Exotica Searches at the LHC Lecture 1 of 3

Greg Landsberg BROWN UNIVERSITY Taller de Altas Energías 2014 Benasque, Spain September 25, 2014

Outline

Why Search for BSM Physics? The Hierarchy Problem Possible Solutions + SUSY Primer Technicolor: RIP Extra Dimensions

N

What I'll Cover

- Searches for BSM physics are vast
- For example, in CMS they are organized within three physics groups: SUSY (SUS), Exotica (EXO), and Beyond Two Generations (B2G)
 - While "bread-and-butter" EXO searches (W', Z', extra dimensions, LQs, etc.) are winding down, a lot of attention is shifting to B2G searches with b and t quarks, as well as searches in the boosted topologies
 - SUS searches moved toward "natural" SUSY models and Higgs production in the SUSY decay chains
- In these lectures, I'll highlight some of these recent results
- I'll also cover one particular result in a lot of details as a pedagogical introduction to searches for new physics

MOTIVATION

Some people need more than others...

4

As Confucius Once Said...

... about SUSY searches in the XXI century?..

It's very hard to find a black cat ...

As Confucius Once Said...

... in a dark room about SUSY searches in the XXI century?..

It's very hard to find a black cat ...

S

As Confucius Once Said...

... in a dark room about SUSY searches in the XXI century?..

It's very hard to find a black cat ...

... especially if he is not there...

Why Motivate Yourselves?

- Searching for new physics is not for weak at heart:
 - Some 200 searches have been carried out by the ATLAS and CMS experiments so far, and all came empty-handed
 - A likelihood for any given search to find something interesting is close to zero...
 - ..yet, the only way to find something is to keep looking!
- It's much easier to do the analysis if you are motivated
 - ...not [just] by your advisor, but by the physics you are doing!
- Remember, every search is a potential discovery, and only if it fails, it becomes a limit setting exercise
- "Pier is a disappointed bridge" James Joyce
 - Set out to build bridges, not piers!

Real Motivation: the Hierarchy Problem

Large Hierarchies Tend to Collapse...

SM:10⁻³⁴ fine-tuning

Large Hierarchies Tend to Collapse...

Slide

SM:10⁻³⁴ fine-tuning

The Hierarchy Problem

Higgs boson mass receives corrections from fermion loops:

• The size of corrections is \sim_{2} to the UV cutoff (Λ) squared:

$$\Delta M_{H}^{2} = \frac{\lambda_{f}^{2}}{4\pi^{2}} (\Lambda^{2} + M_{H}^{2}) + \dots$$

- In order for the Higgs boson mass to be finite, a fine tuning (cancellation) of various loops is required to a precision $\sim (M_{\rm H}/\Lambda)^2 \sim 10^{-34}$ for $\Lambda \sim M_{\rm Pl}$
- This is known as a "hierarchy problem" stemming from a large hierarchy between the electroweak symmetry breaking and Planck scales, and it requires new physics at $\Lambda \sim 1-10$ TeV

Standard Model: Beauty & the Beast

Beauty...

	Measurement	Fit	$10^{\text{meas}} - 0^{\text{fit}} \frac{1}{\sigma}$
$\overline{\Delta \alpha_{\text{had}}^{(5)}(\text{m}_{7})}$	0.02750 ± 0.00033	0.02759	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Г _z [GeV]	2.4952 ± 0.0023	2.4959	-
$\sigma_{\sf had}^{\overline{\sf 0}}$ [nb]	41.540 ± 0.037	41.478	
R	20.767 ± 0.025	20.742	
A ^{0,I}	0.01714 ± 0.00095	0.01645	
A _I (P _t)	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.385 ± 0.015	80.377	
Г _w [GeV]	2.085 ± 0.042	2.092	•
m _t [GeV]	173.20 ± 0.90	173.26	
March 2012			

Standard Model: Beauty & the Beast

 $M_{GUT} \sim M_{Pl} \gg vev$

Standard Model: Beauty & the Beast

Physics beyond the SM may get rid of the beast while preserving SM's natural beauty!

Beauty... and the Beast

 Fine tuning (required to keep a large hierarchy stable) exists in Nature:

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)
 - Politics: Florida 2000 recount, 2,913,321/2,913,144 =

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)
 - Politics: Florida 2000 recount, 2,913,321/2,913,144 = 1.000061 (!!)

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)
 - Politics: Florida 2000 recount, 2,913,321/2,913,144 = 1.000061 (!!)
 - Numerology: 987654321/123456789 =

Ŧ

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)
 - Politics: Florida 2000 recount, 2,913,321/2,913,144 = 1.000061 (!!)
 - Numerology: 987654321/123456789 =
 - 8.00000073 (!!!)

Ŧ

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)
 - Politics: Florida 2000 recount, 2,913,321/2,913,144 = 1.000061 (!!)
 - Numerology: 987654321/123456789 =
 - 8.00000073 (!!!)

(HW Assignment: is it really numerology?)

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)
 - Politics: Florida 2000 recount, 2,913,321/2,913,144 = 1.000061 (!!)
 - Numerology: 987654321/123456789 =
 - 8.00000073 (!!!)

(HW Assignment: is it really numerology?)

Nevertheless: beware of the anthropic principle

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)
 - Politics: Florida 2000 recount, 2,913,321/2,913,144 = 1.000061 (!!)
 - Numerology: 987654321/123456789 =
 - 8.00000073 (!!!)

(HW Assignment: is it really numerology?)

- Nevertheless: beware of the anthropic principle
 - Properties of the universe are so special because we happen to exist and be able to ask these very questions

- Fine tuning (required to keep a large hierarchy stable) exists in Nature:
 - Solar eclipse: angular size of the sun is the same as the angular size of the moon within 2.5% (pure coincidence!)
 - Politics: Florida 2000 recount, 2,913,321/2,913,144 = 1.000061 (!!)
 - Numerology: 987654321/123456789 =
 - 8.00000073 (!!!)

(HW Assignment: is it really numerology?)

- Nevertheless: beware of the anthropic principle
 - Properties of the universe are so special because we happen to exist and be able to ask these very questions
 - Is it time to give up science for philosophy? So far we've been able to explain the universe entirely with science!

Beyond the Standard Model

Beyond the Standard Model

- Apart from the naturalness argument:
 - Standard Model accommodates, but does not explain:
 - EWSB
 - CP-violation
 - Fermion masses (i.e., the values of the Yukawa couplings to the Higgs field)
 - It doesn't provide natural explanation for the:
 - Neutrino masses
 - Cold dark matter

Beyond the Standard Model

- Apart from the naturalness argument:
 - Standard Model accommodates, but does not explain:
 - EWSB
 - CP-violation
 - Fermion masses (i.e., the values of the Yukawa couplings to the Higgs field)
 - It doesn't provide natural explanation for the:
 - Neutrino masses
 - Cold dark matter

Logical conclusion:

- Standard model is an effective theory a low-energy approximation of a more complete theory, which ultimately explains the above phenomena
- This new theory must take off at a scale of ~1 TeV to avoid significant amount of fine tuning
- Three classes of solutions:
 - Ensure automatic cancellation of divergencies (SUSY/Little Higgs)
 - Eliminate fundamental scalar and/or introduce intermediate scale $\Lambda \sim 1$ TeV (Technicolor/Higgsless models) basically dead now
 - Reduce the highest physics scale to ~1 TeV (Extra Dimensions)

12

Looking for SUSY

- See more motivational details in Dominik Stöckinger's lectures:
 - What is SUSY?
 - Three SUSY miracles
 - Supersymmetric particle zoo
 - "Natural" SUSY
- SUSY and Higgs the marriage made in heaven
 - What did we learn about SUSY in the aftermath of the Higgs discovery?

The Beauty in the Mirror

- The mirror world: discrete symmetry of spin
 - Every Standard Model (SM) fermion has a bosonic "superpartner," and vice versa, e.g.:
 - ♦ Quark $(J = \frac{1}{2}) \rightarrow$ Squark (J = 0)
 - ✤ Photon (J = 1) → Photino (J = $\frac{1}{2}$)
- Supersymmetry must be "broken" as we do not see a selectron with the mass of 0.5 MeV!
- To avoid multiple constraints, typically introduce conserved R-parity [Farrar, Fayet, Phys. Lett. B 76 (1978) 575]:

• $R = (-1)^{3B+L+2S} = +1$ (SM) and -1 (SUSY)

 This leads to the lightest supersymmetric particle (LSP) being stable and pair-production of SUSY as the only possible mechanism

Norman Rockwell "Girl at Mirror"

The LSP is an excellent Dark Matter (DM) Candidate

4

SUSY: Gauge Sector

- Higgses: two complex doublets (8 degrees of freedom)
 - One gives masses to down-type, and another one – to up-type quarks
 - Ratio of vacuum expectation values is conventionally called *tanβ*
 - 3 d.o.f. are "eaten" by massive Z, W^{\pm}
 - 5 remaining d.o.f. become physical states: h⁰, H⁰, H[±], A⁰
 - $M_H > M_h$ by definition; $M_h < 135$ GeV
 - A is a CP-odd Higgs
 - Supersymmetric partners of the two Higgs doublets mix with the partners of SM EW gauge bosons to give four neutral (neutralinos) and two pairs of charged (charginos) gauginos
- Gluino remains unmixed

15

Supersymmetry Breaking

- We know that SUSY is a broken symmetry, but we do not know how it is broken
- Several theoretical models exist:

matter possible. Generally not calculable.

Can have severe SUSY flavor problem.

Solves SUSY flavor problem.

Greg Landsberg - Search for Exotics @ the LHC - Benasque 2014

16

MSSM and cMSSM

- SUSY is a renormalizable and calculable theory and has been thoroughly studied theoretically over the last four decades
- MSSM has just two Higgs doublets; nevertheless the number of parameters describing the model is still very large: 124
 - 18 are the SM ones + Higgs boson mass (now known!)
 - 105 genuinely new parameters:
 - * 5 real parameters and 3 CP-violating phases in gaugino sector
 - 21 squark/slepton masses and 36 mixing angles
 - ✤ 40 CP-violating phases in the sfermion sector
- This makes it very challenging to search for generic SUSY, and simplifying assumptions are typically made
- One of these simplifications is constrained MSSM, or cMSSM, which assumes gaugino unification and degenerate squark/slepton masses at high energy (typical of gravity-mediated SUSY breaking)
 - That results in just five parameters fixing all the SUSY interactions: common scalar and fermion masses M_0 , $M_{1/2}$, ratio of the vacuum expectations of the two Higgs doublets $tan\beta$, sign of Higgsino mass term $sign(\mu)$, and trilinear coupling A_0

17

MSSM and cMSSM

- SUSY is a renormalizable and calculable theory and has been thoroughly studied theoretically over the last four decades
- MSSM has just two Higgs doublets; nevertheless the number of parameters describing the model is still very large: 124
 - 18 are the SM ones + Higgs boson mass (now known!)
 - 105 genuinely new parameters:
 - * 5 real parameters and 3 CP-violating phases in gaugino sector
 - 21 squark/slepton masses and 36 mixing angles
 - ✤ 40 CP-violating phases in the sfermion sector
- This makes it very challenging to search for generic SUSY, and simplifying assumptions are typically made
- One of these simplifications is constrained MSSM, or cMSSM, which assumes gaugino unification and degenerate squark/slepton masses at high energy (typical of gravity-mediated SUSY breaking)
 - That results in just five parameters fixing all the SUSY interactions: common scalar and fermion masses M_0 , $M_{1/2}$ ratio of the vacuum expectations of the two Higgs doublets $tan\beta$, sign of Higgsino mass term $sign(\mu)$, and trilinear coupling A_0 Typically most important

17

100

Slide

Three Miracles of SUSY

Elegant solution to the hierarchy problem (i.e., why the Higgs mass is not at the Planck scale)

Gauge unification

Dark matter candidate with the right abundance

 m_0 [GeV]

2200

SuperSymmetry or SuperCemetery?

19

Slide

Excluded squarks to ~2.0 TeV and gluinos to ~1.2 TeV or did we?

>Read the fine print!

What SUSY Have We Excluded?

- We set strong limits on squarks and gluinos, and yet we have not excluded SUSY
 - Moreover, we basically excluded VERY LITTLE!
- We ventured for an "easy-SUSY" or "lazy-SUSY" and we basically failed to find it
 - So what? Nature could be tough!
- What we probed is a tiny sliver of multidimensional SUSY space, simply most "convenient" from the point of view of theory

- All it takes to avoid these limits is to give up squark degeneracy!

Greg Landsberg - CMS Results on Higgs & Beyond - Beijing 08/13/13

20

Slide

What SUSY Have We Excluded?

- We set strong limits on squarks and gluinos, and yet we have not excluded SUSY
 - Moreover, we basically excluded VERY LITTLE!
- We ventured for an "easy-SUSY" or "lazy-SUSY" and we basically failed to find it
 - So what? Nature could be tough!
- What we probed is a tiny sliver of multidimensional SUSY space, simply most "convenient" from the point of view of theory

T. Rizzo (SLAC Summer Institute, 01-Aug-12)

All it takes to avoid these limits is to give up squark degeneracy!

What SUSY Have We Excluded?

- We set strong limits on squarks and gluinos, and yet we have not excluded SUSY
 CMS Preliminary, 19.5 fb⁻¹, \sqrt{s} = 8 TeV
 - Moreover, we basically excluded VERY LITTLE!
- We ventured for an "easy-SUSY" or "lazy-SUSY" and we basically failed to find it
 - So what? Nature could be tough!
- What we probed is a tiny sliver of multidimensional SUSY space, simply most "convenient" from the point of view of theory

All it takes to avoid these limits is to give up squark degeneracy!

We are at a SUSY Crossroad

 Light 125 GeV Higgs boson strongly prefers SUSY as the fundamental explanation of the EWSB mechanism (via soft SUSY-breaking terms and radiative corrections)

But what kind of SUSY?

The Stakes Are Very High -Hamed, t 2012 MH~125 GeV 11 th have naturalness somewhat elaborate Simple Even minimal split is dramatic Nima Arkani-Hamed, SavasFest 2012 tuning

Implies: light stops/sbottom, reasonably light gluinos and charginos/neutralinos

Likely: long-lived particles, light neutralino, multi-TeV Z', ...

5

Greg Landsberg - Search for Exotics @ the LHC - Benasque 2014

23

Slide

Natural SUSY Spectrum

Natural SUSY

- If SUSY is natural, we should find it soon:
 - And we most likely will find it by observing 3rd generation SUSY particles first!
- Requires shifting of the SUSY search paradigm: going for the third generation partners, push gluino reach, and look for EW boson partners

24

Greg Landsberg - Search for Exotics @ the LHC - Benasque 2014

24

Slide

Natural SUSY

- If SUSY is natural, we should find it soon:
 - And we most likely will find it by observing 3rd generation SUSY particles first!
- Requires shifting of the SUSY search paradigm: going for the third generation partners, push gluino reach, and look for EW boson partners

Papucci, Ruderman, Weiler arXiv:1110.6926

$$ilde{g}$$

$$\frac{\tilde{t}_L}{\tilde{b}_L} = \frac{\tilde{t}_R}{\tilde{b}_L}$$

natural SUSY

Natural SUSY

- If SUSY is natural, we should find it soon:
 - And we most likely will find it by observing 3rd generation SUSY particles first!
- Requires shifting of the SUSY search paradigm: going for the third generation partners, push gluino reach, and look for EW boson partners

24

Natural SUSY Spectra

- Once we focus on natural SUSY, the spectra and the signatures become rather simple – almost like "simplified model spectra"
- Basically have to consider three types of spectra and related decay modes

Abbreviation	Decay mode	Conditions	
T_t	${ ilde t} o t \chi^0$	$m_{ ilde{t}} > m_t + m_{\chi^0}$	
T_b	$\tilde{t} \to b \chi^+ \to b W^+ \chi^0$	$ m_{\tilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} > m_{\chi^0} + m_W $	
$T_{b'}$	$\tilde{t} \to b \chi^+ \to b W^{+*} \chi^0$	$ m_{\tilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} < m_{\chi^0} + m_W $	
$T_{t'}$	$\tilde{t} \to t^* \chi^0 \to b W^+ \chi^0$	$m_{\tilde{t}} < m_t + m_{\chi^0}, m_{\tilde{t}} < m_{\chi^+} + m_b$	
T_c	$\tilde{t} ightarrow c \chi^0$	$m_{\tilde{t}} < m_t + m_{\chi^0}, m_{\tilde{t}} < m_{\chi^+} + m_b$	
B_b	${\widetilde b} o b \chi^0$		
B_t	$\tilde{b} \rightarrow t \chi^- \rightarrow t W^- \chi^0$	$m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} > m_{\chi^0} + m_W$	
$B_{t'}$	$\tilde{b} \to t \chi^- \to t W^{-*} \chi^0$	$m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} < m_{\chi^0} + m_W$	

25

Natural SUSY Spectra

- Once we focus on natural SUSY, the spectra and the signatures become rather simple – almost like "simplified model spectra"
- Basically have to consider three types of spectra and related decay modes

Abbreviation	Decay mode	Conditions	
T_t	${ ilde t} o t \chi^0$	$m_{ ilde{t}} > m_t + m_{\chi^0}$	
T_b	$\tilde{t} \to b \chi^+ \to b W^+ \chi^0$	$ m_{\tilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} > m_{\chi^0} + m_W $	
$T_{b'}$	$\tilde{t} \to b\chi^+ \to bW^{+*}\chi^0$	$ m_{\tilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} < m_{\chi^0} + m_W $	
$T_{t'}$	$\tilde{t} \to t^* \chi^0 \to b W^+ \chi^0$	$m_{\tilde{t}} < m_t + m_{\chi^0}, m_{\tilde{t}} < m_{\chi^+} + m_b$	
T_c	$\tilde{t} ightarrow c \chi^0$	$m_{\tilde{t}} < m_t + m_{\chi^0}, m_{\tilde{t}} < m_{\chi^+} + m_b$	
B_b	${\widetilde b} o b \chi^0$		
B_t	$\tilde{b} \to t \chi^- \to t W^- \chi^0$	$m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} > m_{\chi^0} + m_W$	
$B_{t'}$	$\tilde{b} \to t \chi^- \to t W^{-*} \chi^0$	$m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} < m_{\chi^0} + m_W$	

25

Natural SUSY Reach

• With $\int Ldt \sim 20/fb^{-1}$ and 1 fb cross section produce 20 events; typically 1-10 events observed after acceptance/efficiencies

ğ̃g: M(**̃g**) ≈ 1.3 TeV $\widetilde{t}_1\widetilde{t}_1$: M(\widetilde{t}_1) \lesssim 0.8 TeV $\widetilde{\chi}\widetilde{\chi}$: M($\widetilde{\chi}$) \lesssim 0.6 TeV

Strong Dynamics

- New, QCD like force with "pions" at ~ 100 GeV and a number of QCD meson-like bound state
 - No fundamental Higgs particle; global EW symmetry is broken dynamically, which results in nearly massless Goldstone bosons, analogous to pions in QCD
 - Three degrees of freedom are consumed by the longitudinal W/Z modes; the rest become physical meson-like particles
 - This is the way chiral symmetry is broken in QCD
 - To explain observed W/Z masses, need new techniparticles to be ~10³ times heavier than the QCD particles
 - The role of Higgs boson in SM is played by a condensate of fermion-antifermion pair (e.g., new pion), resembling superconductivity
- Several realizations, e.g. technicolor
 - Excluded by LEP precision measurements in its simplest form
 - Cures: walking technicolor, topcolor assisted TC, extended TC

Analogous to the Higgs decay

- Still, EW corrections are $\sim (M_W/M_{TC})^2 hard to satisfy LEP constraints for M_{TC} \sim 1 \text{ TeV}$
- Observation of a scalar Higgs boson with properties close to the SM ones really kills TC

27

Strong Dynamics

- New, QCD like force with "pions" at ~ 100 GeV and a number of QCD meson-like bound state
 - No fundamental Higgs particle; global EW symmetry is broken dynamically, which results in nearly massless Goldstone bosons, analogous to pions in QCD
 - Three degrees of freedom are consumed by the longitudinal W/Z modes; the rest become physical meson-like particles
 - This is the way chiral symmetry is broken in QCD
 - To explain observed W/Z masses, need new techniparticles to be $\sim 10^3$ times heavier than the QCD particles
 - The role of Higgs boson in SM is played by a condensate of fermion-antifermion pair (e.g., new pion), resembling superconductivity TRIVMPH
- Several realizations, e.g. technicolor
 - Excluded by LEP precision measurements in its simplest form
 - Cures: walking technicolor, topcolor assisted TC, extended TC

Analogous to the Higgs decay

TECHNICOLOR 1978 - 2011 R. T. P.

OF WEAK COUPLING

N. Arkani-Hamed, Savasfest

- Still, EW corrections are $\sim (M_w/M_{TC})^2$ hard to satisfy LEP constraints for $M_{TC} \sim 1$ TeV
- Observation of a scalar Higgs boson with properties close to the SM ones really kills TC

27

1998: Large Extra Dimensions

- But: what if there is no other scale, and SM model is correct up to M_{Pl} ?
 - Give up naturalness: inevitably leads to anthropic reasoning
 - Radically new approach Arkani-Hamed, Dimopoulos, Dvali (ADD, 1998): maybe the fundamental Planck scale is only ~ 1 TeV?!!
- Gravity is made strong at a TeV scale due to existence of <u>large</u> (r ~ 1mm – 1fm) extra spatial dimensions:

-SM particles are confined to a 3D "brane"

-Gravity is the only force that permeates "bulk" space

What about Newton's law?

$$V(\rho) = \frac{1}{M_{\rm Pl}^2} \frac{m_1 m_2}{\rho^{n+1}} \to \frac{1}{\left(M_{\rm Pl}^{[3+n]}\right)^{n+2}} \frac{m_1 m_2}{\rho^{n+1}}$$

• Ruled out for infinite ED, but does not apply for the compact ones:

• Gravity is fundamentally strong force, but we do not feel that as it is diluted by the large volume of the bulk space $G'_N = 1/(M_{\rm Pl}^{[3+n]})^2 = 1/M_D^2$; $M_D \sim 1 \text{ TeV}$

$$M_D^{n+2} \sim M_{\rm Pl}^2/r^n$$

• More precisely, from Gauss's law:

$$r = \frac{1}{\sqrt{4\pi}M_D} \left(\frac{M_{\rm Pl}}{M_D}\right)^{2/n} \sim \begin{cases} 8 \times 10^{12}m, & n = 1\\ 0.7mm, & n = 2\\ 3nm, & n = 3\\ 6 \times 10^{-12}m, & n = 4 \end{cases}$$

- Amazing as it is, but as of 1998 no one has tested Newton's law to distances less than ~ 1mm! (Even now it's been tested to only 37 µm!)
- Thus, the fundamental Planck scale could be as low as 1 TeV for n > 1

28

1999: Randall-Sundrum Model

- Randall-Sundrum (RS) model [PRL 83, 3370 (1999); PRL 83, 4690 (1999)]
 - -One + brane no low energy effects
 - –Two + and branes TeV Kaluza-Klein modes A of graviton
 - –Low energy effects on SM brane are given by Λ_{π} ; for kr ~ 10, Λ_{π} ~ 1 TeV and the hierarchy problem is solved naturally

1999: Randall-Sundrum Model

- Randall-Sundrum (RS) model [PRL 83, 3370 (1999); PRL 83, 4690 (1999)]
 - -One + brane no low energy effects
 - –Two + and branes TeV Kaluza-Klein modes A of graviton
 - –Low energy effects on SM brane are given by Λ_{π} ; for kr ~ 10, Λ_{π} ~ 1 TeV and the hierarchy problem is solved naturally

1999: Randall-Sundrum Model

- Randall-Sundrum (RS) model [PRL 83, 3370 (1999);
 PRL 83, 4690 (1999)]
 - -One + brane no low energy effects
 - -Two + and branes TeV Kaluza-Klein modes AdS of graviton

–Low energy effects on SM brane are given by Λ_{π} ; for kr ~ 10, Λ_{π} ~ 1 TeV and the hierarchy problem is solved naturally

Planck brane

 $(\phi = 0)$

Anti-deSitter space-time metric:

$$ds^{2} = e^{-2kr|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - r^{2}d\phi^{2}$$

$$\Lambda_{\pi} = \overline{M}_{\rm Pl} e^{-kr\tau}$$

Reduced Planck mass:

$$\overline{M}_{\rm Pl} \equiv M_{\rm Pl}/\sqrt{8\pi}$$

Extra Dimensions: a Brief Summary

- ADD Paradigm:
- Pro: "Eliminates" the hierarchy problem by stating that physics ends at a TeV scale
- Only gravity lives in the "bulk" space
- Size of ED's (n=2-7) between ~100 μm and ~1 fm
- Black holes at the LHC and in the UHE cosmic rays
- Con: Doesn't explain why ED are so large

RS Model:

- Pro: A rigorous solution to the hierarchy problem via localization of gravity
- Gravitons (and possibly other particles) propagate in a single ED, with special metric
- Black holes at the LHC and in UHE cosmic rays
- Con: Somewhat disfavored by precision EW fits

30

Examples of Compact Dimensions

31

Slide

[M.C.Escher, Relativity (1953)]

[M.C.Escher, Mobius Strip II (1963)]

[All M.C. Escher works and texts copyright © Cordon Art B.V., P.O. Box 101, 3740 AC The Netherlands. Used by permission.]

Large ED: Gravity at Short Distances

32

- Sub-millimeter gravity measurements could probe only n=2 case only within the ADD model
 - The best sensitivity so far have been achieved in the U of Washington torsion balance experiment – a high-tech "remake" of the 1798 Cavendish experiment
 - R ≲ 37 µm (M_D ≳ 2 TeV)
- Sensitivity vanishes quickly with the distance – can't push limits further down significantly
 - Started restricting ADD with 2 extra dimensions;
 - can't probe any higher number
- No sensitivity to the RS models

Greg Landsberg - Search for Exotics @ the LHC - Benasque 2014

33

Slide

Higgs Leads the Way

4th of July 2012 Fireworks

http://www.elsevier.com/locate/physletb

Greg Landsberg - Search for Exotics @ the LHC - Benasque 2014

Slide

10-12

m_µ (GeV)

SUSY: the Higgs Aftermath

- A 125 GeV Higgs boson is challenging to accommodate in (over)constrained versions of SUSY, particularly for "natural" values of superpartner masses
 - Started to constrain some of the simpler models
- Big question: if SUSY exists, can it still be "natural", i.e. offer a non-fine-tuned solution to the hierarchy problem
 - If not, we would be giving up at least one of the three SUSY "miracles"

30

SUSY & Higgs

M_w [GeV]

- Existence of several Higgs bosons is the key prediction of low-scale SUSY
 - Higgs & SUSY a marriage made in heaven!
- The lightest one looks largely like the SM Higgs and has to be light (≤135 GeV); the other ones could be relatively heavy
- Discovery of the Higgs boson at 125-126 GeV was the crucial missing proof that low-scale SUSY can still exists, despite the fact that we haven't seen it yet
 - Precision EW data does prefer MSSM over SM (only by 1 standard deviation)
 - Had the Higgs boson been just 10% heavier, I wouldn't be even including SUSY in this talk!

m, [GeV]

37

- Benasque 2014

Just-So Higgs?

- The simultaneous measurement of the Higgs boson and top quark masses allowed for the first time to infer properties of the very vacuum we leave in!
 - We are in a highly fine-tuned situation: the vacuum is at the verge of being either stable or metastable!
 - ~1 GeV in either the top-quark or the Higgs boson mass is all it takes to tip the scales!
- Perhaps Nature is trying to tell us something here?
 - Very important to improve on the precision of top quark mass measurements, including various complementary methods and reduction of theoretical uncertainties
 - Tevatron is still leading with the new combined M_t result, but LHC is catching up quickly!

What Vacuum Do We Live In?

160

124.5

125.0

125.5

 m_H [GeV]

126.0

176

174

172

170

127.0

126.5

 m_t [GeV]

Thank You!