TOP

The sixth guy stands up !

The up-like quark of the third family, the top quark, has a mass comparable to a tungsten atom !
In other words, the top – Higgs Yukawa coupling is large (≈1):
top is a window to

electroweak symmetry breaking

$$Y = \sqrt{2} \frac{m_{top}}{v.e.v.(\sim 246 \text{ GeV})}$$

$$\Gamma(H \to f\bar{f}) = \frac{N_c g^2 m_f^2}{32\pi m_W^2} \beta^3 m_H$$

Some consequences of the large top mass (the large top-Higgs Yukawa coupling)

- Due to the non-decoupling properties of electroweak interactions (Veltman, 1977) the top quark gives large contributions to pure EWK radiative corrections ≈G_Fm_t²
- Very short lifetime: bound states are not formed, opportunity to study a free quark

 $\mathbf{T}_{top} \simeq 0.4 \times 10^{-24} \, s$

$$\Gamma(t \to bW) = \frac{G_F}{8\pi\sqrt{(2)}} m_t^3 |V_{tb}|^2 \approx 1.5 \,\mathrm{GeV/c^2}.$$

Relation between top and Higgs masses and stability of the vacuum in our universe

De Grassi et al. ArXiv:1205.6497

TOP PRODUCTION AND DECAY: GETTING THE DATA SAMPLES

Top Quark Production at the LHC

Some references (not a complete list!): (top pairs) N.Nason *et al.* Nucl.Phys. B303 (1988) 607, S.Catani *et al.* Nucl.Phys. B478 (1996) 273, M.Beneke *et al.* hep-ph/0003033, N.Kidonakis and R.Vogt, Phys.Rev. D68 (2003) 114014, W.Bernreuther et al. Nucl.Phys. B690 (2004) 81-137 (single-top) T.Stelzer et al. Phys.Rev. D56 (1997) 5919, M.C.Smith and S.Willenbrock Phys.Rev. D54 (1996) 6696, T.M.Tait Phys.Rev. D61 (2000) 034001

Top Quark decays

It decays almost excusively to Wb, from CKM elements V_{tu} , V_{ts} , V_{tb} :

W decays are used to classify top final states

Decay topologies for ttbar : • Dileptonic

- Lepton+jets
- Fully hadronic

For single top measurements only W leptonic decays are used

ttbar topologies

Statistics with 20 fb-1 at 8 TeV

Channel	σ (NLO)	BR	Trigger eff	# Events
ttbar SL e mu	232	0.3	0.8	1 090 000
ttbar SL tau	232	0.15	0.5	340 000
ttbar DL (e, mu)	232	0.053	0.9	220 000
ttbar DL 1 tau	232	0.053	0.8	200 000
single top t-ch e mu	83	0.22	0.7	250 000
single top s-ch e mu	45.5	0.22	0.7	17 000
single top tW e mu	23	0.22	0.7	70 000

•Typically two orders of magnitude more than final Tevatron statistics •Selection efficiencies not included !

•Trigger efficiency, guesstimates from present tables ... (fully hadronic not included)

EXPERIMENTAL METHODS FOR TOP MASS MEASUREMENTS:

- EXAMPLES IN THE LEPTON+JETS CHANNEL
- WHAT ARE WE MEASURING ?
- ALTERNATIVE METHODS
- DIFFERENTIAL TOP MASS

Methods for top mass measurement (1)

- *Standard methods* at hadron colliders: measure the top mass from the decay products in a specific **top pair decay channel**
 - from the simplest versions: measure invariant mass of, e.g. three jets in lepton+jets events
 - to the more sophisticated versions: use of the full event information to gain sensitivity, e.g. Matrix Element method
- The *standard methods* are the most precise with the current statistics
 - they are used in current LHC, Tevatron, World combinations
 - the top mass in EWK fits comes from these methods
- Crucial points for the *standard methods*
 - accurate calibration of physics objects, in particular Jet Energy Scale: use of kinematic fits for JES calibration in situ, e.g. use the W mass to constraint light quarks jet energy scale (JES) from two-jet invariant mass
 - associate measured objects (jets, leptons, missing E_T) to top candidate: e.g. use b-tagging to choose the right b-jet for the 3-jet combination

Event selection: lepton+jets final state

[example from CMS, TOP-14-001 / JHEP 12 (2012) 105]

- Trigger for isolated muon or electron + jets (pT > 33 GeV)
- Exactly 1 isolated lepton with p_T
 >30 GeV, |η|<2.1 (veto additional isolated e, μ)
- \geq 4 "particle flow" jets (anti-kt, R = 0.5) with p_T >30GeV, |η|<2.4
- 2 jets b-tagged among the 4 leading jets
- Composition:
 - 94% ť t, 2% W+jets, 3% singletop, 1% other
- 108000 events in 19.5 fb⁻¹ at 8 TeV selected

Compare with selections at Tevatron with full statistics: about 2500 events

Event reconstruction

[example from CMS, TOP-14-001 / JHEP 12 (2012) 105]

- Assign 4 leading jets to partons from $t\bar{t}$ decay (obey b-tag)
 - Kinematic fit with constraints: $m_W = 80.4 \text{ GeV}$, $m_t = m_{tbar}$
 - Weight each permutation by $P_{gof} = exp (1/2\chi^2)$, select $P_{gof} > 0.2$
- 28750 events in 19.7 fb⁻¹ 2012 data (94% tt, 44% correct perm.)

Top mass fitting techniques [example from ATLAS, CONF-2013-046]

- Invariant mass distributions are distorted by
 - phase space constraints
 - detector resolution
 - wrong particle assignments to jets
 - backgrounds, pileup
 - selection cuts
- Need a MC simulation, tuned to data, to construct templates or probability densities
 - important: at this stage the top mass definition in MC is not too relevant.

Top mass fitting techniques and JES

- The Jet Energy Scale is the most important source of experimental uncertainties, the W mass constraint is a powerful tool for light quark JES
- Can also find a variable sensitive to b-jet JES and constraint it in situ [ATLAS, CONF-2013-046] in this case b-tagging is used not only for jet classification, but also for JES determination
- Otherwise the simulation is used for b-jet JES, the impact of modeling assumption depends on the jet reconstruction technique

Main sources of systematic uncertainties

- Jet Energy Scale (depends on technique and jet reco, in situ statistical not included)
 - light jets, detector response [0.2-0.7 GeV]
 - b jets [0.1-0.6 GeV]
- Modeling of gluon radiation [0.3 0.45 GeV]
- Modeling of underlying event [0.1 0.2 GeV]
- Modeling of Colour Reconnection [0.2 0.5 GeV]
- Proton PDF [0.1 0.2 GeV]
- Hadronization, b-fragmentation (included also in JES) [0.3 -0.6 GeV]
- b-tagging [0.1 0.8 GeV]
- pileup modeling (included also in JES) (0.1-0.3 GeV)

[The numbers are ranges for illustration only, more details in specific analysis and LHC combination notes]

World combination of m_{top}

- An impressive 0.44% precision
- Some of the most precise measurements non included yet, e.g.
 - D0 full statistics, matrix element method, arXiv:1405.1756, m_t=174.98±0.76
 - CMS I+jets at 8 TeV, L=19.6 fb⁻¹ CMS-TOP-2014-001, m_t=172.04±0.77

A note on the other channels at LHC

- The dilepton and all-hadronic decay channels provide and important cross check, given the difference in colour structure of the final state (next slide).
- The dilepton channel is kinematically underconstrained (2 v's), but with low background
- The all-hadronic channel can profit of an accurate in-situ fit of the JES, already providing a result factor 2 better than Tevatron

ATLAS-CONF-2013-077

About measuring the top mass from its decay products

- **Top is a coloured fermion**, it decays before hadronizing, but the b quark from its decay must hadronize
 - there is no way to assign final state particles only to the original top, the concept is ill-defined as it is the use of a pole mass for a coloured particle
 - − the effect is expected to be of the order of $Λ_{QCD} \approx 0.2$ GeV but <u>the actual impact</u> <u>depends on the experimental method</u>
 - 1. important to test variables sensitive to the final state definition
 - 2. important to measure the mass with alternative techniques

In prospect **1** and **2** will take advantage of the large LHC statistics

plot courtesy of Michelangelo Mangano

Dependence of Top Mass observable on event kinematics

- test variables sensitive to the final state definition
 - kinematic dependence on final state properly modeled by MC? → 12 kinematic variables checked, related to Color Reconnection, ISR/FRS, b-jet kinematics
 - Good data/MC agreement rules out dramatic effects → need to pursue the study with Run 2 high statistics !!

CMS, 5.0 fb⁻¹, \screws = 7 TeV, \ell+jets

25

20

15

10

S I 1.005

0.995

0.99

0.985

0.98

172

JHEP 12 (2012) 105

173

174

CMS-TOP-12-029

CMS-TOP-14-001

175 m_t [GeV]

Dependence of Top Mass on Event Kinematics

With the current precision, no mis-modelling found as function of variables related to color reconnection, ISR/FSR, b-quark kinematics.

Methods for top mass measurement (2)

- Given the potential bias in measuring the top mass from its decay products, important to explore alternative techniques, e.g.
 - Measure the decay length (the boost) of B hadrons produced in top decays, the boost is related to the original top mass
 - Select specific channels, for example top with $W \rightarrow I v$ and $B \rightarrow J/\psi + X$ decays and measure the three-lepton invariant mass
 - Measure the endpoint of the lepton spectrum or other quantities in top decays
 - Measure the mass from single top events (great potential !)
- <u>Alternative methods have typically larger statistical</u> <u>uncertainties, however at LHC we have large ttbar samples</u>
 - Systematic uncertainties can be controlled with data, again large samples help.
- Another alternative: move away from properties of the decay products
 - extract the top mass from the top cross section

TOP mass from alternative techniques

- Example of a technique already yielding interesting precision: Endpoint method
- The shape of the signal can be computed analytically, background data-driven
- Use of MC limited to study underlying assumption: independent decay of two tops (color connections and reconnections violate this assumption) arXiv:1304.7498

$$M_{\rm t} = 173.9 \pm 0.9 \, ({\rm stat.})^{+1.6}_{-2.0} \, ({\rm syst.}) \, {\rm GeV}$$

Another example: top mass from the b decay length

• The decay length of b hadrons from top decays is correlated to their boost, i.e. to the top mass

ttbar cross section: mass interpretation

[example from ATLAS, arXiv:1406.5375]

- Measure cross section in the most precise channel: dilepton $e\mu$
- Use b-tagging and double tag method to avoid dependence on btag efficiency
 - interesting by-product: acceptance dependence on m_t is flat because of calibration of the jet acceptance in situ and cancelation with Wt background
- Use recent NNLO calculation of top pair cross section to extract m_t
- The method takes advantage of the excellent luminosity knowledge at LHC (~2%), which is also the long-term experimental limitation, together with the knowledge of the LHC beam energy

$$m_t = 172.9^{+2.5}_{-2.6} \text{ GeV}$$

Prospects for top mass at the LHC

• There is potential to improve standard methods, taking advantage of the high statistics for, e.g., in-situ JES calibration, constraining models from differential studies, etc.

• There is even greater potential for alternative methods, most of the current systematic uncertainties can be reduced with higher statistics, e.g. top pt modeling, in-situ JES again

 Improvements on the cross section method are linked to improvements in the luminosity and beam energy uncertainties at LHC

• A optimistic view (maybe realistic give past experience at colliders !) of the evolution in precision is given in the picture

From CMS PAS FTR-13-017, prepared for the "European Strategy for particle physics" discussions

Prospects at future e⁺e⁻ Colliders: Linear and Circular

top mass from threshold scan

- Same conceptual advantage as cross section measurement at LHC, but experimentally dependent only on beam energy spectrum
- Other source of uncertainty is the modification of threshold lineshape related to α_s, top width and top-Higgs Yukawa coupling (with high statistics 2D / 3D fits possible)

e+e- at 350 GeV: threshold scan

- At ILC statistical uncertainty of 30 MeV with 10 fb-1 scan
- At FCC statistical uncertainty of 10 MeV expected Advantage of a very low level of beamstrahlung at FCC
- Theoretical *current* uncertainty from higher order QCD contribution ~ 100 MeV
 - Comparing ILC and FCCee assuming identical detector performance

From Frank Simon, presented at 7th TLEP-FCC-ee workshop, CERN, June 2014

top – antitop mass difference: a CPT test

 $\Delta m_{\rm t} = -272 \pm 196 \, ({\rm stat.}) \pm 122 \, ({\rm syst.}) \, {\rm MeV}$

TOP AND HIGGS: NOT ONLY THE MASS

The top areas of study

Total and differential cross sections, Test of production mechanism(QCD, EWK), tt +jets production, measure PDF Precision measurement of top mass, $\Delta M(t-tbar)$ (CPT test)

Couplings, branching ratios, charge, width, W helicity, spin correlations, charge asymmetry associated production (ttW, ttZ, ttH, tt+MET)

t, s and tW channels, EWK production properties, Vtb measurement, new physics in single top

33

The role of top in the Higgs era

ttbar is our monitoring for gluon gluon fusion !

Do we interpret the top mass correctly when we match top, W and Higgs Masses ?

The ttbar cross section

ttbar cross section at 7 and 8 TeV

- The cross section raises as foreseen
- Program of accurate measurement of the 8/7 TeV ratio (total and differential) and σ(tt)/σ(Z) for a precise test and PDF constraints

Interest for new physics: stealth stop !

Selection of ttbar in the lepton+jets and dilepton channels

- Require one (or two) isolated leptons
- Lepton reconstruction and identification efficiency measured from data (Z→ II) with tagand-probe technique.
- Background measured from data using control samples
 - looser identification to get a background dominated sample and knowledge of tight-to-loose ratio for background leptons from another control sample
- B tagging used to further reduce the background

Leptons+jets and dileptons (e, μ)

• Excellent background control thanks to jet categorization, b tagging and in situ measurement of jet-energy scale

Other channels

ttbar cross section interpretation

- Total cross section interpretation
 - as a measurement of the top mass (m_top= 176.7+3.8-3.4 GeV)
 - as a precise measurement of α_s [alphaS(mZ) = 0.1151+0.0033-0.0032 is extracted.]

Differential cross sections

- Important measurements, they will play an important role for
 - investigate limitations of present MC (which QCD predictions and models describe our data best, in the search areas like high m(tt) and high multiplicities)
 - ii) provide independent interpretations (e.g. mass AND alpha_s from cross section)
 - Iii) sensitivity to high-x gluon (y(tt))

arXiv:1211.2220

Differential distributions and MC tuning already see discrepancies with respect to NLO generators !

Ttbar and additional jets

Study of QCD radiation pattern

Including top in the SM picture

Standard Model ? Terrific Model !

A few examples of other important topics in top physics

Rare processes: tt+X

- Important to measure low cross section processes
- Example: ttW and ttZ
 (arXiv:1303.3239)

- Other processes tt+X
 - Very important tt+bb and ttH,
 - tt+MET , Four tops
 - tt+ γ and interpretation as top charge measurement

19.5 fb⁻¹ (8 TeV)

Higgs boson observation in various channels, what about coupling to top ?

Toward a direct measurement of the top-Higgs Yukawa coupling

- First measurements of a typical background, ttbb
- From a recent ttH search in leptonic final states

TESTING TOP DECAYS

Measurement of the ratio $R=B(t \rightarrow Wb) / B(t \rightarrow Wq)$

Measurement of the ratio $R=B(t \rightarrow Wb) / B(t \rightarrow Wq)$

A lower limit R>0.945 at 95% CL is obtained after requiring that R≤1

W helicity in top decays

The tWb vertex : W helicity in top

- The W helicity precisely predicted in the standard model: V-A^{⁻^k} structure of the decay
 - Longitudinal W polarization F0 ≈ 70%, intimately related to the ewk breaking mechanism !
 - − Left polarization FL \approx 30%, Right pol FR \approx 0

Rare processes: limits on FCNC $t \rightarrow Zq$

- FCNC searches have improved a lot with 20/fb
 - Current result from ttbar/trilepton searches: A t → Zq branching fraction greater than
 0.07 % is excluded at the 95 % confidence level.

TESTING TOP PRODUCTION PROPERTIES

A discrepancy ? ... A_{FB} in $p\overline{p}$ $\overline{qq} \rightarrow t\overline{t}$

• SM asymmetry from interference (higher order QCD ~ 7%)

CDF Run II Preliminary L = 8.7 fb⁻¹

• top / anti-top rapidity asymmetry at LHC from quark-antiquark annihilation, gluongluon fusion, dominant process, intrinsically symmetric

14 TeV gg →t
$$\overline{t}$$
 (90%), q \overline{q} →t \overline{t} (10%)

- Important at LHC to study differential asymmetries, to enhance new physics
 Sum of t and tbar rapidity to disentangle quark-antiquark and gluon-gluon fusion
 - •ttbar invariant mass sensitive to new heavy states
 - •Transverse momentum of the ttbar system sensitive to interference due to ISR

CMS PAS TOP-12-033

Charge asymmetry at LHC

Spin correlations in ttbar

Another tool to investigate the production mechanism, possible only for the top quark Investigating it now, but will become a precision tool with high statistics

Single top t-channel

single top polarization in t-channel

• V-A current, top 100% polarized !

single top tW channel

63

Single top in t and s channel sensitive to different aspects of New Physics (tW, too !)

Conclusions

- Top physics an important sector of electroweak-symmetry-breaking studies

 A complement to direct Higgs measurements
- After first three years of top-physics results at the LHC-top-factory, now entering a new phase
- Entering uncharted territory in terms of (statistical) precision, use statistics as a tool to reduce systematic uncertainties

BACKUP

Ideogram method: probability densities

- Simulated samples with
 - 9 different top masses: 161.5–184.5 GeV
 - 3 different JES: 0.96, 1.00, 1.04
- Fit m(top)_{fit}, m(W)_{reco} distributions with analytical expressions
- Parametrize linearly in m_t , JES, $m_t \times JES$

Example: correct permutations

Ideogram method

 Calculate likelihood for event with n permutations, j denotes correct, wrong and unmatched permutations

$$\mathcal{L}\left(\text{event}|m_{t}, \text{JES}\right) = \sum_{i=0}^{n} P_{gof}\left(i\right) P\left(m_{t,i}^{fit}, m_{W,i}^{reco}|m_{t}, \text{JES}\right),$$
$$P\left(m_{t,i}^{fit}, m_{W,i}^{reco}|m_{t}, \text{JES}\right) = \sum_{j} f_{j} P_{j}\left(m_{t,i}^{fit}|m_{t}, \text{JES}\right) \cdot P_{j}\left(m_{W,i}^{reco}|m_{t}, \text{JES}\right)$$

Most likely m_t and JES by maximizing

1.3

$$\mathcal{L}(m_t, \mathsf{JES}|\mathsf{sample}) \sim \prod_{\mathsf{events}} \mathcal{L}(\mathsf{C})$$

$$\int \mathcal{L}(\text{event}|m_t, \text{JES})^{w_{\text{event}}}$$
