Time-dependent density-functional formalism
(E. Runge, E.K.U.G., PRL 52, 997 (1984))

Basic 1-1 correspondence:
11 The time-dependent density determines uniquely
V(rt) — P(rt) the time-dependent external potential and hence all
physical observables for fixed initial state.

KS theorem:
The time-dependent density of the interacting system of interest can

be calculated as density N
p(rt)=2, (Pj(rt)
j=1

of an auxiliary non-interacting (KS) system

0 h°v?
macpxrt){— = +vs[p]<rt>j<p,-<rt>
with the local potential

vs[p(r't')](rt)=v(rt)+jd3r'p(rltl)+vxc[p(r't')](rt)

r=r]
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Proof of basic 1-1 correspondence between v(Ft)and p(Ft)

define maps |F: v(Tt)> ¥ (t)|[F: ¥(t)- p(Tt)

potentials

v(Tt)

F wave
functions

solve tdSE
with fixed
¥(t,)=Y,




The TDKS equations follow (like in the static case)
from:

I. the basic 1-1 mapping and

Il. the TD V-representability theorem (R. van
Leeuwen, PRL 82, 3863 (1999)).

A TDDFT variational principle exists as well, but
this is more tricky (R. van Leeuwen, PRL 80, 1280
(1998)).



complete 1 - 1 correspondence not to be expected!

i%‘l’(t)z(A+£+\fV)‘I’(t) Y(t,)="Y,
S (O)=(FeVv W Y)Y

“no operator™

with d(t)zC(t)




If G invertible up to within time-dependent function C(t)
=Y =FG™'p fixed up to within time-dependent phase

ie. ¥=e"Vyp]

N\

For any observable O
(¥[0f ¥ j={ ¥ [pJO]¥ [o] =0l

Is functional of the density




THEOREM (time-dependent analogue of Hohenberg-Kohn theorem)

The map
G: v(Tt)— p(Tt)

defined for all single-particle potentials V(Tt) which
can be expanded into a Taylor series with respect to
the time coordinate around t,

IS Invertible up to within an additive merely
time-dependent function in the potential.




Proof: .
to be shown: v(Ft)- |
v'(Tt)

cannot happen

-|

e U(Ft)=0(ft)+c(t) D p(Ft)=p'(Tt)

potential expandable into Taylor series

o
k>0 Py v(rt)—v(rt)l:to;tconstant

‘ step 1
j(rt) = J'(Tt)
‘ step 2

p(Tt)=p'(Tt)




Step 1: Current densities
i) =( v (ofi(r] v(o)
1

with (7)== 3°([99: (7)) (7) - (7) ¥, (7))

I

Use equation of motion:
%,

ia<‘P(t)‘6(t)‘\P(t)> :<‘1J(t) i




#0

dt=t,




if %[v(?t)—v'(?t)]tto + constant holds for k>0

— use equation of motion k+1 times:
(.;) j (Ft):i;<\P(t)ﬁ,I:I(t)} ‘P(t)>
:<\P(t)i§tﬁ, A |+[[1A)] A

P

(i(jj] (Tt) = ist<qf(t)

SN

‘P(t)>

0

ELICIIN H(t)],ﬂ(t)]xp(t)>

[I;j ' [](?t)_]'(ﬂ)l:to :ipo(F)ﬁ[ti;] [v(?t)—v'(?t)l()] #0
+ constant

= j(Tt)=]'(Tt) g.e.d.




Step 2: densities

Use continuity equation:

—

2 [p(rt)=p'(7t)]=-div[ §(F1)-(F0)]

ak+2 ~ ~ ak+1 B _
poves p(Tt)—p (rt)]t:to = —div o j(Ft)— ] (rt)]t:t
o[ 0" . .
= —div p, (r)V(ﬁ[v(rt)—v (rt)]ttoj
— _
~
# constant

remains to be shown:

diV[p0 (F)Vu (?)} #0 if  u(T)= constant



Proof: by reductio ad absurdum

Assume: div[po(f)ﬁu(?)]:O with u(T)= constant

—

= po(f)(Vu(f))2 =0 —— contradiction to
u ()= constant
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