

QCD, jets and Monte Carlo: 3rd lecture

Taller de Altas Energías TAE2014, September 2014

Factorization in hadronic collisions

Parton distribution functions

■ Non-perturbative input determined from global fits to collider data, scale evolution from pQCD (NNLO)

Vast choice: e.g. http://hepdata.cedar.ac.uk/pdfs

he Durham HepData Project					
REACTION DATABASE • DATA REVIEWS • PDF PLOTTER	ABOUT HEPDATA • SUBMITTING DATA				
epData Compilation of Parton Distribution Fu	nctions				
n-line Unpolarized Parton Distribution Calculator with Gra	iphical Display.				
Unpolarized Parton Di	stributions				
Access the parton distribution code, on-line calculation and graphical disp Alekhin, ZEUS, H1, HERAPDF, BE	ay of the distributions, from CTEQ, GRV, MRST/MSTW, 3G and NNPDF.				
CTEQ fortran code and grids					
CTEQ-Jefferson Lab (CJ) the CJ12 PDF sets					
GRV/GJR fortran code and grids					
MRST fortran code and grids, C++ code					
MSTW fortran, C++ and Mathematica codes + grids etc.					
ALEKHIN fortran,C++,Mathematica code, and gr	ds				
ZEUS ZEUS 2002 PDFs, ZEUS 2005 jet fit PDFs					
HERAPDF Combined H1/ZEUS page, HERAPDF1.0 paper					
H1 H1 2000					
BBG BBG06_NS					
NNPDF Non Singlet PDF code - hep-ph/070112	7				
Polarized Parton Dis	tributions				
Currently available parame	rizations				
LSS2001 E.Leader, A.V.Sidorov and D.B.Stamenov	/, Eur.Phys.J.C23 (2002) 479				

Online PDF plotting and calculation xf(x,Q2) v x

Using the form below you can calculate, in real time, values of $xf(x,Q^2)$ for any of the PDFs from the different groups. You can also generate and compare plots of $xf(x,Q^2)$ v x at any Q² for up to 4 different parton types or PDF sets.

Ŧ

• •

-

Select:	Parton		Group		Set	
V	ир	-	MSTW-nnlo	•	MSTW2008nnlo	
V	down	•	MSTW-nnlo	•	MSTW2008nnlo	
V	strange	-	MSTW-nnlo	•	MSTW2008nnlo	
V	gluon	•	MSTW-nnlo	•	MSTW2008nnlo	
Xmin =	0.01	Xn	nax = 0.8	Xinc =	0.01	
Q2 =	1	Ge	V**2			
x axis: 🔘 lin 🗕 log						
y axis:						
Output as: 🔘 numbers or 粵 plot (line width = 10) as ratio 🔲						
Make the Plot add sets remove sets						
Change to plotting versus Q**2						
Change to Error Set plotting						

- Maximum of up and down at x = 1/3: three quarks sharing the proton momentum
- up = 2 x down
- Gluon evolves faster: color charge $C_A = 3$ versus quark color charge $C_F = 4/3$

looking inside de proton

DGLAP evolution

$$\frac{\partial q(x,\mu^2)}{\partial \log \mu^2} = \frac{\alpha_{\rm S}}{2\pi} \int_x^1 \frac{dz}{z} P_{q \to qg}(z) \, q(x/z,\mu^2)$$

DGLAP flavour structure

The proton contains both quarks and gluons: DGLAP is a matrix in flavour space

$$\frac{\partial}{\partial \log \mu^2} \left(\begin{array}{c} q \\ g \end{array} \right) = \left(\begin{array}{c} P_{q \to qg} & P_{g \to q\bar{q}} \\ P_{q \to gq} & P_{g \to gg} \end{array} \right) \otimes \left(\begin{array}{c} q \\ g \end{array} \right)$$

spanning over all flavours and anti-flavours

$$P_{q \to qg} = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

$$P_{q \to gq} = C_F \frac{1+(1-z)^2}{z}$$

$$P_{g \to q\bar{q}} = T_R[z^2 + (1-z)^2]$$

$$P_{q \to gg} = 2C_A \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z)\right] + \delta(1-z)b_0$$

with the plus-prescription $\int_0^1 dz \, [g(z)]_+ f(z) = \int_0^1 dz \, g(z) \, [f(z) - f(1)]$

PDFs: strategy in a nutshell

- Make an ansatz for the functional form of the PDFs at some fixed value low scale $Q_0^2 \sim 1~{\rm GeV}^2$ e.g. in MRST/MSTW

$$x \, u_V = A_u \, x^{\eta_1} \, (1-x)^{\eta_2} \, (1+\epsilon_u \sqrt{x}+\gamma_u \, x) \qquad u_V = u - \bar{u} \\ x \, d_V = A_d \, x^{\eta_3} \, (1-x)^{\eta_4} \, (1+\epsilon_d \sqrt{x}+\gamma_d \, x) \qquad d_V = d - \bar{d} \\ x \, g = A_g \, x^{-\lambda_g} \, (1-x)^{\eta_g} \, (1+\epsilon_g \sqrt{x}+\gamma_g \, x)$$

Note: **NNPDF** use neural networks and does not need such explicit functional form

• Collect data at various (x, Q^2) from different experiments (e.g. DIS), use DGLAP equation to evolve down to Q_0^2 and fit parameters, including $\alpha_{\rm S}$

- Ensure sum rules (Gottfried, momentum, ...):
$$\int dx \, x \, \sum_i f_i(x,Q^2) = 1$$

Parton distribution functions

Differences are due to different:

Data sets in fits, parameterization of starting distributions, order of pQCD evolution, power law contributions, nuclear target corrections, resummation corrections ($\ln 1/x$, ...), treatment of heavy quarks, strong coupling, choice of factorization and renormalization scales.

at least 5-10% uncertainty in theoretical predictions

What's a jet

a bunch of energetic and collimated particles

 60% of LHC papers use jets [Salam, Soyez]

High mass central di-jet event

A track p_T cut of 0.5 GeV has been applied for the display.

- 1^{st} jet (ordered by p_T): $p_T = 1.96$ TeV, $\eta = -0.07$, $\phi = -2.68$
- 2^{nd} jet: $p_T = 1.65$ TeV, $\eta = 0.17$, $\phi = 0.48$
- Missing $E_T = 318$ GeV, $\phi = 0.43$
- Sum $E_{T} = 3.81$ TeV

A high jet multiplicity event

counting jets with p_T greater than 60 GeV: this event has eight

- 1st jet (ordered by p_T): p_T = 290 GeV, η = -0.9, ϕ = 2.7
- 2nd jet: $p_T = 220$ GeV, $\eta = 0.3$, $\phi = -0.7$
- missing $E_T = 21$ GeV, $\phi = -1.9$
- sum E_T = 890 GeV

Display of a semi-leptonic top quark pair event

at high invariant mass (714 GeV)

The top quark boosts lead the decay products to be collimated, albeit still distinguishable using standard reconstruction algorithms.

Vhy and how do we see jets?

Gluon emission

Jet clustering algorithms at e⁺e⁻ colliders

 Iterative and univocal procedure that tries to reverse the pattern of QCD multi-parton emissions

Define a distance d_{ij} between all pairs of particles

 $\begin{array}{ll} \mathsf{JADE} & 2(E_i E_j)(1 - \cos \theta_{ij})/s \\ \mathsf{DURHAM}(k_T) & 2\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})/s \\ \mathsf{CAMBRIDGE} & \mathsf{DURHAM} + \mathsf{angular ordering} \end{array}$

- Compute the smallest distance d_{ij}
- then cluster *i* and *j* together $(p_i \rightarrow p_i + p_j)$ if $d_{ij} < y_{cut}$ (jet resolution parameter)
- Repeat until all $d_{ij} > y_{cut}$
- Number of jets equals number of final-state (pseudo)particles
 ≈ underlying partonic hard process
- Jet clustering algorithms are IR safe
- Jet clustering algorithms were extensively used at LEP: but Tevatron used cones: good experimental behavior but not infrared safe

- Three- or four-jet event ?
- Depends on the jet resolution parameter

Germán Rodrigo, QCD, jets and MC, TAE2014

The k_T jet algorithm at hadron colliders

[Catani, Dokshitzer, Seymour, Webber, 93] [Ellis, Soper, 93]

What changes at hadron colliders ?

- There a beams, then introduce "beam distance": $d_{iB} = p_{Ti}^2 = 2E_i^2(1 \cos \theta_{iB})$
- Preference to use longitudinal invariant variables: transverse momenta (p_T) , rapidity (Δy) and azimuthal angle (ϕ)

Inclusive $k_{\rm T}$

$$d_{ij} = \min(p_{T_i}^2, p_{T_j}^2) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{T_i}^2 \quad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- Compute the smallest distance d_{ij} or d_{iB}
- If d_{ij} , cluster *i* and *j* together
- If d_{iB} , call *i* a jet and remove from the list of particles
- Repeat until no particle is left
- Two parameters: R and minimal transverse momentum $p_{Ti} > p_{T,min}$

The anti-k_T jet algorithm

- k_T has a physical meaning: the stronger the divergence between a pair of particles, the more likely it is they should be associated with each other
- However, ATLAS and CMS have adopted anti-k_T as default

anti-k_T

$$d_{ij} = \min(p_{T_i}^{-2}, p_{T_j}^{-2}) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{T_i}^{-2} \quad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- Clusters hardest particles first
- IRC safe, and cone-shaped jets
- Easier to get jet energy scale right
- CAMBRIDGE/AACHEN: $d_{ij} = \Delta R_{ij}/R^2$

For the first time ever, a hadron collider will carry out measurements that can be consistently compared with theoretical (perturbartive QCD) calculations

[Cacciari, Salam, Soyez 08]

Jet substructure

[Almeida, Butterworth, Cacciari, Chen, Davison, Ellis, Falkowsky, Han, Katz, Kim, Kribs, Krohn, Lee, Martin, Nojiri, Perez, Plehn, Racklev, Rehermann, Roy, Rojo, Rubin, Salam, Shelton, Sreethawong, Son, Soyez, Sung, Thaler, Tweedie, Schwartz, Seymour, Soper, Spannowski, Sterman, Virzi, Vos, Wang, Zhu, ...]

The LHC is the first place where heavy particles (~ 100 GeV) are produced copiously well **above threshold** They are often very **boosted**, and decay hadronically

Decay products appear as a single jet

Need to examine the jet substructure to get the physics out

e.g. ZH, WH with $H \rightarrow b\bar{b}$

[Butterworth, Davison, Rubin, Salam 08]

- High p_T Higgs boson decaying to $b\overline{b}$: **back-to-back** to the Z/W
- Lower rates compensated by reduced backgrounds
- Recovers ZH and WH as significant channels for a light Higgs discovery (and couplings determination)

Vhy and how do we see jets?

Gluon emission

$$\int \alpha_{\rm S} \, \frac{dE}{E} \, \frac{d\theta}{\theta} \gg 1$$

higher probability at small angle (collinear) and small energy (soft)

Parton level

 $\begin{array}{l} \mbox{Non-perturbative} \\ \mbox{transition to hadrons} \\ \alpha_{\rm S} \sim 1 \quad \Lambda_{\rm QCD} \sim 200 MeV \end{array}$

final-state 4-momenta