-ray” for SPT order

Ŝ move: T̂ move:

(a) (b)

h

h

x

y

h

h

y

x
−1

h

h

x

y h y

h x

(a) (b)

h x

(c)

h y h x

Ŝ move: |Ψ(hx ,hy )〉 → Shx,hy e−fSL
2+o(L−1)|Ψ(h−1

y ,hx )〉
T̂ move: |Ψ(hx ,hy )〉 → Thx,hy e−fTL

2+o(L−1)|Ψ(hx ,hyhx )〉
Û(ht) move: |Ψ(hx ,hy )〉 → Uhx,hy(ht) |Ψ(hthxh

−1
t ,hthyh

−1
t )〉 Hung-Wen 13

• The product of S ,T ,U ∈ U(1)
around a closed orbit is universal.
• Conjecture: those phases (and

their generalization) completely
characterize the SPT states.

hy

hx

I

S

T

• For 2+1D ZN SPT state labeled by k ∈ H3[ZN ,U(1)] = ZN

〈h, g |TN |h, g〉 = e2πi(h−1)2k/N
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A 2+1D ZN1
× ZN2

× ZN3
SPT state

H3[
3∏

i=1

ZNi
,U(1)] = ZN1 ⊕ ZN2 ⊕ ZN3 ⊕ ZN12 ⊕ ZN23 ⊕ ZN13 ⊕ ZN123

where N123 = gcd(N1,N2,N3).

• We consider a SPT state labeled by k ∈ ZN123

and assume N1 = N2 = N3 = N.

• What is the SPT invariant Uhx ,hy (ht)?

Uhx ,hy (ht) is the fixed-point partition function on space-time
T 3 = (S1)3 with symmetry twists in x , y , t directions:

Zfixed-point = Uhx ,hy (hz) = e
ik

N1N2N3
(2π)2N123

∫
A1A2A3

, dAi = 0,

where
∮
Ai = 2π

Ni
× integer describes the ZNi

twist. Wang-Gu-Wen 14

• The physical meaning of the SPT inv.: The intersection of the
domain walls of ZN1 and ZN2 carries ZN3-charge k .

• A mechanism for such a SPT state: bind k ZN3-charge to the
intersection of the domain walls of ZN1 and ZN2 .
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• Dimension reduction: M2
space → S1 × I and

∮
S1 A3 = 2π/N3:

Zfixed-point = e ik
N
2π

∫
A1A2

→ A 1+1D SPT state labeled by k ∈ H2[ZN1 × ZN2 ,U(1)] = ZN12 .
→ degenerated states at the end of I that form a projective
representation of ZN1 × ZN2 .

• A ZN3 “vortex” (end of ZN3 symmetry twist) carries degenerated
states that form a projective representation of ZN1 × ZN2 .

30

60

90

Degerate
states

• How to make Z3-vortex:
1) Consider U(1) symm. break

down to Z3 symm.
2) A vortex of the order

parameter = Z3-vortex.

• A mechanism for the above 1+1D ZN1 × ZN2 SPT state: bind k
ZN2-charge to the domain wall of ZN1 .

Xiao-Gang Wen, June 24, 2014 Highly entangled quantum states of matter – a general theory of gapped quantum liquids



Gauge, gravity, and mixed gauge-gravity anomalies

• The SPT inv. is not gauge invariant when the space-time has a
boundary: A3 → A3 + df3

k
N1N2N3

(2π)2N123

∫
M3

A1A2A3 → k
N1N2N3

(2π)2N123

[∫
M3

A1A2A3 +

∫
∂M3

A1A2f3

]
We need a non-trivial boundary theory with gauge anomaly to
cancel the non-gauge invariance of the SPT inv.

Zfixed-point(Ai ) = e
ik

N1N2N3
(2π)2N123

∫
M3 A1A2A3+

∫
∂M3 Lboundary

gauge anom.(Ai ,φ)

SPT order (group cohomology) ↔
gauge anomaly in one lower dimension (on the boundary)

• Similarly, a topologically ordered state also has a topo. inv. that is
not diffeomorphism invariant when the space-time has a boundary.
We need a non-trivial boundary theory with gravitational anomaly
to cancel the non-diffeomorphism invariance of the bulk topo. inv.

Zfixed-point(gµν) = e ik
∫
M3 CS3(gµν)+

∫
∂M3 Lboundary

grav. anom.(gµν ,φ)

Topological order ↔ grav. anomaly in one lower dimension
Xiao-Gang Wen, June 24, 2014 Highly entangled quantum states of matter – a general theory of gapped quantum liquids



SPT state from mixed gauge-grav. anomalies
– beyond group cohomology

- Gauge topological term → SPT states of group cohomology
- Gravitational topological term → topologically ordered states
- Mixed gauge-grav. topological term → new SPT states

• A new class of U(1) SPT state in 4+1D labeled by k ∈ Z:
Zfixed-point(Ai , gµν) = e

i k
3(2π)

∫
M5 dA∧CS3(gµν)

, CS3 grav. CS term

- Dimension reduction M5 = S2 ×M3 and put a 2π-flux of U(1)

through S2 → Zfixed-point(gµν) = e i
k
3

∫
M3 CS3(gµν) → k-copy of E8

bosonic IQ state. Wang-Gu-Wen 14

• 3+1D ZT
2 SPT states, need to use non-orientable state to probe.

- Zfixed-point(gµν) = e i
k1
2

∫
M4 [w1(gµν)]4

→ ZT
2 SPT state described by k1 ∈ H4(ZT

2 ,UT (1)] = Z2

- Zfixed-point(gµν) = e i
k2
2

∫
M4 [w2(gµν)]2

→ ZT
2 SPT state described by k2 = Z2 beyond group cohomology.

Senthil-Vishwanath 12, Kapustin 14 Here wi is the i th Stiefel-Whitney class.
Xiao-Gang Wen, June 24, 2014 Highly entangled quantum states of matter – a general theory of gapped quantum liquids



A classification of gapped quantum liquids

• Symmetry breaking phases: group theory
No fractional statistics, no fractional quantum numbers
Example: Ferromagnets, superfluids, etc
Key: Symmetry breaking

• Topo. ordered phases: n-category theory (extended TQFT)
Have fractional statistics, and fractional quantum numbers
Example: FQH states, Z2 spin liquid states, chiral spin liquid
states, etc
Key: Long-range entanglement (topological order)

• SPT ordered phases: group cohomology theory and beyond
No fractional statistics, no fractional quantum numbers
Example: Haldane phase in 1+1D, topological insulators, etc
Key: Symmetry protection

• The above three features can coexist.

Xiao-Gang Wen, June 24, 2014 Highly entangled quantum states of matter – a general theory of gapped quantum liquids



Classify LRE/topological-order and gravitational anomaly

• 1+1D: there is no topological order Verstraete-Cirac-Latorre 05

1+1D: anomalous topological order are classified by unitary fusion
categories (UFC). Lan-Wen 13 (anomalous topological order = gapped 2D edge)

• 2+1D: Abelian topological order are classified by K -matrices
2+1D: topo. order with gappable edge are classified by UFC
Levin-Wen 05

2+1D: topological order are classified by (UMTC , c) (?)

• Topological order with no non-trivial topo. excitations: Kong-Wen 14

1 + 1D 2 + 1D 3 + 1D 4 + 1D 5 + 1D 6 + 1D
Boson: 0 Z E8 0 Z2 0 Z⊕ Z

Fermion: Z2 Z p+ip ? ? ? ?

• The boundary of topologically ordered states has gravitational
anomaly. Topological orders (patterns of long-range entanglement)
classify gravitational anomalies in one lower dimension.
long-range entanglement ↔ geometry

Xiao-Gang Wen, June 24, 2014 Highly entangled quantum states of matter – a general theory of gapped quantum liquids


