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OUTLINE 

LECTURE I 
• Phenomena to be described by TDDFT 
• Some generalities on “functional theories” 
 
LECTURE II 
• Basic theorems of TDDFT  

 
LECTURE III  
• TDDFT in the linear-response regime: Calculation of optical 

excitation spectra  
• Beyond linear reponse: TD Electron Localization Function 



Time-dependent systems 

Weak  laser (vlaser(t) << ven) : 
Calculate    1. Linear density response     ρ1(r t) 
 
        2. Dynamical polarizability 
 
 
        3.  Photo-absorption cross section  
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Strong  laser (vlaser(t) ≥ ven) : 
Non-perturbative solution of full TDSE required 

Generic situation:  
Molecule in laser field 
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Reminder: Photo-absorption in weak lasers 
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Standard linear response formalism 

H(t0) = full static Hamiltonian at t0  

full response function  

( )0 mH t m E m= ←  exact many-body eigenfunctions  
      and energies of system  

⇒ The exact linear density response 
 
 
     has poles at the exact excitation energies  Ω = Em - E0   

ρ1 (ω) = χ (ω) v1 
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Strong Laser Fields 

Comparison: Electric field on 1st Bohr-orbit in hydrogen 
Intensities in the range of 1013 …1016 W/cm2 
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Three quantities to look at: 
I. Emitted ions 
II. Emitted electrons 
III. Emitted photons 



Three regimes of ionization,  
depending on Keldysh parameter : (a.u.)

E
ω

γ =

Multiphoton Tunneling Over the barrier 

γ >> 1 γ ≈ 1 γ << 1 

I. Emitted Ions 



Multiphoton-Ionization  (He) Walker et al.,  
PRL 73, 1227 (1994) 

λ = 780 nm 



Momentum Distribution of the He2+ recoil ions 





(M. Lein, E.K.U.G., V. Engel, J. Phys. B 33, 433 (2000)) 

( ) 2
1 2p , p , tΨ of the He atom 



( ) 2
1 2p , p , tΨ of the He atom 

(M. Lein, E.K.U.G., V. Engel, J. Phys. B 33, 433 (2000)) 



II. Electrons: Above-Threshold-Ionization (ATI) 

Ionized electrons absorb more photons than necessary to overcome 
the ionization potential (IP) 

Photoelectrons: ( )kinE n s IP= + ω −

⇒ Equidistant maxima in intervals of         :  ω

Agostini et al., PRL 42, 1127 (1979) 

IP 



 

ω



M. Lein, E.K.U.G., V. Engel, PRA 64, 23406 (2001) 
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He:  Above threshold double ionization 



M. Lein, E.K.U.G., and V. Engel, Laser Physics 12, 487 (2002) 

Two-electron momentum distribution for 
double ionization of the He model atom by a 
250 nm pulse with intensity 1015 W/cm2.  

Two-electron momentum distribution for 
double ionization of the He model atom 
with non-interaction electrons by a 250 nm 
pulse with intensity 1015 W/cm2.  

Role of electron-electron interaction 



III. Photons: High-Harmonic Generation 

Emission of photons whose frequencies are integer 
multiples of the driving field.  Over a wide frequency 
range, the peak intensities are almost constant (plateau). 
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Even harmonic generation due to nuclear motion 

T. Kreibich, M. Lein, V. Engel, 
E.K.U.G., PRL 87, 103901 
(2001) 

(a) Harmonic spectrum 
generated from the model HD 
molecule driven by a laser 
with peak intensity 1014 
W/cm2 and wavelength 770 
nm.  The plotted quantity is 
proportional to the number of 
emitted phonons.  (b) Same as 
panel (a) for the model H2 
molecule. 

HD 

H2 



Molecular Electronics 

left lead L central 
region C right lead R 

 Dream: Use single molecules as basic units (transistors,  
                diodes, …) of electronic devices 



Molecular Electronics 

left lead L central 
region C right lead R 

Bias between L and R is turned on: U(t)  V  for large t 

A steady current, I, may develop as a result. 

• Calculate current-voltage characteristics  I(V) 
 

 Dream: Use single molecules as basic units (transistors,  
                diodes, …) of electronic devices 



Hamiltonian for the complete system of Ne electrons with coordinates 
(r1 ··· rNe) ≡ r  and Nn nuclei with coordinates (R1 ··· RNn) ≡ R, masses 
M1 ··· MNn  and charges Z1 ··· ZNn. 
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Time-dependent Schrödinger equation 

( ) ( ) ( )( ) ( )externali r, R, t H r,R V r,R, t r,R, t
t

∂
Ψ = + ψ

∂ 

First approximation: Clamp the nuclei or treat them classically 



Example: Oxygen atom (8 electrons) 

depends on 24 coordinates 

rough table of the wavefunction 

10 entries per coordinate: ⇒ 1024 entries 
1 byte per entry: ⇒ 1024 bytes 
1010  bytes per DVD:  ⇒ 1014 DVDs 
10 g per DVD: ⇒ 1015 g DVDs 
   = 109 t DVDs 

( )81 r,,r 



Ψ

Why don’t we just solve the many-particle SE? 



Motivation 
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“Functional Theories” 

DFT 

)r,r()r( γ=ρ

Functional: 
      Φxc[G] 
 or  Σxc[G] 
easy (e.g. GW) 
numerically 
     heavy 
 

Functional: 
      Exc[γ] 
 
   difficult 
 
  moderate 

Functional: 
      Exc[ρ] 
 or  vxc[ρ] 
very difficult 
 
      light  



Motivation 

 
 

(r, r ') G(r, r ',0 )+γ =

   
MBPT RDMFT 

 
 )'tt,'r,r(G −

“Functional Theories” 

DFT 

)r,r()r( γ=ρ

Functional: 
      Φxc[G] 
 or  Σxc[G] 
easy (e.g. GW) 

Functional: 
      Exc[γ] 
 
   difficult 

Functional: 
      Exc[ρ] 
 or  vxc[ρ] 
very difficult  

For each of these functional theories there exist static and TD versions 



Four steps needed 
 
Step 1: Basic Theorems, exact features 
 
Step 2: Find approximate functionals for 
 
Step 3: Write code that solves the TDKS equations 
 
Step 4: Run code for interesting systems/questions 
 
   

( ) ( )xcv r ' t ' rt ρ 



Static Density Functional Theory: Some remarks 



compare ground-state densities  ρ(r)  resulting from different 
external potentials  v(r). 

QUESTION:     Are the ground-state densities coming from 
different potentials always different? 

ρ(r) 

v(r) 



v(r) Ψ (r1…rN) 
ρ (r) 

single-particle 
potentials having 
nondegenerate 
ground state 

ground-state 
wavefunctions 

ground-state 
densities 

Hohenberg-Kohn-Theorem (1964) 

G: v(r)  → ρ (r)   is invertible 

A 
G 

Ã 



HOHENBERG-KOHN THEOREM 

1. v(r)                  ρ(r) 
 one-to-one correspondence between external potentials v(r) and ground-state 

densities ρ(r) 
 
2. Variational principle 
 

 Given a particular system characterized by the external potential v0(r).  Then the 
solution of the Euler-Lagrange equation 

 
 
 
 yields the exact ground-state energy E0 and ground-state density ρ0(r) of this 

system  
 
3.   

 

  F[ρ]  is  UNIVERSAL.    In practice,  F[ρ]  needs to be approximated 

1—1 
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[ ] [ ] ( ) 3
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Expansion of  F[ρ]  in powers of e2 

F[ρ] = F(0)[ρ] + e2 F(1)[ρ] + e4 F(2)[ρ] + ··· 
 
where: F(0)[ρ] = Ts [ρ]   (kinetic energy of non-interacting particles) 
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By construction, the HK mapping is well-defined for all those functions ρ(r) 
that are ground-state densities of some potential (so called V-representable 
functions ρ(r)). 

QUESTION:  Are all “reasonable” functions ρ(r) V-representable? 

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985)) 
 

On a lattice (finite or infinite), any normalizable positive function ρ(r), that 
is compatible with the Pauli principle, is (both interacting and non-
interacting) ensemble-V-representable. 

In other words: For any given ρ(r) (normalizable, positive, compatible with 
Pauli principle) there exists a potential, vext[ρ](r), yielding ρ(r) as interacting 
ground-state density, and there exists another potential, vs[ρ](r), yielding 
ρ(r) as non-interacting ground-state density. 

In the worst case, the potential has degenerate ground states such that the 
given ρ(r) is representable as a linear combination of the degenerate 
ground-state densities (ensemble-V-representable). 



[ ]( )extv ρ r ( )ρ r [ ]( )sv ρ r

HK 1-1 mapping for 
interacting particles 

HK 1-1 mapping for 
non-interacting particles 

Kohn-Sham Theorem 

Let ρo(r) be the ground-state density of interacting electrons moving in the external 
potential vo(r). Then there exists a local potential vs,o(r) such that non-interacting 
particles exposed to vs,o(r) have the ground-state density ρo(r), i.e.  
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proof: 

Uniqueness follows from HK 1-1 mapping 
Existence follows from V-representability theorem 
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Define  vxc[ρ](r)  by the equation 

[ ]( ) [ ]( ) ( ) [ ]( )3r '
: d r '

r r 's ext xcv ρ r v ρ r v ρ r
ρ

= + +
−∫

[ ]( )Hv ρ r
 vs[ρ] and vext[ρ] are well 
defined through HK. 

KS equations 

Note:  The KS equations do not follow from the variational principle. 
They follow from the HK 1-1 mapping and the V-representability 
theorem. 

fixed 
( )ov r

to be solved selfconsistently with ( ) ( ) 2

o jρ r r= ϕ∑



Variational principle gives an additional property of vxc: 

[ ]( ) [ ]
( )
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ρ

δE ρ
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where  [ ] [ ] ( ) ( ) [ ]3 3
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Consequence:  
Approximations can be constructed either for Exc[ρ] or  
directly for  vxc[ρ](r). 
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