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Why lattice QCD?

Large experimental and theoretical effort dedicated to

* Searching for beyond the Standard Model (New Physics) effects via

precise measurements/SM predictions of flavour observables.

* Constraining possible NP models.

Laiho,Lunghi,Van de Water PRD81:034503 (2010)

Example: UT fits

Experiment = (known factors)× (VCKM )×

lattice︷ ︸︸ ︷
(matrix elements)

Error bands are still dominated by theory errors, in particular due to hadronic

matrix elements (encoding non-perturbative physics) → use lattice QCD



Phenomenological goals

# Tests of the SM

Experiment = (known factors)× (VCKM )×(matrix elements)︸ ︷︷ ︸
lattice

* Test the SM by overconstraining its parameters.

* Unveil new physics.

# Constraining and getting information about beyond the SM theories.

# Testing QCD by reproducing the measured spectrum of masses of

hadrons.

# Precision calculation of SM parameters.

Parameters of the Scalar Sector

* quark masses: mu, md, ms, mb, mc (need mb,c, αs to test SM

* elements of the CKM matrix. Higgs couplings)

# Hadronic properties: masses, structure, decay constants, form factors

for electromagnetic, weak and rare decays, ...



Some points to remember

# Lattice gauge theories are the same of the theory we are simulating,

they are not models. However, we are limited in the things we can

calculate efficiently.

# There are statistical and systematic errors associated with any

calculation and one needs to be able to estimate (calculate) them in

a rigorous way.

# Lattice calculations are numerically very intensive.



1.1 Introduction: Path integral formalism

The lattice formulation is based on the path integral formalism.

1.1.1 Path integrals in quantum mechanics

(we are going to use h/(2π) = c = 1)

# A simple one-particle 1-d system has H = p2/(2m) + V (x) with [x, p] = i

* Solve Schrödinger equation for simple V (x).

* Alternatively, calculate the transition amplitude which tells us how

a position eigenstate evolves in time. This can be represented by a

path integral

〈xf |e−iH(tf−ti)|xi〉=
∫
Dx eiS[x]

the integration is over all possible paths x(t) with end points xi and xf
weighted by the exponential of the action. The action is defined by

S[x] ≡
∫ tf

ti

dtL(x, ẋ) ≡
∫
dt

[
mẋ(t)2

2
− V (x(t))

]



1.1.1 Path integrals in quantum mechanics

xi

xf

ti tfa

∫
Dx eiS[x]

The classical path is the one for

which the action is minimized (mẍ

= V’). Path integral allows

quantum fluctuations around this.

# Discretization of the space: Sum over all possible x(t) can be done by

breaking t up into a set of points t0 = ti, t1, ..., tN = tf and integrating

over xj = x(tj)

∫
Dx(t) =

∫
dx1dx2...dxN−1 → N − 1−dimensional integral

* Spacing between tj points is called a (lattice spacing)



1.1.1 Path integrals in quantum mechanics

# Discretization of the action: Evaluate the action at each ti. For a

smooth function x(t):

∫ tj+1

tj

Ldt ≈ a

[
m

2

(
xj+1 − xj

a

)2

+
1

2

(
V (xj+1) + V (xj)

)]

S[x] = S[xj ; j = 1...N ] =

N∑
j=1

∫ tj+1

tj

Ldt ≈
N∑
j=1

[
m

2a
(xj+1 − xj)2 + aV (xj)

]

# Goal: develop numerical procedures to evaluate the evolution of the

position eigenstate through the path integral (≡ propagator)

〈xf |e−iH(tf−ti)|xi〉 =

∫
dx1dx2...dxN−1 e

iS[x]

* Phases are hard to handle numerically → rotate time to

Euclidean space: t→− it



1.1.1 Path integrals in quantum mechanics

Knowledge of the propagator as a function of xf , tf , xi, ti gives complete

information about the quantum theory.

In wave function language the propagator can be written as

〈xf |e−H(tf−ti)|xi〉 =
∑
n

ψ∗n(xf )ψn(xi)e
−En(tf−ti) ψn(xi) = 〈En|xi〉

# Example: Take xi = xf = x and T ≡ tf − ti.

〈x|e−HT |x〉 =
∫
Dxe−S[x]

S[x] ≡
∫ T
0 L(x, ẋ) dt ≡

∫
dt[mẋ(t)2

2
+ V (x(t))]

The result is dominated by the ground state −E0 at large T .

〈x|e−HT |x〉 =
∑
n

ψ∗n(x)ψn(x)e−EnT T→∞−−−−→ |ψ0(x)|2 e−E0T



1.1.1 Path integrals in quantum mechanics

# Example: We can generate excited states by inserting x operators at

intermediate points and measuring ratios of path integrals∫
Dxx(t2)x(t1)e−S[x]∫

Dxe−S[x]

T→∞−−−−→ |〈E0|x|E1〉|2 e−(E1−E0)(t2−t1)

* The ground state can not propagate from t1 to t2 because x

changes parity.

In principle, path integral averages of arbitrary functionals Γ[x]

〈〈Γ[x]〉〉 =

∫
Dx(t)Γ[x]e−S[x]∫
Dx(t)e−S[x]

can be used to computed any physical property of the ground and excited

states in the quantum theory.



1.1.2 Evaluation of path integrals: Monte Carlo methods

# Evaluation of integrals: Monte Carlo methods.

〈〈Γ[x]〉〉 =

∫
Dx(t)Γ[x]e−S[x]∫
Dx(t)e−S[x]

that is a weighted average over paths with weight e−S[x].

* Configuration: A particular path described by a vector of numbers

x = x(t0), x(t1), ..., x(tN−1).

* Ensemble: Set of configurations. We generate a large number

Nconf of random paths of configurations

x(α) ≡
〈
xα0 , x

α
1 ..., x

α
N−1

〉
α = 1, 2, ...Nconf

in such way that the probability P [x(α)] of obtaining any particular path

x(α) is P [x(α)] ∝ e−S[x(α)].



1.1.2 Evaluation of path integrals: Monte Carlo methods

# Example: Metropolis algorithm (simplest procedure)

* Start with an initial configuration.

* xi→xi + ξ where ξ is a random number in [−ε, ε] (uniform probability

distribution).

* Calculate ∆S for that configuration.

* Accept the change if ∆S < 0.

* If ∆S > 0, accept the change if e−∆S > rand(0, 1).

* Repeat for all i and update the configuration.

# Correlations: successive paths are highly correlated → keep only the

configurations generated every Ncor − th path.

Ncor ∝ 1
a2 for Metropolis

=⇒ Ensemble of configurations with probability e−S.



1.1.2 Evaluation of path integrals: Monte Carlo methods

The weighted average over uniformly distributed paths of any

Γ[x] is thus given by the Monte Carlo estimator Γ̄:

〈〈Γ[x]〉〉 =

∫
Dx(t)Γ[x]e−S[x]∫
Dx(t)e−S[x]

≈ Γ̄ ≡
1

Nconf

Nconf∑
α=1

(Γ[x(α)])

And we can estimate statistical errors using

σ2
Γ̄ ≈

1

Nconf

 1

Nconf

Nconf∑
α=1

Γ2[x(α)]− Γ̄2


statistical errors ∝ 1/

√
Nconf



1.1.3 Quantum field theory on a lattice: QCD

# Lagrangian formulations → quantization using paths integrals.

* x(t) → ψ(x) or Aµ(x) with x = (t, ~x).

# The basic path integral partition function for QCD is∫
DAµDψDψ̄e−SQCD

with SQCD =
∫
dx4LQCD and

LQCD =
1

2
TrF 2

µν + ψ(γ ·D +m)ψ =
1

2
TrF 2

µν + ψM [A]ψ

g is the bare QCD coupling (αs = g2/4π), D is the covariant derivative,

(∂µ − igAµ), and F is field strength (∂µAν − ∂νAµ + ig[Aµ, Aν ])



1.1.3 Quantum field theory on a lattice: QCD

* Take 4-d box (Eucl.) space-time

* Discretize the QCD action in the lattice

(t, ~x)⇒ ~n = (nta, nxa, nya, nza)

ψ(x)→ ψn

with nt = 1, ..., Nt and ni = 1...Ns.

→
∫
d4x⇒ a4

∑
ni

, dim(M) = 4 · 3 · (N3
s ·N4)

* Replace derivatives by finite differences

∂µf(x)→
f(x+ aµ̂)− f(x− aµ̂)

2a

→ Path integral becomes a product of integrals over each of the fields∫
DψDψ̄ → Πn

∫
dψndψ̄n

Lattice acts as an UV cut-off (pi > π/a are not allowed)



1.2 Lattice QCD: Discretization of gluon fields

# Key feature: gauge invariance (even at finite a).

* It is impossible to formulate a discretized version of QCD in terms

of Aµ and gauge invariant.

* Instead of specifying gauge field by values at the sites, use variables

on the links joining the sites =⇒ gluon fields live on links while quark

(gluon fields transport colour from one place to another) fields live on sites.

** Classically the link variable joining sites x and x+ aµ̂ is

Uµ(x) ≡ Pexp
(
−i

∫ x+aµ̂

x

gA · dy
)

** So I have
Aµ ≡ AbµTb → Uµ = e−iagAµ

continuum lattice

Uµ(x)

x x+1 U(g)
µ (x) = G(x)Uµ(x)G†(x + aµ)

ψ(g)(x) = G(x)ψ(x)

G(x) is a gauge (3x3 colour matrix)

transformation



1.2. Lattice QCD: Discretization of gluon fields

Uµ(x)

x x+1

U−µ(x+1)

x x+1 * Uµ(x) are 3× 3 unitary

matrices

UU† = 1 →

U−µ(x+ a) = U−1
µ = U†µ(x)

# I need to build gauge-invariant objects (remember, G†G = 1).

* Gauge invariant derivatives: ∆µf(x) ≡ 1
a

[
Uµ(x)f(x+ aµ̂)− f(x)

]
* Open strings with quarks at ends

ψ̄(x2)string(x1, x2)ψ(x1)

x1

x2

* Closed strings of U’s

1

2

3

4



1.2. Lattice QCD: Discretization of gluon fields

# Wilson glue action: Simplest

discretization of

SQCDg =
∫
d4x 1

4g2 TrFµνFµν is.

S =
6

g2

∑
p

[
1−

1

3
ReTr(Up)

]

* 1x1 gluon loop (plaquette)

1

2

3

4

Up = (U1)ij(U2)jk(U3)kl(U4)li =

Ui(x)Uj(x+ î)U†i (x+ ĵ)U†j (x)

* Wilson glue action is conventionally written

Sg,QCD = β
∑
p

(1−
1

Nc
ReTrUp); β ≡

2Nc

g2

* It has O(a2) errors.

# a is not explicit in the action (it is the only parameter of the pure

gluon theory). We only know a after the calculation.

* The value of a(≡ ΛQCD) depends on β(≡bare αs).



1.2. Lattice QCD: Discretization of gluon fields

Exercise: For a simple U(1) gauge transformation, eiα(x), show that

U
(g)
µ (x) = G(x)Uµ(x)G†(x+ aµ)

ψ(g)(x) = G(x)ψ(x)

ψ̄(g)(x) = ψ̄(x)G†(x)

is equivalent to the QED-like gauge transformation in the continuum

A
(g)
µ = Aµ − ∂µα.



1.2. Lattice QCD: Discretization of gluon fields

Exercise: Probe that the Wilson action

Sg,QCD = β
∑
p

(1−
1

Nc
ReTrUp); β =

2Nc

g2

reduces to the continuum gluon action up to O(a2) corrections.



1.2.1 Improvement of the lattice actions

Key point to get high precision results

Discretization errors (a 6= 0): Obvious source of systematic errors

* For a fixed L cost of lattice calculations grows as 1/a4

* Other factors that increase the calculation cost with 1/a

** Physical sizes (eg. of glueball) grow in lattice units as a decreases.

** Decorrelation time to new configurations on physical scale

grows as 1/a2



1.2.1 Improvement of the lattice actions

Discretization errors (a 6= 0): Obvious source of systematic errors

cost(lattice QCD) ≈
(
L
a

)4
1
a

1
m2
πa

a small increases N and cost → improve the discretization instead

* Discretization of derivatives:

∂2ψ(xj)

∂x2 |cont = ∆xψ(xj)|lat.

up to O(a2) : ∆xψ(xj)|lat. = ∆
(2)
x ψ(xj + a) +O(a2) =

ψ(xj+a)−2ψ(xj)+ψ(xj−a)

a2

up to O(a4) : ∆xψ(xj)|lat. = ∆
(4)
x ψ(xj) = ∆

(2)
x ψ(xj)− a2

12
(∆

(2)
x )2ψ(xj) +O(a4)



1.2.1 Improvement of the lattice actions

# Improving the gluon action

Errors in Wilson plaquette action are O(a2): ≈ 4% at a = 0.1 fm.

=⇒ (Symanzik) improved the action to reduce the errors at fixed a.

* Improvement terms: bigger loops (2× 1 rectangles)

Sg,QCD =
β

Nc

∑
(Nc −

5c1

3
ReTrUp +

c2

12
ReTr(U2×1 + U1×2))

** Coefficients chosen to cancel a2. However, in QCD, they get

renormalized by radiative corrections

ci = 1 + c
(1)
i αs + . . .

- Need to match continuum QCD which has gluons with

momentum> π/a → perturbative calculation of ci

→ After including LO radiative corrections, left with O(1)αsa2

errors (≈ 1% at a = 0.1 fm).



1.3 Lattice QCD: Discretization of the

fermionic action

Big challenge of lattice QCD: QUARKS

SQCD = SG[A] +
∑
x ψ(γ ·D +m)ψ = SG[A] + ψM [A]ψ

Quarks fields anticommute: can not be represented by ordinary numbers

in a computer

→ Do quark functional integral analytically by hand

Z ≡
∫
DAµDψDψ̄e−SQCD =

∫
DAµe−SG[A]

∫
DψDψ̄e−ψ̄M [A]ψ

=

∫
DAµdet

(
M [A]

)
e−SG[A] =

∫
DAµe−Seff [A]

〈0|O[ψ̄, ψ,A]|0〉 =
1

Z

∫
DAµF [M−1, A]e−Seff [A]

=⇒ Seff [A] = SG + ln det(M [A]): fermionic determinant (one per flavour)

Problem reduced to an integration over background gluon configurations.



1.3.1 Lattice QCD: Calculation of expected values

# Generate an ensemble of configurations U distributed according to

e−Seff and calculate the ensemble average of O

〈0|O|0〉 =<< O >>=
1

Nconf

Nconf∑
iconf=1

Oiconf

* Statistical errors ∝ 1/
√
Nconf : Typically need Nconf=many hundreds



1.3.1 Lattice QCD: Calculation of expected values

Example: hadron mass Choose an operator that creates the hadron

at time 0 and destroys it at T

* Any operators with correct JPC will do.

1

Z
〈0|H†(T )H(0)|0〉 =

∫
DU DψDψ (

∑
~x ψ

a
Γψb(~x))T (ψ

b
Γψa)0e

−SQCD∫
DU DψDψ e−SQCD

and, after integration over quark fields (a 6= b)

1

Z
〈0|H†(T )H(0)|0〉 =

∫
DU Trspin,color,x̃(M−1

a ΓM−1
b Γ)detM e−SG∫

DU detM e−SG

=

∫
DU Trspin,color,x̃(M−1

a ΓM−1
b Γ) e−Seff∫

DU e−Seff

Calculate this by averaging the TrM−1 factors over sets of

configurations distributed according to e−Seff



1.4.1 Lattice QCD: Calculation of expected values

1

Z
〈0|H†(T )H(0)|0〉 =

∫
DU Trspin,color,x̃(M−1

a ΓM−1
b Γ) e−Seff∫

DU e−Seff

The lhs of previous expression is related to the hadron mass as

1

Z
〈0H†(T )H(0)|0〉 =

∑
n

|〈0|H|n〉|2e−mnT →︸︷︷︸
T→∞

|〈0|H|0〉|2e−m0T

where n is the nth state with quantum numbers set by Γ.

# Improve convergence: smearing H with a wavefunction

H = ψ(~x2)Γφ(|~x2 − ~x1|)ψ(~x1) → better overlap with n = 0.

* Make several different H to extract excited states.



1.4.2 Quenched approximation

1

Z
〈0|H†(T )H(0)|0〉 =

∫
DU Trspin,color,x̃(M−1

a ΓM−1
b Γ) e−SG+ln(detM)∫

DU e−SG+ln(detM)

* Valence quarks (quarks in the operator): need to calculate M−1 to

integrate quarks out

** Very costly ∝ 1
amq

→ simulate unphysical (larger) masses

* Sea quarks (qq̄ pairs in vacuum): need to include det(M) in making

gluon configurations → very expensive to include in simulations,

especially for light quarks mq → 0

Quenched approximation

Not including det(M) ≡ cutting out quark-antiquark pair production

** Important sea quarks: u, d, s (Nf = 2 + 1 simulations). Effect of c

starting to be included (Nf = 2 + 1 + 1). b, t have not effect.



1.4.3. Discretization of light quarks

Simplest discretization: Naive quarks

Sq =
∑
x ψ(x)(γ ·∆ +ma)ψ(x)

∆µψ(x) ≡ 1
2u0

(Uµ(x)ψ(x+ µ̂)− U†µ(x− µ̂)ψ(x− µ̂))

* Advantages:

** Discretization errors O(a2)

** Exact chiral symmetry (ψ → eiαγ5ψ) → important properties

mπ →︸︷︷︸
mu/d→0

0

** Eigenvalue spectrum of M similar to continuum



1.4.3. Discretization of light quarks

* Disadvantages: Doubling problem.

-π/a π/a

cont

latt

ma=0

0

Continuum inverse quark

propagator (1 zero when m→ 0)

G−1(p) = iγµpµ +m

On the lattice (16 zero when

m→ 0)

G−1(p) = iγµ
sin pµa

a
+m

Similar behaviour to continuum

at p ≈ −π and p ≈ π!

→ There are 2d quarks in d

dimensions instead of only 1.

doublers: 15 (for dim=4) unphysical extra states.



1.4.3. Discretization of light quarks

Different ways of discretizing the fermionic action, although they must

be identical in the continuum limit, have different properties.

* Approach to the doubling problem.

* Chiral (and other) symmetries.

* Simulation cost.

* Discretization errors.

Wilson, clover, twisted mass, Ginspar-Wilson (Neuberger, domain wall,

fixed-point), staggered, . . .

Key ingredient: Highly improved actions

→ same errors with larger a

All must agree in the continuum limit



1.4.4. Discretization of heavy quarks

# Problem is discretization errors (' mQa, (mQa)2, · · ·) if mQa is large.

* Effective theories: Need to include multiple operators matched to

full QCD B-physics
√

** HQET (static,...): systematic expansion in 1/mh.

** NRQCD: systematic (non-relativistic) expansion in (vh/c).

** Fermilab, RHQ, ...

* Relativistic (improved) formulations:

** Allow accurate results for charm (especially twisted mass, HISQ

(Highly improved staggered quarks)).

** Advantages of having the same formulation for light and heavy:

ratios light/heavy, PCAC for heavy-light, ... Also simpler tuning

of masses.

** Also for bottom: Results for mc · · · ≤ mb and extrapolation to mb
(twisted mass, HISQ).



2. Physical results: Tests of Lattice QCD



2.1. Steps of a typical lattice calculation

∗ Choice of parameters: Volume (lattice spatial and temporal

size), lattice spacing through bare QCD coupling constant

(determined after the calculation is completed).

Typical lattice spacing a ∼ 0.1 fm or 1/a ∼ 2GeV

mπL ∼ 2.5− 5 (need mπL ≥ 4 to control FV errors at 1%)

∗ Choice of gluon and quark formulations and number of quarks

flavours and masses in lattice units (physical masses determined

after the calculation is completed).

Unquenched calculations with realistic

vacuum polarization effects

** Nf = 2 mu = md and no sea strange quarks.

** Nf = 2 + 1 mu = md plus a heavier sea strange quark (usually

close to/or the physical value).

** Nf = 2 + 1 + 1 Add sea charm quarks too (just starting).

** Partially quenched: Unquenched calculation with msea 6= mval.

** Full QCD: Unquenched calculation with msea = mvalence.



2.1. Steps of a typical lattice calculation

∗ Generation of ensembles of gluon configurations using

importance sampling with e−Seff .

∗ Invert quark matrix → quark propagators on each gluon

configuration.∫
[Dψ][Dψ̄][DA]ψ̄(x)f1,aψ(x)f2,aψ̄(y)f2,bψ(y)f1,be−SQCD

=
∫

[DA]
(
M−1,f1
x,y [A]

)ab (
M−1,f2
y,x [A]

)ba
det(M) e−SQCD

∗ Calculate correlators (putting together quark propagators

and/or gluon fields)

∗ Average over configurations → get statistical errors.

∗ Fit correlators to their expected theoretical form → extract

physical quantities (hadron masses, matrix elements ...)

1

Z
〈0|H†(T )H(0)|0〉 =

∑
n

|〈0|H|n〉|2e−mnT →︸︷︷︸
T→∞

|〈0|H|0〉|2e−m0T

excited states from subleading exponentials → have a much

weaker statistical signal.



2.1. Steps of a typical lattice calculation

∗ Determining the 5 parameters of the lattice action: lattice

spacing a and quark masses.

** Need experimental input to determine lattice spacing a in

GeV : 2S − 1S splitting in Υ system, mN , mΩ, mΞ, fπ, the quark

potential (r0, r1), . . .

→ this also determines αs.

** Use experimentally measured hadron masses as inputs to fix

mu,md,ms,mc,mb, for example: mπ ,mK ,mDs ,mBs .

∗ Repeat the process at several values of a and quark masses:

check a errors are under control.

∗ Extrapolate to the continuum limit (a→ 0), to the physical

quark masses (CHPT) and infinite volume limit.

∗ Calculate (estimate) systematic errors.



2.2 Error analysis

In order to have precision calculations (few % errors) we need

unquenching and estimate all possible sources of errors.

∗ Statistical errors: From Monte Carlo integration. Also need to

include errors in the fitting procedure to extract physical

quantities from correlation functions.

statistical errors ∝ 1/
√
Nconf

∗ Finite lattice spacing: we need simulations at different

values of a, to extrapolate to the continuum limit a→ 0.

To simulate at small values of a while keeping the physical

L constant is very expensive

→ Improved actions (and operators) decrease the error,

making the extrapolation from a given set of lattice

spacings more precise.

∗ Typically, errors ∝ a, a2, αsa2

∗ Estimates by power counting and/or comparison of results

at the lowest values of a.



2.2 Error analysis

∗ Renormalization constants: The lattice is an ultraviolet

regulator. We need to calculate renormalization constants to

relate quantities calculated in the lattice with quantities

calculated in a different scheme.

〈Ocont〉 = Zlat〈Olat〉

** Lattice perturbation theory: perturbative errors.

Z = z0 + z1αs + z2α2
s +O(α3

s)

** Nonperturbative methods: syst.+stat. errors

Impose that suitable Green functions, computed between external

off-shell quark and gluon states in a fixed gauge coincide with their tree

level value

ZO(µa, g(a))〈p|O|p〉|p2=−µ2 = 〈p|O|p〉0 with O = ψ̄Γψ



2.2. Error analysis

∗ Chiral extrapolations: In practise, most of the times we are

not able to simulate at physical values of the light quark masses

mu,d. Usually no problems to get ms right.

→ needs to extrapolate to the physical light masses

use Chiral Perturbation Theory (CHPT).

** Need simulations for several values of mu,d.

** Simulated masses need to be small enough (mu,d ≤ ms/2).

Chiral Perturbation Theory

- It is the effective theory that describe QCD at low energies. It is not a model!

- Based on the concept of effective field theory.

* Quantum field theory described by the most general lagrangian where

operators are built with the relevant degrees of freedom at those energies,

and it is compatible with all the symmetries of the original theory.



Chiral Perturbation Theory

Information about the heavier degrees of freedom (high energy physics) is

contained in the couplings modulating the operators ci2n.

LCHPT (U,D
µ
U) =

∑
n

∑
i

c
i
2nL

i
2n(U,D

µ
U)

- Formulated in terms of the relevant degrees of freedom at low energies (< 1GeV):

π, K and η (collected in the unitary 3× 3 matrix U)

- Organized in powers of these light masses and external momentum (≡ derivatives).

- Keep the symmetries (chiral symmetry) of QCD.



Chiral Perturbation Theory

- On the lattice: Look to a typical expression for hadron masses and decay

constants at NLO.

MPxy = µ(mx +my)

{
1

16π2f2

(
F1(l(m

2
ab)) + a

2
F2(l(m

2
ab))

)
+

µ

f2
F
valence
3 (Li)(mx +my) +

µ

f2
F
sea
3 (Li)(mu +md +ms)

+Ca
2

+ analytic NNLO
}

fPxy = f

{
1 +

1

16π2f2

(
F
′
1(l(m

2
ab)) + a

2
F
′
2(l(m

2
ab))

)
+

µ

f2
F
′valence
3 (Li)(mx +my) +

µ

f2
F
′sea
3 (Li)(mu +md +ms)

+C
′
a

2
+ analytic NNLO

}
with l(m2) ≡ m2lnm

2

Λ2 and m2
ab = µ(ma +mb) + a2∆ab. Li are the couplings of

the p4 CHPT lagrangian.



2.2. Error analysis

∗ Finite volume: keep mπL > 4. Estimate errors by

** Repeat the calculation for a fixed a and quark masses for

several volumes.

** Use CHPT: Fit data with finite volume expressions and

extrapolate to infinite volume:

finite volume infinite volume

m2

lnm2

Λ2
+

4

mL

∑
~r 6=0

K1(|~r|mL)

|~r|

 → l(m2) ≡ m2

(
ln
m2

Λ2

)

L is de spatial dimension of the lattice and K1 a Bessel function.

∗ Isospin and electromagnetic effects: Traditionally

subdominant, but become important due to reduction of dominant

errors.



2.3. Tests of lattice QCD

After determining the 5 parameters of the lattice action (quark masses

(mu = md and a) using 5 experimental quantities as inputs), we can

make predictions for all other quantities.

Lattice calculations of all other quantities

should agree with experiment.

Simple quantities to calculate using Lattice QCD

For estable (or almost stable) hadrons, masses and amplitudes with no

more than one initial (final) state hadron

Including quark masses and αs, hadron spectrum, weak decays

(leptonic, semileptonic, mixing)...



2.3. Tests of lattice QCD

VCKM =



|Vud| |Vus| |Vub|

π → lν K → lν B → τν

K → πlν B → πτν

|Vcd| |Vcs| |Vcb|

D → lν Ds → lν B → Dlν

D → πlν D → Klν B → D∗lν

|Vtd| |Vts| |Vtb|

〈B0
d
|B̄0

d
〉 〈B0

s
|B̄0

s
〉 no tq̄ hadrons


arg(V ∗ub) 〈K0|K̄0〉



2.3. Tests of lattice QCD

Phenomenology needs precise lattice QCD calculations → Control and

reliably estimate systematic errors

In particular, we need unquenched calculations.

1999: MILC Started to generate ensembles with Nf = 2 + 1 sea quarks, using the

Asqtad (staggered) action.

2004: MILC+HPQCD+FNAL Tested them against experiment at the 2-3% level.

 0.9  1  1.1

Quenched

 0.9  1  1.1

with sea quarks

Υ(3S-1S)

Υ(1P-1S)
Υ(2P-1S)

Υ(1D-1S)

2mBs,av
-mΥ

ψ(1P-1S)

mψ - mηc

mD*
s
 - mDs

mD

mDs

mΩ
mN

fK

fπ

mBc

2007 update



2.3. Tests of lattice QCD

2005: FNAL/MILC Predictions for D, Ds meson decays constants and

semileptonic form factors (shape) with 7− 9% precision.

FNAL/MILC and HPQCD, Phys. Rev. Lett. 94:011601,2005
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D → πlν

* Normalization agrees with experiment (|Vcd(cs)| from elsewhere).

* Prediction of the shape.

2005: FNAL+HPQCD Prediction for Bc mass



2.3. Tests of lattice QCD

2006: RBC/UKQCD started to generate Nf = 2 + 1 ensembles with domain wall

fermions.

2007: Nf = 2 + 1 ensembles started to be generated by several collaborations

(BMW, PACS-CS, JLQCD/TWQCD, HSC) using different gauge and

fermion actions.

2008: BMW,PACS-CS,MILC postdictions of the light hadron spectrum. Also

some results from HSC, HLPC.

Nf = 2 + 1 + 1 ensembles starting to be generated

2010-2011:

BMW,PCACS-CS,FNAL/MILC First physical results at the physical light quark

masses.

ETMC and FNAL/MILC First physical results on Nf = 2 + 1 + 1 ensembles.



2.3. Tests of lattice QCD

Overview of simulations parameters today

Several Nf = 2 + 1 and even Nf = 2 + 1 + 1, and physical quark masses.
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2.3.1. Tests of lattice QCD: hadron spectrum
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2.3. Tests of lattice QCD: hadron spectrum

C. Alexadrou et al (ETM), arXiv:1406.4310
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2.4. Determination of fundamental parameters:

quark masses and αs

Once the parameters of the lattice lagrangian (lattice spacing (≡ scale)

and bare quark masses) are fixed, we can get the corresponding physical

quantities.

Quark masses in a lattice simulation, amlat
q , are bare parameters defined

in the lattice regularization scheme and depend on the fermion action

and the lattice scale.

→ Go to a continuum scheme: renormalization

mMS
q (µ) = ZMS,lat.(µa,mlattq a) 1

a
amlatq

* Perturbatively: Up to two loops Z = 1 + αsz
(1)
1 + α2

sz
(2)
1 + ....

** Lattice perturbative calculations highly non-trivial and for mq
needs at least two-loops.

* Non-perturbatively: Z will have statistical and systematic errors.



2.4. Determination of fundamental parameters: quark masses and αs
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2.4. Determination of fundamental parameters: quark masses and αs

Alternatively for mh = mc,mb: Use dispersion relations involving

correlation functions calculated on the lattice and perturbative

expansions in the continuum.

Example:

Gn ≡
∑
t

(t/a)
n
G(t) with G(t) ≡ a6

∑
~x

(am0h)
2〈0|j5(~x, t)j5(0, 0)|0〉

Gn︸︷︷︸
lattice

=
gn(αMSs (µ), µ/mh)(
amMS

h (µ)
)n−4

→ m
MS
h (µ), α

MS
s (µ)

review by F. Sanfilippo at Lattice2014
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3. Flavour physics on the lattice: examples



3.1. Decay constants

Purely leptonic decays can be used to extract CKM matrix elements or

to test SM/lattice predictions

J = Aµ

W

P

l

ν

Γ(P → lν)︸ ︷︷ ︸
experiment

∝ |Vab|2 f2
P︸︷︷︸

lattice

Simple matrix element 〈0|āγµγ5b|P (p)〉 = ifP pµ → precise calculations

( or (ma +mb)〈0|āγ5b|P (p = 0)〉 = fPM
2
P )

* On the lattice, we calculate 2-point correlation functions

C2(t) =
1

L3

∑
~y

〈0|O(~y, t)O(~0, 0)|0〉 = CPP e
−MP t + excited states

from which we extract CPP and MP , and get the decay constant as

fP = (ma +mb)

√
L3

4

√
CPP

M3
P



3.1. Decay constants

Remember:

∑
~y

〈0|O(~y, 0)O(~0, t)|0〉 =

∫
DU Trspin,color,ỹ

[
M−1,a
y,0 (A)γ5M

−1,b
0,y (A)γ5

]
e−Seff

(with M−1,a
x,y the propagator of a quark of flavour a from x to y)

is evaluated on sets of configurations U ′s distributed according to

e−Seff .



3.1.1. Decay constants of D and Ds mesons

Example calculation from A. Bazavov et al, arXiv:1407.3772 (simplified version)

* MILC Nf = 2 + 1 + 1 ensembles: Highly Improved Staggered quarks (HISQ

action) and one-loop tadpole improved Symanzik improved gauge action.

∼ 1000 configurations on each ensemble.

* On the sea sector (configurations): Four different values of a and three different

values of ml = md = mu, including the physical value, for each a. ms and mc

close to their physical values.

* On the valence sector (for each choice of parameters in the sea sector):

For a cq̄ meson, 10 different values of mq ranging from ml to ms and 2 values

of mc (one equal to the one in the sea).

* Three different volumes for one of the ensembles (choice of a and quark masses)

For each choice of parameters above, C2(t) on each configuration

→ extract the aMD and afD (and statistical error) for each data point

by fitting to the expected theoretical form



3.1.1. Decay constants of D and Ds mesons

Need to extrapolate all the lattice data to the continuum (a = 0) and

infinite volume limits, and interpolate to the physical quark masses.

Use an effective field theory incorporating chiral, a2, and finite volume

effects systematically: Staggered Heavy Meson ChPT (SHMChPT).

* Allow to use all data (included unphys. quark masses):

** Reduce statistical errors

** Correct for quark mass mistuning

** Perform continuum and infinite volume extrapolation in a controlled way



3.1.1. Decay constants of D and Ds mesons

Orange band: Fit result for ΦD = fD
√
MD after doing a = 0, mv = ml,

and adjusting ms and mc to their physical values.
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3.1.1. Decay constants of D and Ds mesons
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3.1.1. Decay constants of D and Ds mesons

Final results:

fD+ = 212.6± 0.4stat
+0.9
−0.8|a2 extrap ± 0.3FV ± 0.0EM ± 0.3fπ PDG MeV

fD+ = 212.6(0.4)(+1.0
−1.2) MeV

fDs = 249.0± 0.3stat
+1.0
−0.9|a2 extrap ± 0.2FV ± 0.1EM ± 0.4fπ PDG MeV

fDs = 249.0(0.3)(+1.1
−1.5) MeV

(FV error comes from fπ needed in the scaling setting process, direct FV error is

negligible and included in the extrap. error)

Agreement with analysis including only physical quark masses ensembles,

but with smaller errors and more robust systematic error analysis.

Need to include the (until recently subdominant) uncertainties

from FV and EM effects



3.1.1. Decay constants of D and Ds mesons: summary

Reduction of errors in fD and fDs due to the use of relativistic actions.
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our average for = +

FNAL/MILC 12B

FNAL/MILC 13

ETM 13F

FLAG− 2,Nf = 2 + 1

fD = (209.2± 3.3) MeV

fDs
= (248.6± 2.7) MeV

experimental averages Rosner,

Stone, Zupanc, CKM 2014

fD = (203.9± 4.7) MeV

fDs
= (256.9± 4.4) MeV

(using |Vcs|, |Vcd| from global

SM fit and experimentally

measured Γ(D,Ds→ lν))

FNAL/MILC 13: Calculation in previous slides.

fD+ = 212.6(+1.1
−1.3) MeV fDs

= 249.0(+1.1
−1.5) MeV

Small errors due to: highly improved action, physical light quark masses, no

renormalization, MILC ensembles with small lattice spacing (0.06 fm)



3.1.2. Decay constants of B and Bs mesons:

summary

# Needed for processes potentially sensitive to NP: B(s) → µ+µ−.

# Check agreement theory-experiment Br(B− → τ−ν̄τ ).

# UT inputs.



3.1.2. Decay constants of B and Bs mesons: summary

150 175 200 225

=
+

+
=

+
=

MeV

ETM 09D
ETM 11A
ALPHA 11
ETM 12B
ALPHA 12A
ETM 13B, 13C
ALPHA 13

our average for =

HPQCD 09
FNAL/MILC 11
HPQCD 12 / 11A
HPQCD 12
RBC/UKQCD 13A (stat. err. only)

our average for = +

HPQCD 13
ETM 13E

our average for = + +

210 230 250

=
+

+
=

+
=

MeV

ETM 09D
ETM 11A
placeholder
ETM 12B
ALPHA 12A
ETM 13B, 13C
ALPHA 13

our average for =

HPQCD 09
FNAL/MILC 11
HPQCD 11A
HPQCD 12
RBC/UKQCD 13A

our average for = +

HPQCD 13
ETM 13E

our average for = + +

FLAG-2

f
Nf=2+1+1

B = (186± 4) MeV

f
Nf=2+1+1

Bs
= (224± 5) MeV

f
Nf=2+1

B = (190.5± 4.2) MeV

f
Nf=2+1

Bs
= (227.7± 4.5) MeV

[fNf=2

B = (189 ± 8) MeV ,

f
Nf=2

Bs
= (228 ± 8) MeV ]

Using f
Nf=2+1

B above: Br(B+ → τν)/|Vub|2 = 6.42(21)

Belle av.: Br(B+ → τν)/|V exc.
ub
|2 = 8.2 ± 3.1; Br(B+ → τν)/|V inc.

ub
|2 = 5.0 ± 1.7

BaBar av.: Br(B+ → τν)/|V exc.
ub
|2 = 15.3 ± 4.2; Br(B+ → τν)/|V inc.

ub
|2 = 9.2 ± 2.3

exp. averages from Rosner and Stone, 1309.1924



3.1.2. Decay constants of B and Bs mesons

Conversely, extract the value of |Vub| from f latticeB and experimental

measurements of B → τν:
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HFAG Inclusive
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 (Babar)

| |

3σ tension between exclusive and inclusive determinations

Exc. determination: Use experimental data on B → πlν and non-perturbative

inputs (form factors) from lattice QCD.



3.1.3. Ratios of decay constants: fK/fπ and |Vus|

For ratios of decay constants, higher precision can be achieved due to

cancellation of statistics and systematics uncertainties.

# Many Nf = 2 + 1, 2 + 1 + 1 calculations of fK/fπ → good test of LQCD
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Marciano (2005) proposed to extract the CKM element |Vus| from

Γ
(
K → µν̄µ(γ)

)
Γ
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)︸ ︷︷ ︸
experiment

∝ |Vus|
2

|Vud|2

(
fK

fπ
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︸ ︷︷ ︸
lattice



3.1.3. Ratios of decay constants: fK/fπ and |Vus|

Marciano (2005) proposed to extract the CKM element |Vus| from

Γ
(
K → µν̄µ(γ)

)
Γ
(
π → µν̄µ(γ)

)︸ ︷︷ ︸
experiment

∝ |Vus|
2

|Vud|2

(
fK

fπ

)2

︸ ︷︷ ︸
lattice

Using the most recent Nf = 2 + 1 + 1 lattice calculation FNAL/MILC2013,

fK+/fπ+ = 1.1956(+28
−34), and experimental data, and |Vud| from nuclear β

decays

→ |Vus| = 0.22487(51)LQCD(29)Br(Kl2)(20)EM (5)Vud

Further improvements underway, but will eventually require inclusion

of QED in simulations.



3.2. Semileptonic decays: Extraction of CKM

elements

P1 P2

W

l

ν

J = Vµ, Aµ

Vij

Γ(P1 → P2lν)︸ ︷︷ ︸
experimental

∝ |Vab|2 |f+(q2)|2︸ ︷︷ ︸
lattice

〈P2(p′)|Vµ|P1(p)〉 =

(pµ+p′µ)f+(q2)+(pµ−p′µ)f−(q2)

where q = p− p′.

* Extract CKM matrix elements.

* Testing lattice QCD: shape of the form factor (as a q2 function) against exper.

* Correlated signals of NP to those in leptonic decays.

More challenging (and expensive) lattice calculations: 3-point correlation

functions, non-zero momentum (discretization errors proportional to a~p), small

overlap with experiment in q2 ...



3.2.1 Semileptonic decays: K → πlν and |Vus|

Need the form factor at q2 = 0, fKπ+ (q2 = 0): very accurate calculation due

to vector current conservation in the isospin limit (we calculate isospin corrections of

order 2 to f+(0) = 1)
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Most precise value is from

FNAL/MILC,

f+(0)Nf=2+1+1 = 0.9704(32)

with a 0.33% total error

Together with most recent experiment.

results for Γ(K → πlν)

|Vus| = 0.22290(74)f+(0)(52)expt

How does this value compare with |Vus| from leptonic decays?

Does it agree with unitarity?



3.3. Unitarity of the CKM matrix (first row)

Check the unitarity relation |Vud|2 + |Vus|2 + |Vub|2 = 1.

0.9484 0.9488 0.9492 0.9496

|V
ud

|
2

0.0492

0.0496

0.05

0.0504

0.0508

|V
us

|2

- |Vus| (pink) from FNAL/MILC

Nf = 2 + 1 + 1 calculation of fK/fπ and Kl2.

- |Vus| (orange) from FNAL/MILC

Nf = 2 + 1 + 1 calculation of f+(0) and Kl3.

- |Vud| from nuclear beta decays.

- Black line: unitarity line with

|Vub| ≈ 4 · 10−3 ≈ 0

Slight tension between leptonic and semilep.

Vus and between semilep. andunitarity

Uncertainty on |Vus|2 at the same order as uncertainty on |Vud|2

→ time to improve |Vud| determinations



3.4. Exclusive vs inclusive determinations of |Vcb|

|Vcb|: The indirect CP violation parameter εK and rare decays such as

B(K+ → π+νν̄) or B(K0
L → νν̄) depend on |Vcb|4.

|Vcb| extracted from exclusive B decays

(w = v · v′ is the velocity transfer)

dΓ(B→D∗lν)

dw
= (known) · |Vcb|2 · (w2 − 1)1/2|F(w)|2

dΓ(B→Dlν)

dw
= (known) · |Vcb|2 · (w2 − 1)3/2|G(w)|2

F(w) and G(w) calculated on the lattice.

3σ disagreement exc. vs inc.



3.5. BSM phenomenology

(from review by C. Bouchard at Lattice 2014)

R(D∗) theoretical calculation uses

quenched lattice form factors.

R(D) unquenched prediction is 2σ

away from BaBar result



3.5. BSM phenomenology: B rare decays: B → Kll

First unquenched determination of the form factors needed for

theoretical prediction: HPQCD, arXiv:1306.0434, 1306.2364 (similar to B → πlν but

extra tensor form factor)

* Ratio of branching fractions B+ → K+µ+µ− and B+ → K+e+e−,

RK , predicted to be

RlatK = 1.00081(38) ( in the range 1 < q2 < 6GeV2)

* But LHCb most recent measurement is RexpK = 0.745+0.090
−0.074 ± 0.036

2.6σ disagreement between

LHCb and SM prediction



3.5. BSM phenomenology: B rare decays: Bs(d) → µ+µ−

# Bag parameters describing B−meson mixing in the SM can be used for

theoretical prediction of Br(B → µ+µ−) Buras, hep-ph/0303060

Br(Bq → µ+µ−)

∆Mq

= τ(Bq) 6π
ηY

ηB

(
α

4πMW sin2θW

)2

m
2

µ

Y 2(xt)

S(xt)

1

B̂q

* Need to include the effects of a non-vanishing ∆Γs to compare with

experiment K. de Bruyn et al., 1204.1737

Br(Bq → µ+µ−)SM → Br(Bq → µ+µ−)ys ≡ Br(Bq → µ+µ−)SM × 1
1−ys

with ys ≡ ∆Γs/(2Γs).

* Using B̂Bs = 1.33(6), B̂Bd = 1.26(11) HPQCD, 0902.1815, ys = 0.087± 0.014

LHCb,1212.4140

Br(Bs → µ+µ−)ys = (3.71± 0.17)× 10−9 Buras et al. 1303.3820

Br(Bd → µ+µ−) = (1.03± 0.09)× 10−10

Error dominated by uncertainty in the bag parameter Buras et al. 1303.3820



3.5. BSM phenomenology: B rare decays: Bs(d) → µ+µ−

# Indirect determination

Br(Bs → µ+µ−)ys = (3.71± 0.17)× 10−9 Buras et al. 1303.3820

Br(Bd → µ+µ−) = (1.03± 0.09)× 10−10 Buras et al. 1208.0934

# Direct determination using the Nf = 2 + 1 lattice averages by FLAG-2

with Nf = 2 + 1: fB = (190.5± 4.2) MeV and fBs = (227.7± 4.5) MeV .

Br(Bs → µ+µ−)ys = (3.65± 0.20)× 10−9 Buras et al. 1303.3820

Dominant errors: |V ∗tbVts| 4%, fBs 4%

Br(Bd → µ+µ−) = (1.07± 0.05± 0.05fBd
)× 10−10

# Experimental averages LHCb and CMS at CKM2014:

Br(Bs → µ+µ−) =
(

2.8+0.7
−0.6

)
· 10−9 Br(Bd → µ+µ−) =

(
3.9+1.6
−1.4

)
· 10−10

There is not space for large effects in B0
s system.

In the B0
d system, compatibility with SM: 2.2σ



3.6 Beyond simple quantities

When there are two or more hadrons in the final or initial state we need

additional formalism to relate quantities calculated in the Euclidean box

to physical observables in Minkowski space.

* K → ππ

* Hadronic contributions to muon g − 2: hadronic vacuum polarization

and hadronic light-by-light contributions can be calculated using lattice

methods.

* Hadron structure and hadronic interactions (for example, π

scattering length).

* Resonances (ρ, K∗ and excited charmed mesons widths ...).

Not only QCD: QED, BSM theories (near conformal strong dynamics,

composite PNGB-like Higgs, SUSY, Quantum Gravity ...)



4. Conclusions

* For a more extensive review, see, for example talk by A. El-Khadra at

ICHEP2014.

* For a review and averages of the most important lattice results

concerning low energy physics see FLAG-2 website and last review:

S. Aoki et al arXiv: 1310.8555.

* For further discussion on specific topics, see talks at Latttice 2014:

http://www.bnl.gov/lattice2014/


