| Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Exercises  (1) Explicitly show that both a strong and a weak phase are need to generate CP asymmetry.  to generate CP asymmetry.  A =  A_1 e^{i(\delta_1 - \phi_1)}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | led     |
| to generate CP asymmetry.  A1) Consider two decay amplifudes $A_1 =  A_1 e^{i(S_1 - \phi_1)}$ with strong phases $S_{12}$ and weak $A_2 =  A_2 e^{i(S_2 - \phi_2)}$ phases $\phi_{1,2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| phases $\phi_{1,2}$ $i(\xi_1 + \phi_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| phases $\theta_{1,2}$ Similarly one how  Notice that only the CP-odd neak  Phase Hips sign. $A_2 =  A_1  e^{i(\delta_2 + \delta_2)}$ phase Hips sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| phase Alps sign. Az = (Az)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
| Now withy DS= 01- or and Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | re      |
| 1A, + 1212 = 14,12+1A212+ 2Re(A2*A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| Smilarly = 10 ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| (A, +Az (2=  A, 12+1Az)2+ 2  A, 4z) (OS (DØ-DS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| So because cos(-x)= mcos(x), both Od and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _       |
| Af must be non-zero for First the later of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U       |
| 1. // a = 1 (D) 1/ lo 10 do 2/ C/2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 12) Expliatly show the PCNC tree-level cancellation from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ue      |
| 42) (onsider two quark generators (d) (51) with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| A2) (onother two quark generations (d') (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d       |
| A2) (oranter two quark generations $(d')(s'')$<br>(a') = (cos dc s M dc)(s') = (-sin dc cos dc)(s')<br>$(an now write the diagrams d' = d \cos \theta + s s M dc s' = -d s M dc + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s       |
| (an now write the cliquers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) (2) |
| Can now write the city of $d'=d\cos\theta+s\sin\theta$ $s'=-d\sin\theta+s$ $\frac{d'=d\cos\theta+s\sin\theta}{d'=d\cos\theta+s\sin\theta}$ $\frac{d'=d\cos\theta+s\sin\theta}{d'=d\cos\theta+s\sin\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50      |
| a = dessorts smo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Const   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 29    |
| $ \frac{1}{\sqrt{u}} + cc + \frac{1}{\sqrt{ds+ds}} + \frac{3}{\sqrt{ss+ds}} + \frac{3}{\sqrt{ds+ds}} + \frac{1}{\sqrt{ds+ds}} + \frac{3}{\sqrt{ds+ds}} + \frac{3}{\sqrt{ds+ds+ds}} + \frac{3}{\sqrt{ds+ds+ds}} + \frac{3}{\sqrt{ds+ds+ds}} + \frac{3}{\sqrt{ds+ds+ds}} + \frac{3}{\sqrt{ds+ds+ds}} + \frac{3}{\sqrt{ds+ds+ds+ds}} + \frac{3}{ds+ds+ds+ds+ds+ds+ds+ds+ds+ds+ds+ds+ds+d$ | s costd |
| - Ma tee that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |



The four undiluted decay rates are given apart from a common normalisation factor. The parameters  $\eta$  and  $\overline{\eta}$  for the decay  $B_d^0 \to D^*\pi$  are given by:

$$\eta = |\eta| e^{i(\Delta_{\mathrm{qcd}} + (\phi_{\mathrm{mix}} - \gamma))} \quad \overline{\eta} = |\eta| e^{i(\Delta_{\mathrm{qcd}} - (\phi_{\mathrm{mix}} - \gamma))}.$$

1) 
$$\Gamma(B_d^0 \to D^{*-}\pi^+) = R_{D^{*-}}(\tau) = e^{-\Gamma\tau} \left\{ \left( 1 + |\eta|^2 \right) + \left( 1 - |\eta|^2 \right) \cos(\Delta m\tau) - 2\text{Im}(\eta)\sin(\Delta m\tau) \right\}$$

$$2)\Gamma(\overline{\mathbb{B}_{\mathbf{d}}^{0}} \to \mathbb{D}^{*-}\pi^{+}) = \overline{R}_{\mathbb{D}^{*-}}(\tau) = e^{-\Gamma\tau} \left\{ \left( 1 + |\eta|^{2} \right) - \left( 1 - |\eta|^{2} \right) \cos(\Delta m\tau) + 2\mathrm{Im}(\eta) \sin(\Delta m\tau) \right\}$$

3) 
$$\Gamma(\overline{\mathrm{B}_{\mathrm{d}}^{0}} \to \mathrm{D}^{*+}\pi^{-}) = \overline{R}_{\mathrm{D}^{*+}}(\tau) = e^{-\Gamma\tau} \left\{ \left( 1 + |\overline{\eta}|^{2} \right) + \left( 1 - |\overline{\eta}|^{2} \right) \cos(\Delta m\tau) - 2\mathrm{Im}(\overline{\eta}) \sin(\Delta m\tau) \right\}$$

4) 
$$\Gamma(B_d^0 \to D^{*+}\pi^-) = R_{D^{*+}}(\tau) = e^{-\Gamma\tau} \left\{ \left( 1 + |\overline{\eta}|^2 \right) - \left( 1 - |\overline{\eta}|^2 \right) \cos(\Delta m\tau) + 2\operatorname{Im}(\overline{\eta}) \sin(\Delta m\tau) \right\}$$

$$(3.16)$$

study. From log-likelihood fits to the asym- ity of 30% and an acceptance function: metries, the error on  $\gamma$  is estimated.

The first step in this analysis is to derive the measured decay rates and asymmetries, including detector effects, from the theoretical ones given in sections 1.3.4 and 1.3.6. For ease of reference, and in order to define the notation used in the following sections, the undiluted decay rates are given again in equation 3.16 (page 95).

The asymmetries including the detector effects will be given in terms of  $A(\tau)$ , which stands for both  $A_{\eta}(\tau)$  and  $A_{\overline{\eta}}(\tau)$ , before detector effects are taken into account.

## 3.5.1Decay Rates, Including Detector Effects

Detector-effects are taken into account by assuming a Gaussian-distributed time resolution of 170 fs, a uniform mistag probabil-

$$P_A(\tau) = \max\left(0, \frac{(a\tau)^3}{1 + (a\tau)^3} - b\right) \quad (3.19)$$
with  $a = 0.96 \,\mathrm{ps}^{-1}, \ b = 0.09$ 

giving the probability that an event with decay-eigentime  $\tau$  is recorded. The acceptance function is taken from [TP98]. takes into account that the trigger, and also the final event selection, rejects events with small decay-lengths. A background to signal ratio of B/S = 0.2 is assumed.

## Time Resolution

With a true decay rate

$$R_t(\tau) = e^{-\Gamma \tau} \left( a + b \cos(\omega \tau) + c \sin(\omega \tau) \right)$$
(3.20)

the measured decay rate is, taking into account the finite time-resolution and timedependent acceptance:

$$R_{A \sigma_{\tau}}(\tau_0) = \int_{0}^{\infty} P_A(\tau_0, \tau) R_t(\tau) \cdot g_{\tau_0}(\tau_0 - \tau) d\tau.$$
 (3.21)

Here,  $\tau$  is the decay eigentime of the  $B_d^0$ , and  $\tau_0$  is the reconstructed decay eigentime;  $P_A(\tau_0,\tau)$  is the acceptance function and  $g_{\tau_0}(\tau_0-\tau)$  the resolution function. In general both might be quite complicated, and numerical methods will be necessary to perform the integral. Here, in order to be able to do the integral analytically, we will assume that the time resolution is described well by a Gaussian, and that the acceptance function is a function of the measured decay time,  $\tau_0$ , only. Then the expression for the measured decay rate becomes:

$$R_{A\sigma_{\tau}}(\tau_{0}) = P_{A}(\tau_{0}) \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{\tau}} e^{-\frac{(\tau_{0}-\tau)^{2}}{2\sigma_{\tau}^{2}}}$$
$$e^{-\Gamma_{\tau}} \left(a + b\cos(\omega\tau) + c\sin(\omega\tau)\right) d\tau.$$
(3.22)

All three parts of the above sum can be solved simultaneously by calculating:

$$F(\tau_0) = \int_0^\infty \frac{1}{\sqrt{2\pi}\sigma_\tau} e^{-\frac{(\tau_0 - \tau)^2}{2\sigma_\tau^2}} e^{-\Gamma\tau} e^{i\omega\tau} d\tau.$$
(3.23)

Taking the part independent of  $\tau$  outside the integral gives:

$$F(\tau_0) = \frac{1}{\sqrt{2\pi}\sigma_{\tau}} e^{-\frac{1}{2}\left(\frac{\tau_0}{\sigma_{\tau}}\right)^2} \int_{0}^{\infty} e^{-\frac{1}{2\sigma_{\tau}^2}\left(\tau^2 - 2\left(\tau_0 + (i\omega - \Gamma)\sigma_{\tau}^2\right)\tau\right)} d\tau.$$
(3.24)

Defining

$$z \equiv \tau_0 + (i\omega - \Gamma)\sigma_\tau^2 \tag{3.25}$$

and completing the square in the exponent, this becomes:

$$F(\tau_0) = \frac{1}{\sqrt{2\pi}\sigma_{\tau}} e^{-\frac{1}{2}\left(\frac{\tau_0}{\sigma_{\tau}}\right)^2} e^{+\frac{1}{2}\left(\frac{z}{\sigma_{\tau}}\right)^2} \cdot \int_{0}^{\infty} e^{-\frac{(\tau-z)^2}{2\sigma_{\tau}^2}} d\tau.$$
(3.26)

In practice, only events with long decay times pass the trigger, and therefore

$$Re(z) = \tau_0 - \Gamma \sigma_{\tau}^2 > a \text{ few } \sigma_{\tau}$$

for the relevant values of  $\tau_0$ . Then the integral from 0 to  $\infty$  can be replaced with an integral from  $-\infty$  to  $\infty$ , and the solution is:

$$F(\tau_0) = \frac{1}{\sqrt{2\pi}\sigma_{\tau}} e^{-\frac{1}{2}\left(\frac{\tau_0}{\sigma_{\tau}}\right)^2} e^{+\frac{1}{2}\left(\frac{z}{\sigma_{\tau}}\right)^2}$$

$$\cdot \int_{-\infty}^{\infty} e^{-\frac{(\tau-z)^2}{2\sigma_{\tau}^2}} d\tau$$

$$= e^{-\frac{1}{2}\left(\frac{\tau_0}{\sigma_{\tau}}\right)^2} e^{+\frac{1}{2}\left(\frac{z}{\sigma_{\tau}}\right)^2}$$

$$= e^{\frac{1}{2\sigma_{\tau}^2}\left((i\omega-\Gamma)^2\sigma_{\tau}^4 + 2\tau_0\left((i\omega-\Gamma)\sigma_{\tau}^2\right)\right)}.$$

$$(3.27)$$

Re-ordering gives the final result:

$$F(\tau_0) = e^{-\frac{1}{2}\sigma_{\tau}^2 \cdot (\Gamma^2 + \omega^2)} e^{-\Gamma(\tau_0 - \Gamma\sigma_{\tau}^2)} e^{i\omega(\tau_0 - \Gamma\sigma_{\tau}^2)}$$
(3.28)

So the effect of the finite time-resolution on the function

$$R(\tau) = e^{-\Gamma \tau} \left( a + b \cos(\omega \tau) + c \sin(\omega \tau) \right)$$

can be described by simultaneously scaling the amplitudes a, b, and c, and shifting the parameter  $\tau$  according to:

$$a \rightarrow ae^{-\frac{1}{2}\sigma_{\tau}^{2} \cdot \Gamma^{2}}$$

$$b \rightarrow be^{-\frac{1}{2}\sigma_{\tau}^{2} \cdot (\Gamma^{2} + \omega^{2})}$$

$$c \rightarrow ce^{-\frac{1}{2}\sigma_{\tau}^{2} \cdot (\Gamma^{2} + \omega^{2})}$$

$$\tau \rightarrow \tau - \Gamma \sigma_{\tau}^{2}.$$
(3.29)

This transforms the asymmetry to:

$$A_{\sigma_{\tau}}(\tau) = e^{-\frac{1}{2}\sigma_{\tau}^2 \cdot (\Delta n)^2} A(\tau - \Gamma \sigma_{\tau}^2) \quad (3.30)$$

The measured decay rates, taking into account the finite time resolution, but not the acceptance function, are given in equation 3.31 (page 98).

## Background

In this study it is assumed that the background is independent of the decay considered; this is to say that at any given time, the number of background events interpreted as  $B_d^0 \to D^{*-}\pi^+$  decays is the same as the number interpreted as  $\overline{B_d^0} \to D^{*-}\pi^+$  decays. As will be shown in section 3.5.6, this results in a conservative estimate on the statistical precision

in  $\gamma$ . For a background to signal ratio of B/S, the measured decay rate for  $B_d^0 \to D^{*-}\pi^+$ ,  $R_{\frac{B}{S}D^{*-}}(\tau)$ , becomes, in terms of the decay rates without background:

$$R_{\frac{B}{S}D^{*-}}(\tau) = R_{D^{*-}}(\tau) + \frac{B}{S} \cdot \frac{1}{2} \left( R_{D^{*-}}(\tau) + \overline{R}_{D^{*-}}(\tau) \right)$$
(3.32)

and similarly for the other decay rates. The measured asymmetry,  $A_{\frac{B}{S}}(\tau)$ , is given by:

$$A_{\frac{B}{S}}(\tau) = \frac{1}{1 + B/S} A(\tau),$$
 (3.33)

where  $A(\tau)$  is the asymmetry without background.

## Mistag

Including a mistag fraction of  $\omega_{\text{tag}}$ , the measured decay rate for  $B_d^0 \to D^{*-}\pi^+$ ,  $R_{\omega_{\text{tag}}D^{*-}}(\tau)$ , becomes, in terms of the decay rate without mistag:

$$R_{\omega_{\text{tag D}^*}}(\tau) = (1 - \omega_{\text{tag}}) R_{\text{D}^*}(\tau) + \omega_{\text{tag}} \overline{R}_{\text{D}^*}(\tau)$$

$$(3.34)$$

and similarly for the other decay rates. The measured asymmetry,  $A_{\omega_{\text{tag}}}(\tau)$ , is given by

$$A_{\omega_{\text{tag}}}(\tau) = (1 - 2\omega_{\text{tag}}) \Lambda(\tau) \qquad (3.35)$$

where  $A(\tau)$  is the asymmetry for perfect tagging.

