W MASS

can improve at LHC ?

(acknowledgements: Jeff Berryhill [ICHEP 2015])

W mass measurement at hadron colliders

- Production from quark-antiquark annihilation
- •Leptonic W decays (e o μ) + neutrino
- Fit to transverse mass distribution M_W^T

$$M_W^T = \sqrt{(E_T^{lepton} + E_T^{\nu})^2 - (\mathbf{p}_T^{lepton} + \mathbf{p}_T^{\nu})^2}$$

$$(E_T^i)^2 = (p_T^i)^2 + m_i^2$$

$$\mathbf{M}_{\mathrm{W}}^{\mathrm{T}} = \sqrt{2p_{T}^{lepton}p_{T}^{\upsilon}(1-\cos\varphi)}$$

Precision measurement of W mass at hadron colliders

Status of W mass

PRL 108 (2012) 151803 PRD 89 (2014) 072003

- CDF and DØ currently have world's most precise measurements based on 20% and 50% of their data → 1.1M and 1.7M Ws, resp.
- MT is the most sensitive single variable, lepton PT and MET used also
- Precision lepton response (0.01%) and recoil models (1%) built up from Z dileptons, Z mass reproduced to 6X LEP precision
- MW precision:
 - CDF 19 MeV,
 - DØ 23 MeV,
 - LEP2 33 MeV
 - 2012 world average: 15 MeV

Prospects for Tevatron W mass

- Largest single uncertainties are stat. and PDF syst.
- 2X PDF improvement and incremental improvement elsewhere results in 9 MeV projected final Tevatron precision
- <10 MeV precision is well motivated to further confront indirect precision (11 MeV)

		alxiv.1510.0700		
ΔM_W [MeV]	CDF	D0	combined	projected combined
$\mathcal{L}[\mathrm{fb}^{-1}]$	2.2	4.3(+1.1)	7.6	20
PDF	10	11	10	5
QED rad.	4	7	4	3
$p_T(W)$ model	5	2	2	2
other systematics	10	18	9	4
W statistics	12	13	9	5
Total	19	26(23)	16	9

Prospects for LHC W mass

- The LHC has excellent detectors and semi-infinite statistics and thus has a good *a priori* prospect for a <10-MeV measurement
- Biggest three obstacles to surmount:
 - PDFs: sea quarks play a much stronger role than the Tevatron.
 Need at least 2X better PDFs.
 - Momentum scale
 - Recoil model/MET

NLO-QCD, normalized transverse mass distribution

arXiv:1104.2056 Note on W mass at LHC and PDF

100

100

ASYMMETRIES AND $\text{SIN}^2\Theta_W$ can improve at LHC ?

Z couplings and the electroweak mixing angle

AFB =
$$\frac{O_F - O_B}{O_{tot}} = \frac{3}{4} A_e A_f$$

ALR = $\frac{O_l - O_r}{O_{tot}} = A_e$

$$A_f = \frac{2g_{Vf}g_{Af}}{(g_{Vf})^2 + (g_{Af})^2}$$
$$\sin^2 \theta_{eff}^{\ l} \equiv \frac{1}{4} \left(1 - \frac{g_{VI}}{g_{AI}}\right)$$

• Obtained 10⁻⁴ precision, but consistency between A_{LR} (from SLC) and A_{FB}(b) at 3 σ level

Asymmetry from Drell-Yan events at LHC

- Signature is clear and background is low, however →
- forward-backward asymmetry: need to know quark direction
- at LO easy at Tevatron (p pbar)
- at LHC study DY cross section as a function of invariant mass and
- assume that at high rapidity direction gives information on direction of valence quark

• In the dilepton CM, lepton angle with respect to axis of <u>quark</u> momentum is sensitive to interference effects: vector with axial-vector Z couplings, Z with photon, or Z with new physics $\hat{\sigma}_{q\bar{q}}(\hat{s}, \cos\theta^*; \theta_W) \propto \frac{3(\rho_V^{q\bar{q}} \rightarrow \gamma)^2 (\rho_V^{\gamma \rightarrow \ell\ell})^2}{2\hat{s}} \times (1 + \cos^2\theta^*) + \frac{3}{2} \frac{\hat{s}}{(\hat{s} - m_Z^2)^2 + m_Z^2 \Gamma_Z^2}$ $V-A \text{ int. } \sim \sin^2\theta_{\text{eff}} - 1/4$ $\times [((\rho_V^{q\bar{q}} \rightarrow Z)^2 + (\rho_A^{q\bar{q}} \rightarrow Z)^2)((\rho_V^{Z \rightarrow \ell\ell})^2 + (\rho_A^{Z \rightarrow \ell\ell})^2)(1 + \cos^2\theta^*) + \frac{3(\hat{s} - m_Z^2)\rho_V^{q\bar{q}} \rightarrow \rho_V^{\gamma \rightarrow \ell\ell}}{(\hat{s} - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} \times [\rho_V^{q\bar{q}} \rightarrow Z\rho_V^{Z \rightarrow \ell\ell}(1 + \cos^2\theta^*) + 2\rho_A^{q\bar{q}} \rightarrow Z\rho_A^{Z \rightarrow \ell\ell} \cos\theta^*]. \quad (1 + \cos^2\theta^*) + 2\rho_A^{q\bar{q}} \rightarrow Z\rho_A^{Z \rightarrow \ell\ell} \cos\theta^*].$

 This relation is (un)**diluted** in (pp̄) pp collisions, where reconstructed cos θ* axis is (strongly) weakly correlated with real quark axis.

Weak mixing angle at LHC

ATLAS-CONF-2013-043

- Select central dilepton pairs, and also centralforward electrons with full 7 TeV dataset
- Raw AFB = Count forward/ backward abundance in CS frame
- AFB in good agreement with PYTHIA * PHOZPR NNLO K-factor (MSTWNNLO2008)
- 1.8σ lower angle than LEP
 +SLD average

DIBOSON PRODUCTION AND TRIPLE GAUGE COUPLINGS

WW, ZZ, WZ, Wy

WW Production at LEP2

Three diagrams contribute at Born level (CC03 diagrams) :

Total WW Cross Section

Strong evidence of Triple Gauge Couplings

Probing Triple Gauge Couplings

- Triple gauge boson vertices (WWγ, WWZ) : probing the non-Abelian structure of the Standard Model. Search for anomalous couplings.
- The most general Lorentz invariant Lagrangian involves 14 couplings (7 for WWγ and 7 for WWZ)
- Assuming electromagnetic gauge invariance, C and P conservation, leaves 5 parameters

$$\left\{g_{1}^{z},\kappa_{z},\kappa_{\gamma},\lambda_{z},\lambda_{\gamma}\right\}$$

W anomalous magnetic moment

$$u_W = \frac{e}{2m_W}(1+k_\gamma+\lambda_\lambda)$$

W anomalous electric quadrupole moment

$$Q_w = -\frac{e}{m_W^2}(\kappa_\gamma - \lambda_\gamma)$$

Triple Gauge Couplings

Precise LEP1 measurements motivated SU(2)xU(1) constraints

TGC contributes via loops
$$\Delta \kappa_{Z} = -\Delta \kappa_{\gamma} \tan^{2} \theta_{W} + \Delta g_{Z}^{1}$$
$$\lambda_{Z} = \lambda_{\gamma}$$
 Δ is deviation from SM

Within Standard Model

Typical analyses (and LEP combinations) in terms of three couplings. However more general constraints of C, P and CP violating couplings were published: all 14 couplings were probed !!

WZ and Wy Production

- LHC has thousands of high purity trilepton WZ candidates, tens of thousands of Wγ
- Photon and lepton fakes are the predominant background

Wγ,

 γPT

П

1000

 E_T^{γ} [GeV]

exclusive 0-jet

Data 2011 (Exclusive)

MCFM (Exclusive)

SHERPA × 1.0 (Exclusive)

 $ALPGEN \times 1.5$ (Exclusive)

60

100

• No evidence of new physics in high PT tails

Data 2011 (Inclusive

MCFM (Inclusive)

PGEN × 1.5 (Inclusive)

30

40

 $\frac{d\sigma(pp \rightarrow lv\gamma)}{dE_T^{\gamma}} [fb \ GeV^{-1}]$

<u>Data</u> Theory

<u>Data</u> Theory 10^{2}

10

10⁻²

2

0 2

°15

10

ATLAS

s=7TeV

dt = 4.6 fb

20

PRD 87, 112003 (2013)

CMS-PAS-SMP-12-006

WW Production (8 TeV)

GeV

Events / 10

700E

- **Kinematic shapes** • agree with prediction, but cross section excess observed at 20% level in CMS and **ATLAS**
- ~5000 emu ATLAS candidates with 20/fb!
- Systematics from jet • veto acceptance, background methods
- Not vet reporting: CMS lvlv 20/fb, WW→lvjj 20/fb
- Theory calculation • being actively studied (jet vetoes, NNLO)

MCFM 58.7±3.0 (syst.) pb

=qq,qg 53.2 MCFM NLO 1.4 MCFM LO +gg +HWW 4.1 NNLO+NNLL

Higher order/other \approx +3-4pb?

PLB 721 (2013) 190

NEW for ICHEP14 ATLAS-CONF-2014-033

CMS

 $\sqrt{s} = 8$ TeV. L = 3.5 fb⁻¹

Charged aTGCs: World Summary

Feb 2013

- Best single LHC 7 TeV measurements equal LEP2 or Tevatron combinations
- Semileptonic WW gives the best information on κ and λ , leptonic WW and WZ better for g.
- LHC 8 TeV will provide 2-3X better constraints, reaching LEP2 precision also for g

			ATLAS Limits FI CMS Limits FI D0 Limit FO LEP Limit FO
Δν	Н	WW	-0.043 - 0.043 4.6 fb ⁻¹
	H	WV	-0.043 - 0.033 5.0 fb ⁻¹
	⊢●┥	LEP Combination	-0.074 - 0.051 0.7 fb ⁻¹
λ	⊢ –1	WW	-0.062 - 0.059 4.6 fb ⁻¹
Λ _Z	⊢ –−1	WW	-0.048 - 0.048 4.9 fb ⁻¹
	н	WZ	-0.046 - 0.047 4.6 fb ⁻¹
	н	WV	-0.038 - 0.030 5.0 fb ⁻¹
	Ю	D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	He	LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
Δq^Z	⊢-I	WW	-0.039 - 0.052 4.6 fb ⁻¹
<u> </u>	⊢	WW	-0.095 - 0.095 4.9 fb ⁻¹
	⊢	WZ	-0.057 - 0.093 4.6 fb ⁻¹
	FOH	D0 Combination	-0.034 - 0.084 8.6 fb ⁻¹
	H	LEP Combination	<u>-0.054 - 0.021 0.7 fb⁻¹</u>
-0.5	0	0.5 1	1.5
		aTGC L	imits @95% C.L

Anomalous Neutral couplings

- ZZZ, γZZ and γγZ trilinear couplings are not present in the Standard Model: ZZ and Zγ production does not take place through s-channel
- Anomalous couplings can be defined through effective lagrangians, two CP-conserving and two CP-violating couplings are defined
- The parametrization depends on the final state (*f* couplings for ZZ, *h* couplings for γZ)

JHEP 10 (2013) 164

Zγ Production

 $Z\gamma
ightarrow II\gamma$

 γPT

PRD 89 (2014) 092005 PRD 87 (2013) 112003

- Thousands of dilepton-photon events at 7 TeV agree with SM
- MET-photon channel: Higher BR and low background at high PT gives superior (dim 8) TGC constraint

ZZ ProductionATLAS-CONF-2013-020
CMS-PAS-SMP-12-016arxiv:1406.0113CMSvs = 8 TeV, L = 19.6 fb⁻¹vs = 0vs = 0</t

- ~300 ZZ to 4-lepton candidates observed at 8 TeV/experiment with SM rate and shapes
- ~200 ZZ to 2l2v candidates observed at 8 TeV, give best (dim 8) TGC constraint

32

Limits on neutral couplings

ATLAS Diboson Summary

CMS Preliminary

