Time-dependent density functional theory

E.K.U. Gross

Max-Planck Institute for Microstructure Physics

OUTLINE

LECTURE I

- Phenomena to be described by TDDFT
- Some generalities on "functional theories"

LECTURE II

Basic theorems of TDDFT

LECTURE III

- TDDFT in the linear-response regime: Calculation of optical excitation spectra
- Beyond linear reponse: TD Electron Localization Function

Time-dependent systems

Generic situation: Molecule in laser field

$$\hat{H}(\mathbf{t}) = \hat{T}_{e} + \hat{W}_{ee} + \sum_{j,\alpha} - \frac{Z_{\alpha} e^{2}}{|\mathbf{r}_{j} - \mathbf{R}_{\alpha}|} + \vec{E} \cdot \vec{r}_{j} \cdot \sin \omega t$$

Strong laser $(v_{laser}(t) \ge v_{en})$:

Non-perturbative solution of full TDSE required

Weak laser $(v_{laser}(t) \ll v_{en})$:Calculate1. Linear density response $\rho_1(\vec{r} t)$

2. Dynamical polarizability $\alpha(\omega) = -\frac{e}{E} \int z \rho_1(\vec{r}, \omega) d^3 r$

3. Photo-absorption cross section

$$\sigma(\omega) = -\frac{4\pi\omega}{c} \operatorname{Im} \alpha$$

Reminder: Photo-absorption in weak lasers

No absorption if ω < lowest excitation energy

Standard linear response formalism

$\mathbf{H}(\mathbf{t}_0) = \text{full static Hamiltonian at } \mathbf{t}_0$ $\mathbf{H}(\mathbf{t}_0) | \mathbf{m} \rangle = \mathbf{E}_{\mathbf{m}} | \mathbf{m} \rangle \quad \leftarrow \text{ exact many-body eigenfunctions} \text{ and energies of system}$

full response function

$$\chi(\mathbf{r},\mathbf{r}';\omega) = \lim_{\eta \to 0^{+}} \sum_{\mathbf{m}} \left(\frac{\langle 0|\hat{\rho}(\mathbf{r})|\mathbf{m}\rangle\langle \mathbf{m}|\hat{\rho}(\mathbf{r}')|0\rangle}{\omega - (E_{\mathbf{m}} - E_{\mathbf{0}}) + i\eta} - \frac{\langle 0|\hat{\rho}(\mathbf{r}')|\mathbf{m}\rangle\langle \mathbf{m}|\hat{\rho}(\mathbf{r})|0\rangle}{\omega + (E_{\mathbf{m}} - E_{\mathbf{0}}) + i\eta} \right)$$

⇒ The exact linear density response

$$\rho_1(\omega) = \chi(\omega) v_1$$

has poles at the exact excitation energies $\Omega = E_m - E_0$

Strong Laser Fields

Intensities in the range of 10¹³ ...10¹⁶ W/cm² Comparison: Electric field on 1st Bohr-orbit in hydrogen

$$E = \frac{1}{4\pi\epsilon_0} \frac{e}{a_0^2} = 5.1 \times 10^9 \text{ V/m}$$
$$I = \frac{1}{2}\epsilon_0 cE^2 = 3.51 \times 10^{16} \text{ W/cm}^2$$

Three quantities to look at:

- I. Emitted ions
- **II. Emitted electrons**
- **III. Emitted photons**

I. Emitted Ions

Three regimes of ionization, depending on Keldysh parameter

$$\gamma := \frac{\omega}{E}$$
(a.u.)

Multiphoton

Tunneling

Over the barrier

 $\gamma \approx 1$

γ << 1

γ >> 1

Momentum Distribution of the He²⁺ recoil ions

$$(i) 200 + (b) + (b) + (b) + (b) + (b) + (c) +$$

$|\Psi(p_1, p_2, t)|^2$ of the He atom (M. Lein, E.K.U.G., V. Engel, J. Phys. B <u>33</u>, 433 (2000))

$|\Psi(p_1, p_2, t)|^2$ of the He atom (M. Lein, E.K.U.G., V. Engel, J. Phys. B <u>33</u>, 433 (2000))

II. Electrons: Above-Threshold-Ionization (ATI)

Ionized electrons absorb more photons than necessary to overcome the ionization potential (IP)

Photoelectrons: $E_{kin} = (n+s)\hbar\omega - IP$ \Rightarrow Equidistant maxima in intervals of $\hbar\omega$:

He: Above threshold double ionization

M. Lein, E.K.U.G., V. Engel, PRA <u>64</u>, 23406 (2001)

Role of electron-electron interaction

M. Lein, E.K.U.G., and V. Engel, Laser Physics 12, 487 (2002)

Two-electron momentum distribution for double ionization of the He model atom by a 250 nm pulse with intensity 10^{15} W/cm².

Two-electron momentum distribution for double ionization of the He model atom with non-interaction electrons by a 250 nm pulse with intensity 10^{15} W/cm².

III. Photons: High-Harmonic Generation

Emission of photons whose frequencies are integer multiples of the driving field. Over a wide frequency range, the peak intensities are almost constant (plateau).

Even harmonic generation due to nuclear motion

(a) Harmonic spectrum generated from the model HD molecule driven by a laser with peak intensity 10^{14} W/cm² and wavelength 770 nm. The plotted quantity is proportional to the number of emitted phonons. (b) Same as panel (a) for the model H₂ molecule.

T. Kreibich, M. Lein, V. Engel, E.K.U.G., PRL <u>87</u>, 103901 (2001)

Molecular Electronics

<u>Dream</u>: Use single molecules as basic units (transistors, diodes, ...) of electronic devices

Molecular Electronics

<u>Dream</u>: Use single molecules as basic units (transistors, diodes, ...) of electronic devices

Bias between L and R is turned on: $U(t) \longrightarrow V$ for large t A steady current, I, may develop as a result.

• Calculate current-voltage characteristics I(V)

Hamiltonian for the complete system of N_e electrons with coordinates $(r_1 \cdots r_{N_e}) \equiv \underline{\underline{r}}$ and N_n nuclei with coordinates $(R_1 \cdots R_{N_n}) \equiv \underline{\underline{R}}$, masses $M_1 \cdots M_{N_n}$ and charges $Z_1 \cdots Z_{N_n}$.

$$\hat{H} = \hat{T}_{n}(\underline{\underline{R}}) + \hat{W}_{nn}(\underline{\underline{R}}) + \hat{T}_{e}(\underline{\underline{r}}) + \hat{W}_{ee}(\underline{\underline{r}}) + \hat{U}_{en}(\underline{\underline{R}},\underline{\underline{r}})$$

Time-dependent Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi\left(\underline{\underline{r}},\underline{\underline{R}},t\right) = \left(H\left(\underline{\underline{r}},\underline{\underline{R}}\right) + V_{external}\left(\underline{\underline{r}},\underline{\underline{R}},t\right)\right) \Psi\left(\underline{\underline{r}},\underline{\underline{R}},t\right)$$

First approximation: Clamp the nuclei or treat them classically

Why don't we just solve the many-particle SE?

Example: Oxygen atom (8 electrons)

$$\Psi(\vec{r}_1, \cdots, \vec{r}_8)$$
 depends on 24 coordinates

rough table of the wavefunction

10 entries per coordinate: \Rightarrow 10²⁴ entries1 byte per entry: \Rightarrow 10²⁴ bytes10¹⁰ bytes per DVD: \Rightarrow 10¹⁴ DVDs10 g per DVD: \Rightarrow 10¹⁵ g DVDs

 $= 10^9 t DVDs$

MBPT RDMFT DFT $G(r, r', t - t') \quad \gamma(r, r') = G(r, r', 0^+) \quad \rho(r) = \gamma(r, r)$

MBPTRDMFTDFTG(r,r',t-t') $\gamma(r,r') = G(r,r',0^+)$ $\rho(r) = \gamma(r,r)$ <u>Functional:</u><u>Functional:</u><u>Functional:</u> $\Phi_{xc}[G]$ $E_{xc}[\gamma]$ $E_{xc}[\rho]$ or $\Sigma_{xc}[G]$ or $v_{xc}[\rho]$ or $v_{xc}[\rho]$

MBPT DFT RDMFT $G(r, r', t-t') \quad \gamma(r, r') = G(r, r', 0^+) \quad \rho(r) = \gamma(r, r)$ **Functional:** Functional: Functional: $\Phi_{\rm xc}[G]$ $E_{xc}[\gamma]$ $E_{xc}[\rho]$ or $\Sigma_{\rm xc}[G]$ or $v_{xc}[\rho]$ very difficult easy (e.g. GW) difficult

MBPT DFT RDMFT $G(r, r', t-t') \quad \gamma(r, r') = G(r, r', 0^+) \quad \rho(r) = \gamma(r, r)$ Functional: **Functional:** Functional: $\Phi_{\rm xc}[G]$ $E_{xc}[\gamma]$ $E_{xc}[\rho]$ or $v_{xc}[\rho]$ or $\Sigma_{\rm xc}[G]$ easy (e.g. GW) difficult very difficult numerically moderate heavy light

For each of these functional theories there exist static and TD versions

Four steps needed

Step 1: Basic Theorems, exact features

<u>Step 2</u>: Find approximate functionals for $v_{xc} \left[\rho(r't') \right] (rt)$

Step 3: Write code that solves the TDKS equations

<u>Step 4</u>: Run code for interesting systems/questions

Static Density Functional Theory: Some remarks

compare ground-state densities $\rho(r)$ resulting from different external potentials v(r).

QUESTION: Are the ground-state densities coming from different potentials always different?

single-particle potentials having nondegenerate ground state

ground-state wavefunctions ground-state densities

Hohenberg-Kohn-Theorem (1964)

G: v(r) $\rightarrow \rho$ (r) is invertible

HOHENBERG-KOHN THEOREM

1.
$$v(r) \leftarrow 1 \longrightarrow \rho(r)$$

one-to-one correspondence between external potentials v(r) and ground-state densities $\rho(r)$

2. <u>Variational principle</u>

Given a particular system characterized by the external potential $v_0(\mathbf{r})$. Then the solution of the Euler-Lagrange equation

$$\frac{\delta}{\delta\rho(\mathbf{r})} \mathbf{E}_{\mathrm{HK}}[\rho] = 0$$

yields the exact ground-state energy E_0 and ground-state density $\rho_0(r)$ of this system

3. $E_{HK}[\rho] = F[\rho] + \int \rho(r) v_o(r) d^3 r$

 $F[\rho]$ is <u>UNIVERSAL</u>. In practice, $F[\rho]$ needs to be approximated

Expansion of F[\rho] in powers of e^2

 $F[\rho] = F^{(0)}[\rho] + e^2 F^{(1)}[\rho] + e^4 F^{(2)}[\rho] + \cdots$

where: $F^{(0)}[\rho] = T_s[\rho]$ (kinetic energy of <u>non</u>-interacting particles)

$$e^{2}F^{(1)}[\rho] = \frac{e^{2}}{2} \iint \frac{\rho(r)\rho(r')}{|r-r'|} d^{3}r d^{3}r' + E_{x}[\rho] \quad (\text{Hartree} + \text{exchange energies})$$

 $\sum_{i=2}^{\infty} \left(e^2\right)^i F^{(i)}[\rho] = E_c[\rho] \qquad \text{(correlation energy)}$

$$\Rightarrow F[\rho] = T_s[\rho] + \frac{e^2}{2} \iint \frac{\rho(r)\rho(r')}{|r-r'|} d^3r d^3r' + E_x[\rho] + E_c[\rho]$$

By construction, the HK mapping is well-defined for all those functions $\rho(r)$ that are ground-state densities of some potential (so called V-representable functions $\rho(r)$).

<u>QUESTION</u>: Are all "reasonable" functions $\rho(r)$ V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. <u>38</u>, 497 (1985))

On a lattice (finite or infinite), any normalizable positive function $\rho(r)$, that is compatible with the Pauli principle, is (both interacting and non-interacting) ensemble-V-representable.

In other words: For any given $\rho(r)$ (normalizable, positive, compatible with Pauli principle) there exists a potential, $v_{ext}[\rho](r)$, yielding $\rho(r)$ as interacting ground-state density, and there exists another potential, $v_s[\rho](r)$, yielding $\rho(r)$ as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the given $\rho(r)$ is representable as a linear combination of the degenerate ground-state densities (<u>ensemble</u>-V-representable).

Kohn-Sham Theorem

Let $\rho_0(r)$ be the ground-state density of interacting electrons moving in the external potential $v_0(r)$. Then there exists a local potential $v_{s,0}(r)$ such that non-interacting particles exposed to $v_{s,0}(r)$ have the ground-state density $\rho_0(r)$, i.e.

$$\left(-\frac{\nabla^{2}}{2}+\mathbf{v}_{s,o}\left(\mathbf{r}\right)\right)\boldsymbol{\varphi}_{j}\left(\mathbf{r}\right)=\boldsymbol{\varepsilon}_{j}\boldsymbol{\varphi}_{j}\left(\mathbf{r}\right),\quad\boldsymbol{\rho}_{o}\left(\mathbf{r}\right)=\sum_{\substack{j\left(\text{with}\\\text{lowest}\,\boldsymbol{\varepsilon}_{i}\right)}}^{N}\left|\boldsymbol{\varphi}_{j}\left(\mathbf{r}\right)\right|^{2}$$

<u>proof</u>: $\mathbf{v}_{s,o}(\mathbf{r}) = \mathbf{v}_{s}[\rho_{o}](\mathbf{r})$

Uniqueness follows from HK 1-1 mapping Existence follows from V-representability theorem

Define
$$\mathbf{v}_{\mathbf{xc}}[\rho](\mathbf{r})$$
 by the equation
 $\mathbf{v}_{s}[\rho](\mathbf{r}) \coloneqq \mathbf{v}_{\mathbf{ext}}[\rho](\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d^{3}\mathbf{r}' + \mathbf{v}_{\mathbf{xc}}[\rho](\mathbf{r})$
 $\mathbf{v}_{\mathbf{w}}[\rho](\mathbf{r}) = \mathcal{V}_{\mathbf{ext}}[\rho](\mathbf{r})$
 $\mathbf{v}_{\mathbf{s}}[\rho]$ and $\mathbf{v}_{\mathbf{ext}}[\rho]$ are well defined through HK.

KS equations

<u>Note</u>: The KS equations do <u>not</u> follow from the variational principle. They follow from the HK 1-1 mapping and the V-representability theorem. Variational principle gives an additional property of v_{xc}:

$$\mathbf{v}_{xc} \left[\rho_{o} \right] \left(r \right) = \frac{\delta E_{xc} \left[\rho \right]}{\delta \rho \left(r \right)} \bigg|_{\rho_{o}}$$

where
$$\mathbf{E}_{\mathrm{xc}}[\rho] \coloneqq \mathbf{F}[\rho] - \frac{1}{2} \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r} d^3\mathbf{r}' - T_{\mathrm{s}}[\rho]$$

Consequence:

Approximations can be constructed either for $E_{xc}[\rho]$ or directly for $v_{xc}[\rho](r)$.