Quantum Repeaters for Long Distance Quantum Communication

Liang Jiang Yale University, Applied Physics Benasque Workshop (2014.7.11)

Quantum Communication

Major Challenge – Fiber Attenuation 10^{12} 10^9 10^6 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 1000 10^{10} 10^{10} 1000 10^{10} 1000L (km)

Solution 1: Satellite based QKD

Classical Repeaters

Repeaters based on Smoke Signal (Great Wall, 900BC)

Repeaters based on Sound (Africa Drum Communication)

Repeaters based on Optical Signal (Undersea Cables)

Our Quantum World

- Challenges: Quantum No-Cloning Theorem
 - Unknown quantum states cannot be perfectly cloned
- **Opportunities**: Quantum Entanglement
 - Quantum state teleportation
 - Entanglement swapping
 - Non-local coupling gate
- Imperfections:
 - Loss Errors (Fiber loss L_{att}≈20km, coupling & detector inefficiency)
 - Operation Errors (Channel decoherence, memory errors, local gate/measurement errors)

Quantum Repeaters

- Key Ideas for Quantum Repeaters
- Three Generations of Quantum Repeaters
- Compare Various Repeater Protocols
- Further Improvement

Key Ideas for Quantum Repeaters

- To overcome *loss errors*

How to Overcome Both Loss & Operation Errors?

	Approaches	Example	Requirement
Loss Errors	Heralded Generation (*)	Alice Bob Classical Comm.	Prob. & Heralded, <i>Two-Way</i> Comm.
	Quantum Error Correction	Alice Bob $ \psi\rangle$ $ 0\rangle$ $ 0\rangle$	Deterministic, One-Way Comm. Suppress $\varepsilon \rightarrow \varepsilon^{2t+1}$.
Operation Errors	Heralded Purification (**)	Alice Pair 1 Pair 2 1/0 Classical Comm.	Prob. & Heralded, <i>Two-Way</i> Comm.
	Quantum Error Correction	Alice Bob $ \psi\rangle$ $ 0\rangle$ $ 0\rangle$	Deterministic, One-Way Comm. Suppress $\varepsilon \rightarrow \varepsilon^{t+1}$.

(*) Experiments with ions, atoms, NVs, QDs, ... (**) Experiments with photons, ions, ...

Three Generations of QRs

	Approaches	1 st Generation	2 nd Generation	3 rd Generation
Loss Errors	Heralded Generation [<i>Two-Way</i> Comm.]			
	Quantum Error Correction [<i>One-Way</i> Comm.]			
Operation	Heralded Purification [<i>Two-Way</i> Comm.]			
Errors	Quantum Error Correction [<i>One-Way</i> Comm]			

Key Idea: Nested self-similar architecture of heralded ent. generation & purification.

- Procedure
 - Heralded Entanglement Generation (loss errors)
 - Connection
 - Heralded Entanglement Purification (operation errors)
- Time Scaling
 - Poly(L)
- Implementations (memory)
 - Single Emitters (e.g., ions, atoms, NVs, QDs),
 - Ensemble Approach (e.g., atoms, rare-earth-ion doped crystal)
- Challenges
 - Low key rates for long distances
 - Significant memory errors [Hartmann, Kraus, Dür, Briegel. PRA 75, 032310 (2007)]
- Limitation
 - Heralded Entanglement Purification
 - -> *Two-way* communication,
 - -> slows for long distances!

Briegel, Dür, Cirac, Zoller. PRL 81, 5932 (1998);

Duan, Lukin, Cirac, Zoller, Nature, 414, 413 (2001); Sangouard, Simon, de Riedmatten, Gisin, RMP 83, 33 (2011)

Three Generations of QRs

	Approaches	1 st Generation	2 nd Generation	3 rd Generation
Loss Errors	Heralded Generation [<i>Two-Way</i> Comm.]			
	Quantum Error Correction [<i>One-Way</i> Comm.]			
Operation Errors	Heralded Purification [<i>Two-Way</i> Comm.]			
	Quantum Error Correction [<i>One-Way</i> Comm]			

Key Idea: Create almost perfect Bell pairs at the encoded level

Without Encoding

(Operation Error: ε)

1. Generation

 $L_{tot} \sim L_{att}/\varepsilon$

With Quantum Encoding [[n,1,2t+1]] (Suppressed Opr. Errors: $\varepsilon \rightarrow \varepsilon^{t+1}$) 1. Encoded Generation $\left|\overline{0}\right\rangle\left|\overline{0}\right\rangle+\left|\overline{1}\right\rangle\left|\overline{1}\right\rangle$ $\left| \overline{0} \right\rangle \left| \overline{0} \right\rangle + \left| \overline{1} \right\rangle \left| \overline{1} \right\rangle$ $\left| \overline{0} \right\rangle \left| \overline{0} \right\rangle + \left| \overline{1} \right\rangle \left| \overline{1} \right\rangle$ 2. Encoded Connection 2 bits 2 bits 3. Measm't Basis $\left|\overline{0}\right\rangle \left|\overline{0}\right\rangle + \left|\overline{1}\right\rangle \left|\overline{1}\right\rangle$ Final Infidelity: $1 - (1 - \varepsilon^{t+1})^N \approx N \varepsilon^{t+1}$ $L_{tot} \sim L_{att} / \varepsilon^{t+1}$

[L.J., Taylor, Nemoto, Munro, Van Meter, Lukin, PRA 79, 032325 (2009)]

[L.J., Taylor, Nemoto, Munro, Van Meter, Lukin, PRA 79, 032325 (2009)]

-- Potential Implementations with Ion/Atom/NV/QD

- Key Idea:
 - Create almost perfect Bell pairs at the encoded level (CSS code) [L.J., Taylor, Nemoto, Munro, Van Meter, Lukin, PRA 79, 032325 (2009)]
- Procedure
 - Heralded Entanglement Generation/Purification [loss errors]
 - **Deterministic** Entanglement Connection & Error Correction [operation errors]
- Time Scaling
 - $Poly(Log(L)) * \tau_0$, with pair generation time

$$\tau_0 \propto \frac{l_0}{c} \frac{\exp(l_0 / l_{att})}{\eta^2} \approx \frac{0.1ms}{\eta^2}$$
 for repeater spacing $l_0 = 10km$.

- Advantages
 - Fast for long distances (>Kbits/sec)
 - Suppressed memory errors [Munro, et al., Nature Photonics 4, 792 (2010)]
- Limitation
 - Heralded Entanglement Generation still requires *two-way* communication between neighboring stations to suppress loss errors, which limits τ_0 .
 - Can we design efficient QR protocols to overcome loss errors?

Three Generations of QRs

	Approaches	1 st Generation	2 nd Generation	3 rd Generation
Loss Errors	Heralded Generation [<i>Two-Way</i> Comm.]			
	Quantum Error Correction [<i>One-Way</i> Comm.]			
Operation Errors	Heralded Purification [<i>Two-Way</i> Comm.]			
	Quantum Error Correction [<i>One-Way</i> Comm]			

3rd Generation QRs

-- Architecture based on Quantum Error Correction

to complete state transfer.

Munro, Stephens, Devitt, Harrison, Nemoto, Nature Photonics 6, 777 (2012) Muralidharan, Kim, Lütkenhaus, Lukin, L.J., PRL 112, 250501 (2014)

- Key Idea:
 - Use Quantum Error Correction for BOTH loss and operation errors [Fowler, Wang, Hill Ladd, Van Meter, Hollenberg, PRL 104, 180503 (2010)] [Munro, Stephens, Devitt, Harrison, Nemoto, Nature Photonics 6, 777 (2012)] [Muralidharan, Kim, Lütkenhaus, Lukin, L.J., PRL 112, 250501 (2014)]
- Procedure
 - Quantum Encoding & Send/Propagate Quantum States over Optical Channel
 - Apply Quantum Error Correction (loss errors & operation errors)
- Time Scaling
 - $Poly(Log(L)) * \tau_{opr}$, with local gate operational time τ_{opr} .
- Advantages
 - Ultra Fast for long distances (>Mbits/sec)
 - Suppressed memory errors [Munro, et al., Nature Photonics 6, 777 (2012)]
- Challenges
 - Local operation takes time, which limits τ_{opr} .
 - Large encoding block (hundreds or more qubits)
 - No more than 50% loss (no-cloning)

Three Generations of QRs

	Approaches	1 st Generation	2 nd Generation	3 rd Generation
Loss Errors	Heralded Generation [<i>Two-Way</i> Comm.]			
	Quantum Error Correction [One-Way Comm.]			
Operation Errors	Heralded Purification [Two-Way Comm.]			
	Quantum Error Correction [<i>One-Way</i> Comm]			
Key Rate		$\ll c/L_{tot}$	$\sim \frac{c}{\eta^2 L_0}$	$\sim rac{1}{ au_{opr}}$

Rate Estimates

Cost Function & Cost Coefficient

Resources to generate a secret key:

- **Time**: 1/*R*
- **Qubits**: $n \times L_{tot}/L_0$

Cost = Time × Qubits:
$$C(L_{tot}) = \min_{n,L_0} \frac{n}{R} \frac{L_{tot}}{L_0}$$
 [qubit*time/sbit]

Cost coefficient: $C'(L_{tot}) = C(L_{tot})/L_{tot}$ [qubit*time/(sbit*km)]

Comparison Among Various QR Protocols

• Preliminary results of comparison among four QR protocols:

Protocol Name	Properties & Refs
1 st Gen	BDCZ scheme [<i>PRL 81, 5932 (1998)</i>]
2 nd Gen	QR with [[n,k,d]] code [PRA 79, 032325 (2009]
3 rd Gen	Optimized quantum parity code [arXiv: 1310.5291]

• The control parameters:

Description
Total distance
Fidelity of unpurified Bell pair
Probability of gate error
Coupling loss (between qubit and fiber)
Time of local operations

• Optimization criterion: Cost coefficient

Comparison Among Various QR Protocols

Summary

Three Generations of QRs

	Approaches	1 st Generation	2 nd Generation	3 rd Generation
Loss	Heralded Generation [<i>Two-Way</i> Comm.]			
Errors	Quantum Error Correction [<i>One-Way</i> Comm.]			
Opera tion	Heralded Purification [<i>Two-Way</i> Comm.]			
Errors	Quantum Error Correction [<i>One-Way</i> Comm]		V	V

Compare Key Generation Rate

Compare Cost Coefficients

