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- Why Green’s functions!?
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- Hedin’s equations

- Linear response

Examples: Time-dependent screening in an electron gas
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Basic quantum mechanics

To describe time-dependent phenomena in nature we have to calculate the
time evolution of the relevant quantum states. These states are usually given in

a basis representation

(m|n) = dmn

# (m|¥) = Wy,

We can therefore write

vy =S ey == D n)(n| =1

Resolution of the identity



The time-evolution of a quantum state is given by the Schrodinger equation

10, W (1)) = H(t)|¥(t)) W (to)) = [o)

To solve this equation we need to know the representation of the Hamiltonian
in a given basis. If we define

Hpp (1) = (n|H (t)|m) cn(t) = (n|¥(t))
Then we can write

i0p(n|W(t)) = (n|HOY(1) = Y (nH(t)|[m)(m[¥(t)) = )  Hum(t)(m|T (1))

m m

— idye(t) = H(t) c(t)




Position basis

We measure a particle to be in interval A,
Its corresponding state is denoted by ' W

Zn)
These states have the property

|2

<ajn‘xm> — 5nm R ] —

and form a complete set
) = [aa)(@a|¥)
n

If the system is in state |\P> then the probability to measure state ‘aﬁn> is

P, = [(wn|O)|° = |¥(zn)[*



For one particle in position basis we can, for example, define the Hamiltonian
7 </ 1 2 /
(xlhfx') = (592 + (x, 1) (x}x)
The Schrodinger equation
hlp(t)) = id | (t)) p(x,t) = (x[¢(1))

in the position representation then has the form

iOp(x,t) = (xhlp(t)) = /dx' (x|l ([ (6))
_ /dx’ (—%VQ—I—U(X,t)) <X\X’><X’|¢(t)>

_ <_%v2 + v(x,t)) (%, 1)



Two particles

If we simultaneously measure a particle ™
in intervals A ~and A, the state is

Ty T )

The particles are indistinguishable

T

x (fermion)

Ty L) = N|Ty Tp) = )\2|:13n Ty) — A= =+1

The states are normalized

drm’ 0 nm/’

<$n$m|$n’wm’> = Oyyf Ot == Ot Oyl = 5 5
mn’ mm/

+

Let us consider fermions. Only the states with n > m are linearly independent and

we have
W) = Z T, T ) (T T | V)

n>m

Pom = ‘<£Cn xm‘\IjMQ — ‘\If(lljn,ibm”z



Second quantization

For N fermions we have (with P a permutation)

’Xl...XN> — (—1)P ‘XP(l)-°-XP(N)> X =r,0
N
(x1...xnly1...yn) =) (=P 0(Xi —Yp(i)) h
; Jl:ll 7 P Determinant
There is a unique operator zﬁ(x) that generates the position basis. It is defined by
xi1) = ¥f(x1)[0)
xix2) = PT(x2)[x1) = ¢ (x2)1" (x1)]0)
xi..xn) = OT(xN)Ix1oxvon) = 9T (xw) 9T (x0)[0)

@ET(X) is called creation operator



It follows : b (%) () = =0 ()01 (x)

Remember that the adjoint of an operator O is defined by
(@]0Tx) = (x|O|2)”

The adjoint zﬂ(x) of the creation operator therefore satisfies

(X1 XN [Ny YN = (v YN|1@T(XN)|X1 L XN-1)
= (y1...yN|X1...XN) = Z PH5 Yi — Xp(j))
P

and hence (by expanding the determinant along column N) we have

N
p(x)]y1 - =Y (DN FS(x = yr) Y1 Yh1Yhe1 - YN)
k=1




For example:

P(x)[0) = 0
Pp(x)y1) = 6(x—y1)0)
p(x)|y1y2) = 6(x—y2)ly1) —6(x —y1)|y2)
D(X)y1yays) = 6(x—y3)y1ye) —0(x —y2)|ly1ys) +d(x — y1)|y2 y3)

The operator 1)(x) is called annihilation operator

It follows (with anti-commutator [A, B]y = AB+ BA ):

D0 )| = [$T0.8 )] =0
D)) = dx—y)




The density operator is defined by

and has the property
N
n(x)|xi .. Z O(x —xj)|x1...XN)
71=1

For example:

A

PHx) P (x)y1y2) = P1(x) (6(x —y2)ly1) — 6(x — y1)|y2))
= 0(x —y2)ly1x) — 0(x — y1)ly2x)
= (0(x—y1) +d(x—y2))|y1yz)

The expectation value n(x) = (V|n(x)|¥)

is the particle density of the system in state |U)



For N particles we define the Hamiltonian by

(x1...xN|H|X) ... x\)

2 / /
g ——V +v(x;,t) + = g w(x;,x;) | (X1...XN|x7...Xp)
’&#J

or equivalently, for any state ‘\Ij> Many-body wave function

(x1...xn|H|T)

Z——VQ—I—UX], )+ = waz,xj X1...XN|¥)
z#]

Since the one- and two-body potentials are diagonal in the position representation
it is easy to express them in second quantization



For the 2-particle interaction we have

N
- 1
Wixy...xy) = 5 Zw(xi,xjﬂxl XN

1]
Since the density operator has the property
N
A1 .. xn) =) 0(x — x5) |x1 ... XN)
=1
it follows that ]
W = %/dxdy w(x,y)n(x)n(y) — % dx w(x,x)n(x)
= % / dxdy w(x,y) (41 b )0 (v)i(y) - o(x - y)if (x)d(x))
= 5 [ dxdy wlx.y) 9 0 (3)9(3)0 0




Similarly for the one-body potential

N

V(t)xy...xn) = Zv(xj,t)|xl XN = /dxﬁ(x)v(x, t)|X1...XN)

J

A

V(1) = / dx ) (x)(x) v(x, )

The kinetic energy operator is only slightly more difficult. Let’s illustrate it for
3 particles. Remember that

D(x)y1y2y3) = 0(x—y3)|y1y2) —6(x — yo)|ly1y3) +(x —y1)|y2 y3)

w(X)VQI@(X) Y1y2y3)

— V25(X —y3)|[y1y2x) + V25(X —y2)|ly1xys) + V25(X —y1)[xy2y3)



If we therefore define :
7= 5 [ dxdi V)

then since T is Hermitian

<}’1Y2Y3|T|X1X2X3> = <X1X2X3|T|Y1Y2Y3>*

(Vy, + V5, + Vy,) (axexsly1yays)®

(Vs, + Vs, + Vs.) (y1y2ys|xixaxs)

o= DN -

yielding exactly the matrix element of the kinetic energy operator. Hence

() = [ dxil ) (57 4 06xn) ) 060

1

+2 / dxdy w(x,y) OT (x)d! () (y)(x)




We can also rewrite everything in a general basis. If we define

(X|n) = @n(x)

then (O, is an orthonormal set of orbitals

Sum = nlm) =[x (nfx) (xlm) =[x (00 m(x)

If we define
iy, = / dx " (X)) (x) il — / dx o (X))
then | [, Q)+ = 0um [ay, gl = [ah,af,)y =0
af[0) = / I o (x) 0 ()[0) — / dx|x) (x|n) = |n)
N——

%)



In general we can generate N-particle states
_ AT AT
ny...ny)=a), ...a) |0)

We can relate them to position basis states as follows

ny...nN) = /dx1...dXngm(xl)...gpnN(xN)wT(XN)..

= /dx1 e dXN Ony (X1) - Ony (X)X

and find that their overlaps are given by Slater determinants

(X1...xXN§|n1...nN) = Z(—I)ngnl (Xp(l)) . gpnN(Xp(N)) =
P

T (x1)[0)
.. XN>
Ynq (Xl) Pn (Xl)
Pn, (.XN) Py (XN)

The creation and annihilation operators therefore add and remove orbitals

from Slater determinants




The Hamiltonian in a general one-particle basis then attains the form

where

hij () = / dx 7 (x)h(x, £) g} (%)
Vit — / dxdy w(x, y) ¢} (%) (¥)x (¥) 1 ()

The convenient basis states in practice depend on the problem.
Commonly used ones are, for example, Kohn-Sham or Hartree-Fock orbitals



Second quantization: Take home message

- Second quantization is nothing but a convenient way to generate a
many-particle basis that automatically has the correct (anti)symmetry.

Basis states are created by (anti)-commuting operators with
simple (anti)-commutation relations

- As we will see, second quantization is very convenient in many-body
theory as it allows for simple manipulation of perturbative terms
without the need to deal with (anti)-symmetrized orbital products

- The derivation of the Hamiltonian in second quantization
is easy in position basis as the Hamiltonian is almost diagonal

in this basis



Expectation values

A general expectation value is of the form

(O()) = (T(B)[O@)|W(t)) = (Yo|U(to,t) O(t) U, to)|To) = (To|Op (1))

where we defined the evolution operator as K

W(t)) = U(t,t)|T(t)) initial state

and the operator O(t) in the Heisenberg picture as

A

On (t) = Ulto,t) O(t) U(t, to)

The Heisenberg operator satisfies an equation of motion



It follows from the Schrodinger equation that
10, Ut t") = HHU(t,t)

and therefore that the Heisenberg operator satisfies the equation of motion

0, On(t) = —i [On (1), Hu ()] + (2.0())

For example, you can check that the field operator satisfies

0, — h(xt)] i (x, £) = / dy w(x, y) vz (yt)dr (xt)

Let us now derive a more explicit expression for the evolution operator



We start again from the Schrodinger equation 0, |W(t)) = ]:[(t) W (t))

If we divide [to, T ] into small intervals A then

W(T)) o em A A g (1)) = T {e A mifll0A ]y t))

=7 {7 X 1WA u(ty))

where 7T denotes time-ordering that orders the latest operator most left.
We used that operators commute under time-ordering

T {A(tl)é(tg)} =T {B(tZ)A(tl)}
and hence, in particular

T {GA(tl)eé(tg)} _ T {BA(t1)+E(t2)}



In the limit A => 0 then

. Time-evolution operator
By as similar procedure we have

Ulto, T) = SH()A GiH(t2)A  JiH(tn)A _ T{ei > ﬁ(tj)A}

Utto, 1) =T { a7 |

where T denotes anti-time-ordering that orders the latest operator most right.



The evolution operator can then be written as

s to 2
ﬁ(t 1) Te i [y dt H(t)dt t <t
1502 — . . rtq 2
7-€+zft2 dt H(t)dt to < 11

and the expectation value
(O(t)) = (Wo|U (to, ) O(H)U (¢, t0)|Wo)

can therefore be written as

<O(t)> — (W T@iftto dt H(t)dt O(t) Te f dt H(t)dt W)

If we expand in powers of the Hamiltonian then a typical term is

T {Fl(tl) . ﬁ(tn)} o) T{H(t))... ﬁ(t;)}
early <= late ate <= early




— > v = (to,t) D (t, to)
Z5 )4 SN—— =
Y— T+

We define a contour y consisting of two copies of the interval [to, t] . A generic

element z of y can lie on the forward branch y or the backward branch y.

Notation

z=1  when ¢ ~_ and its real value is ¢/

P when 2z € ~, and its real value is !

We can define operators on the contour

() =t
t/

r OA_
L O4(t") 2=t




29 > 21
t() Zl l_
—<« > - 7 >
Z, Y

7’7 {AP(l)(ZP(l)) .. AP(l)(ZP(l))} — Al(zl) .. An(Zn) 21> ... > Zn

With this definition we can write

T{ﬁ(tl) | ..ﬁ(tn)} é(t)’r{ﬁ(t’l) | ..ﬁ(t;)}
where

With this trick we can write the expectation value in a compact way



b Ny NG
Y
( fttf dt_A— (E) if 21 = t1_ and z9 = to_
Tto —— > Z2dz£1(z)—< [FdtA_(B)+ [PdtAL(F) ifz=t,_and zp =1
‘ .Zz < ’,y . T t1 - t + 1 — l1— 2 = loy
t TN .
T \ ft12 dt A—|— (E) lf 21 — t1_|_ and 29 = t2+
l
: ® < o )t >
‘ 23 Zy 14

The expectation value can then be written as
A —i [ H(2)dz A —i [ H(2)dz
(O0) = (o[, { e D MO (et h MO L

and since the operators commute under the time-ordering

O1)) = (Wo|T5 { e 1O O(t) } W)




It will be useful to extend the concept of expectation value to ensembles

On(t)) = > wn(®a|On()|Wn) = T {5Ou(®) }

p= wn|¥y,)(Ty > w, =1 Wi > 0

where we defined Tr A = Z((I)m\flkbm) with |®;) any complete orthonormal set

An important special case is
e~ Pbn

— S B

A

HM|U,)) = E,|¥,) HM = H(t) — uN

Wn




This corresponds to an initial system at inverse temperature B and chemical potential |
o~ BHY _ —i[(to—iB)—to] HM _ ﬁ(to — 83, o)

If we therefore define

A B [:I(t) z € [t(),OO[
H(z) = { HM z € |tg,to — 0]

then we can write

A

U(to i, 10) U (to, Y O()U (1, t0) }
1r {U(to — iﬁ,to)}

o) - — {



(L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965),
Konstantinov, Perel’, JETP12,142 (1961))

AN

1 {U(to — i, 1)U to. OO (1, 10) }
Tr {U(to - zﬂ,to)}

{.Il.i]:, _‘tj,]ll

(O(t)) =

Tr T {e_if'v dzmz)é(t)}

<O(t)> — - {e_iIW dzﬁ(z)}

Time ordering is now defined along the extended contour



Time-ordering: Take home message

- Time-ordering is a direct consequence of the structure of
time-dependent Schrodinger equation.

- Expectation values consist of a time-ordered evolution operator
for the ket state and an anti-time-ordering for the bra state

- The expectation of any operator value can be rewritten in terms of a
single time-ordered exponential by introducing contour ordering

- In case of systems prepared in an initial ensemble the expectation
value can be rewritten as a time-ordering on a contour with an
additional vertical track
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Part Il : Feynman diagrams and the Green’s function
- Why Green’s functions!?
operator orderings and Wick’s theorem
- Feynman diagrams and the self-energy
- The physical interpretation of the Green’s function
- Spectral function and photo-emission



Operator correlators

We have seen that the expansion of an expectation value leads to products
of the form, so-called operator correlators

A

We want to find an efficient way to evaluation such operator correlators.
Let us look at one of the simplest

A A A A A A

T {01(21)02(22)} = 0(21, 20) O1(21)Oa(22) + 0(22, 21) Oa(22) 01 (21)

1 21> 2o
H(Z1,z2)={ 0 2 < 2

If we differentiate with respect to the contour times we can generate relations
between various correlators



% commutator

dle { 1(2 )02(2’2)} = 0(21, 22) [01(21)762(22)} + Ty {dcle (21)O2 (22)}

where the contour delta function satisfies /dz 6(z,2) A(Z) = A(z)
-

For two fermionic field operators it is, however, more convenient to define

’7'7 {Ol(zl)OQ(zz)} = (9(Z1, ZQ) 01(21)02(22) — 9(227 Zl) OZ(ZQ)Ol(Zl)

% anti-commutator

dle {01(21)02(22)} = 0(21, 22) [01(21),02(,22)} + 75 {dil O 1(2 )Og(zg)}

such that

For example



For a general string of fermionic operators we define

T, {01 : --On} = (=17 0p) - Op@m) 2p(1) > -+ > 2P(n)
where Oj — Oj(zj)

We just put the operators in the correct order and add a plus/minus sign
depending on whether the final permutation was even/odd

from this definition it follows that

T {O1 o On} = (-1)PT {Op(l) o Op(n)}

We further define that operators at equal time are kept in their relative order.
For example

A A

T {9 6am)d! (xoz0)d(xo22) | = =T, {9 (xaz )10 (x022) |
=T, {@@T(X222)¢(X222)¢(X121)} = &T(X222)¢(X2Z2)¢(X1Z1) Z2 > 21



It follows that operators containing an even number of equal time field operators
(such as the Hamiltonian) commute under the time-ordered product, in agreement
with our earlier definition

If we expand an expectation value in powers of one- or two-body interactions
we obtain strings with an equal number of annihilation and creation operators.
The most general such string has the form

C(1.ms1 ) = ()" T {d(1) (g () 6T (1) |

J = Xj%j

From the equation of motion of the field operator
10y — h(xt)] ¥ (x,t) = / dy w(x,y) i (yt)w(xt)

we can derive equations of motion for the operators G,



We find

d - A d - . A A
iEGn(l Loy oon) = (=0T, {wH(l) . (z‘d—wﬂ(k)) ()l ()bl
k “k
+Z( D6k, §7) Gao1(1 ? n; 1’ /2’ n')
j=1

Which can be rewritten as

d A _ _ A _
[zg—h(k)] Gn(1...n;1"...n)) = —z’/dlw(k,l) Gni1(1...n,1;1 .../, 17)
k

+Y (—1)*6(k, 5 Groa (L Gl K

j=1

We therefore obtain a set of hierarchy equations for the correlators G,




The first equation in this hierarchy is

[@d% - h(l)] Gi(1;1) = 6(1,1) —z'/diw(l, 1)Ga(1,1;1,17)

An example of an equation higher in the hierarchy is

[zdi — h(z)] Ga(1,2;1,2) = = 6(2,1') G1(1;2') +6(2,2") G1(2;2)
<2

A J— J—

- i/dl w(2,1)Gs(1,2,1; 1,2, 1)

In a next step we will convert these operator equations into
differential equations



Many-particle Green'’s function

The n-particle Green’s function is defined as

Tr [e‘ﬁﬁMén(l g1l n’)}

Gn(1...n;1"...0n)) = -
Ir [6_5HM]

ro|/y et EHE) Gy dn)dt ()Lt (1
Gt — 7 { (1) - D)) (1)

Tr {7-7 {e—if,ydzﬁ(z)H

The n-particle Green’s function satisfies the same set of differential
equations as the correlators G,



Martin-Schwinger hierarchy

[Zdi — h(k)] Gn(1...nm;1"...n") = —i / dlw(k,1) Gpi1(1...n,1;1" ... 0/ 1T)
2k
n i M

+ 3 (=15, 5) Gua (1. G o1 K
j=1

.n')

(plus a set of similar equations with respect to the primed coordinates)

The hierarchy equations need to be solved with the boundary conditions

Grlo. . to,..) = —Grlo.. to —iB,...)

which are known as the Kubo-Martin-Schwinger (KMS) boundary conditions
(which can be derived from the definition of the Green’s functions)

From the n-particle Green’s function we can calculate any n-body observable




For example, if O(t) is a |-body operator :

A

Ot) = [ i (x)otx, ) (x

then
(O(t)) = —i/dxo(x,t) G(xz, % 27)|x=x/ 2=t

The calculation of n-body observables is therefore possible once we know
how to solve the Martin-Schwinger hierarchy equations. How to do this?

Further insight in the hierarchy is obtained by considering a non-interacting
system which has the n-particle Green’s function

1 T T {e b))t (). 9t |

T Tr T{e—if,y dzﬁo(z)}



The Martin-Schwinger hierarchy becomes

[z'dL; - h(k)] gn(1...m;1"...n) = Z(—1)’“+J’5(k,j’) gn_1(1... ; ooyl
j=1
The solution to this equation is
g(1,1") g(1,n)
gn(1...n,1"...n') =
g(n, 1) g(n,n')

where we denote g(1,1") = g1(1,1")

This is known as Wick’s theorem



The proof of this identity is easy: Apply the operators
: 1
10, — h(xj, z;) h(x,z) = —§V2 + v(x, 2)

on both sides of the equation and check that we recover the Martin-
Schwinger equations with the correct boundary conditions

To use Wick’s theorem we need to solve

(1., — h(5))9(,57) = 6(4,5") (=0, — h(5'))g(3.4") = 6(5,")

with the KMS boundary conditions. This is an easy problem in practice.



Many-particle Green’s function: Take home message

- The main motivation for defining the n-particle Green’s function
is that it for this object we can derive a set of coupled hierarchy
equations, known as the Martin-Schwinger hierarchy, which forms a
the basis for a systematic perturbation theory

- From the n-particle Green’s function we can calculate n-body
observables

- From the Martin-Schwinger hierarchy for a non-interacting system
it is easy to derive an explicit expression for the n-particle Green’s
function in terms of the one-particle Green’s function.

This expression is known as Wick’s theorem and forms the
basis of many-body perturbation theory



Perturbation expansion

Wick’s theorem allows for an expansion of the n-particle Green’s function in
powers of the non-interacting one-particle Green’s function.

Let us illustrate this procedure for the one-particle Green’s function given by

, 1 Tr T {e_ifv dZﬁ(z)@ﬁ(l)fg@T(l’)}
G(1,1) = - o T{e_ifv dzﬁ(z)}

We can expand this expression in powers of the two-body interaction



For the numerator we have

Tr T {e_i f dz (ﬁO(ZHW(Z))?ﬂ(X,z)@ET (X/Z,)}

A

| e T T (e O ) T ) )

The integrand has the form

Tr T 4§ e 1 g (x2) 0y (32 ) Wiy (21) ..WHO(ZR)} _

(H; dX]dX w(Xj, X )) Ir T{ BHMwHo (XZ)@DH H @DHO szk>¢H (szk)wHo (szk)wHo (szk)}

k=1

y

This can be rewritten as a
non-interacting (2n+1)-
particle Green’s function



This gives the following expansion for the one-particle Green’s function

O

S E ) fw, V) wlk, K gogar (a, 1,1, 5b, TH 1)
k=0
G(a,b) =

S & (3) w10 wk ) gak(1, 1,5 14, 1)

Using Wick’s theorem we can now replace the non-interacting
n-particle Green’s functions by determinants




This gives the perturbation expansion for the Green’s function :

PN I J TS Rt

o F A2/ SRS S R s s s

Gla,b) = gi(llf,{ii g;fl 11:)) ~ gf(/{,kl;))
S L (O [w(1,1). . w(k, g(llfﬁ) g(l’,.1’+) g(ll’.w)
g::()k s g(k’:ﬁ) g(k’:l’ﬂ g(k’:k’ﬂ

It is now only a technical matter to evaluate these terms

This leads to Feynman diagrams. Let us give an example an expand the
numerator N(a,b) to first order




Expanding the 3x3 determinant along the first column we find

N (a;b) =

MIN

“3)
w3/

l\DIN

1 1

;ONW.O

(b,1,1)

1!

(1',1,0)
N~

*g(a:D) / d1d1"w(1, 1)

d1d1’w(1,1")g(1; b)|

9(1;1+) g(1;1"7)
( ) g(ll,ll—l_)
g(a;17)  g(a;17)
g(1517) g(1; 1)
a1t a: 1/t
navu Vi | 4051 ot |

—p— ]
ek
—

N
[E—
—

b b
(b,1',1) (1,0,1")
V V
a a
5 b
N ~
(15,1 (1,1',b)



It is not difficult to prove that the disconnected diagrams from the numerator
are cancelled by those of the denominator and we can further simplify to

gga, b§ gga, 11; . gga, kli;
>0 1,b) g¢(1,1 .. g(1LK
i* w(1, 1’ w(k, K 7 , , .
g(k',b) g(K',17) ... g(K E™) | oy

where in the expansion of the determinant we retain only the connected (C) and
topologically inequivalent (Tl) terms

>

>

A
+ OO 4




Self energy

The expansion of G has the structure

G=—<—+«—<®<~+ + «@««@*Jr

where the self-energy is defined as the sum over irreducible diagrams
(i.e. can not be cut in two by cutting one g-line)

S(1;2) = 1~©¢2z 1?2 + 1«5332 + 1%2 ...

The Green’s function thus satisfies the equation

G(1,2) = ¢(1,2) +/d3d4g(1,3) Y1gl(3,4) G(4,2)



Skeletons

A skeleton diagram is a diagram without self-energy insertions, for example

>, 3,

The corresponding skeleton is therefore

By replacing ‘g’ by ‘G’ in the skeleton we sum over all self-energy insertions
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It follows that

Z[G]=©+ y;\/L» +§‘ - :§+%+...

where we sum over all dressed irreducible skeletons in terms of G




We therefore find the Dyson equation

G(1,2) = g(1,2) + / d3d4 g(1,3) X[G](3,4) G(4, 2)

or, if we use the equation of motion for g: (id,, — h(1))g(1,2) = (1, 2)

(8., — h(1))G(1,1') = §(1,1') +/d2 »[G](1,2) G(2,1)

This is a self-consistent equation of motion for the Green’s function that
needs to be solved with the boundary conditions

Kadanoff-Baym
G(x1tg — 10, 2) = —G(x1t0, 2) equations

G(l,XQtQ) - —G(17X2t0 — Zﬁ)



W-skeletons

We can further renormalize the interaction lines, by removing all interaction
line insertions. For example

W1;2)= wraarnr = + w<>«v~ + % +
| 2 | 2 | 2 1

1 9) 1 ) irreducible
polarizability



We can then define the screened interaction W by

P P P
W(12)= ArAr = w~~ne + INQNZ + wz + ...

1 2 1 2 1 K

irreducible
polarizability

P
+ A~ OOWA
1 2 1 2

In formula

W(1,2) = w(l,2) + /d3d4w(1,3) P(3,4) W(4,2)

We can then in W-skeletonic diagrams replace w by W with the exception
of the Hartree diagram. We have

i c @ Y=Y |G, W] =3Xy|Gw| + Xss xc |G, W]

% double skeletonic



This gives the double-skeletonic expansion for the self-energy

and the polarizability

[W]©@@@




The lowest order in W gives the GVV approximation

Yesxe(1,2) = —i G(1,2)W(1,2)

£
P(1,2) = —iG(1,2)G(2.1) D

W(1,2) = w(l,2) + /d3d4w(1,3) P(3,4) W (4,2)

G(1,2) = g(1,2) + / d3d4 g(1,3)(Su[G,w](3,4) + Sesxc|G, WI(3,4)) W (4, 2)

These form a self-consistent set of equations for G and W



Diagrammatic expansion: Take home message

- Wick’s theorem allows for a straightforward expansion of the
Green’s function in powers of the interaction

- The number of diagrammatic terms can be drastically reduced
by introduction of the self-energy.

- The self-energy can be expanded in powers of the dressed Green’s
function and the screened interaction W by the introduction of
skeletonic diagrams. This leads to self-consistent equations in terms

of G and WV.

- The lowest order in this expansion is the famous GWV approximation
(see lectures Matteo Gatti)



Contours and formalisms

Let us now briefly clarify some issues that may confuse you in practice,
namely the different flavors of many-body theory.

With different assumptions we can modify the contour

fl(t ) = ﬁn(t) = Ho + e Mt=tol fyp
=T H@®) = Holt) + Hi

(s € ™M) = B = flp — N,

> = .

for t < tg
for t > tg

Adiabatic assumption

A e—BHM A e—BH"
P=—7 = U, (to, —00) Z0 Up(—00,to)
Hy) Tt  H@ Va
oo —— e
Hy (2) H(?)
Hy
-00-1f



po = Uy, (—00,00) po Uy (00, —0) Zero-temperature assumption

_———— > _———— >

When expanding in powers of the interaction only the terms on the
real axis remain. This leads to 3 variants

|) Full formalism with the Matsubara approach
(equilibrium finite temperature) as an initial case

2) Keldysh formalism (adiabatic assumption)

3) Zero-temperature standard time-ordered formalism
(zero-temperature assumption)



In all the 3 formulations all diagrammatical expressions is identical.
The only thing that changes is the way the final integrals in the Feynman

diagrams are done.
If we denote <fl> — Tr ﬁfl then the Green’s function has the structure
G(1,2) = —i(T {&H(l)lﬁq(?)b = 0(z1,22) G7(1,2) + 0(21,22) G=(1,2)

Only information on the contour

is in the Heaviside functions
Real-time functions




Y (1,2) ~ 0(21, 22)

Hartree-Fock type diagrams are instantaneous
since the Coulomb interaction is

The self-energy has the structure
$(1,2) = BM(1,2) 4 0(21, 22) 7 (1, 2) + 0(22, 21) (1, 2)

A general contour function has the structure

k(z,2) = k() 8(z, 2" )+ 0(2,2 )k~ (t, 1) + 0(2, 2) k™ (t, )



One often needs to do integrals of the form

c(z,z'):/ dz"a(z,2")b(Z", 2"
gl

There are simple rules to convert these into real time functions.
For example, on the original contour:

c<:a<-bA+aR-b<—|—a]*b[

where
0 8
fro=| 109 fro= [ drsiryatr)
to 0
and
) = @) —t) +0(t — )™ (4, 1) — = (¢,1)] cl(1,t) = c(to — i, 1)
At t) = )s(t—t") — 0t —t)[c” (t, 1) — ¢<(t,1)] cl(t, 1) = c(t, to — iT)

In this lecture | will not elaborate further on these so-called Langreth rules



Different contours: Take home message

- The original contour can be deformed at the expense of
additional approximations

- The adiabatic assumption leads to the standard Keldysh
formalism without a vertical track

- The zero-temperature assumption leads to the standard
time-ordered formalism restricted to equilibrium zero-temperature
systems

- All equations of the three formalism are identical.
Only the translation of the final contour integrals to real-time
functions is different but in all cases straightforward.



Green’s function: Physical interpretation

We remove a particle from state j at time t. After this the system is left in
a superposition of eigenstates of the ionized system

~ A A

U5 (1)) = U(T, 1) iy U(t, o) [ Wo) = e TN |N — 1, s)(N — 1, s]a; e 710 @y)

_ Z G_iEN_l’S(T_t)e_iEO(t_tO)CSJ' |N . 17 S>
S

where

csj = (N —1,]a;|¥o)

The probability to find the system in (N-I)-particle state after removal
of the particle is then

Py j o |esgl* = (N =1, 5a;|Wo)|7



The diagonal lesser Green’s function has the form

2 —i(Eo—En_1,:)(t—t')

—i G5t 1) = (Wola) 5 (t)agm (8)| o) = (T;(E) (D) = D les

S

It will be convenient to write this in frequency space

dw

Gt —t') = / o Giij(w) e

—iG5(w) =21 Y e 6(w — (Bo — En—1,5))

Let us now see how this relates to a photo-current in a photo-emission

experiment y .
®- &
-



Electron-light interaction \\\‘
@

[A{l—e(t) _ Z(hm eiwot + h;kj e—iwot) &j&]

A\

Fermi’s Golden Rule

photon energy
Posm = 20 (U m| D hij alj | W o) * 5(wo — (Enm — Exp))
iJ

Final states (sudden approximation) : YN m) = al Un_1s)

Py(e) = 2[{Un—1,6] D hija;1¥n0)[* d(wo — € = (En-1,s — Enp))

J R S
kinetic energy

photo-electron



The photo-current is then given by

e)ocZPS( ——th*h G< — wo)

Similarly in an inverse photo-emission experiment the light intensity
is given by i G~

These two quantities are often combined in a single function known
as the spectral function

Aij(w) =i |G (w) = G (w)| = —2Im Gfi(w)

R This equality follows

from short manipulations
which are omitted here

A (w) > ()



Physical interpretation: Take home message

- The hole and particle Green’s functions relate directly to the
spectra measured in photo-emission and inverse photo-emission
experiments (See Simo Huotari’s lectures)

- These spectra contain information on band structure and probabilities
for various inelastic events

- The renormalization and broadening of the main
single-particle peak due to interactions in metallic systems
leads to a quasi-particle picture which forms the basis
of Landau’s theory of quantum liquids.



Introduction to Many-body Theory Il

Part lll: Linear response and examples
- The 2-particle Green’s function and optical spectra
- Hedin’s equations

- Linear response

- Examples: Time-dependent screening in an electron gas




The 2-particle Green'’s function

See also lectures by
llya Tokatly

We can further expand the two-particle Green’s function using Wick’s theorem

GQ(a’ab; C, d)
Go(a;c)  Go(a;d) ... Gola; k')
0O . GQ(b; C) Go(b; d) .« . Go(b; k/+)
k
kz_:()%(%) fv(1;17). . v(k; K : : | :
) Go(K';¢) Go(k';d) ... Go(K;k™T)|,
Go(1;17)  Go(1;1T) ... Go(1; k')
50 . Gg(l/' 1+) Go(l" 1/+) . Go(ll' k’+)
1 k 7 7 7
kz_:()% (5) fv(1;17) .. v(k; k) : : | :
Go(k';17) Go(K';1'T) ... Go(K;K'™) N

Again only connected diagrams contribute. In the same way as before
non-connected diagrams cancel and we can expand in G-skeletons by

removing self-energy insertions



reducible kernel K

G
I 4 . 1 4 I 4
- < —— 1 4
— A n n
—p o =
3 2 3 . 2
3 2 ; 5 3 2
G2(1,2:3,4) 4) £G(1;4)G(2;3) < 1 noninteracting form
/G (1:1)G(3:3) K, (1,23, 4)G(4';4)G(2;2)
] 4 4 1 4 :
o« o 1 .
B 1 4 1 4 two-particle
— — 3§2 " S " <> " 3 $ 2 < reducible
3 (r 2 3%, '
: 4 : 1 4 1 4
adE D~ 0y
3 1
: 2 1 3 2 3 2
1 I: 4 1 4 1 4



&, irreducible kernel K
1 4 1 4 1 4 a1 4
= + :
—P o —p P—o — >—0=DIF-—F p—o
3 2 3 2 3 2 a3 2

< < <
G2 L
_ N N , :@ L(1,2;3,4) = £[G5(1,2:3,4) — G(1;3)G(2;4)]
L K
1 4 L 4 L 4 4
:{j: _ o N —~ ::{j: Bethe.-SaIpeter
- - equation
3 2 3 2 3 3 > 2

L(1,2;3,4) = G(1;4)G(2; 3) i/G(l; 1YG(3':3)K (17,2';3', 4 L(4',2; 2, 4)




To find the 2-particle Green’s function we have to solve the Bethe-Salpeter equation

L K
1 4 ] 4 1 1 4 4
~ Bethe-Salpeter
e |
- —— equation
3 2 3 2 3 3 2! 2

L(1,2:3,4) = G(1;4)G(2;3) i/G(l; 1)G(3":3)K (1',2';3', 4 L(4',2; 2, 4)

If we expand the self-energy in G-skeletonic diagrams then the following important
relation is valid

0>(1;3
K(1,2;3,4) = :5GE4' 2;

It is not hard to prove this diagrammatically



Let us give some examples

K

Yur(1;3) = @ + 1@3 —> i5?§?ﬁéf)

0298 bubble(1; 3
(10 g Do @
1 3 |

1 4
— ANNANN _|_
3 2



What about the W-skeletons? Remember that
P P

~

W(1;2)= wxaars =

1 2 1 2 : 2
P
— + o~ ORA
1 2 1 2
Let us look at the reducible kernel again interaction line
reducible
| 4 : L4 L Z/
“ il Lo 11 4 11 g 14
= + AR + @»
-—> > 3 %2 3 . 2 30 1 2
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If we remove from K; all interaction line reducible we obtain a
new kernel KX,

~

K,

P(1;2) = @ +i< }
1 2 1 2

The reducible kernel can again be expanded in a G-line irreducible one

o« o :
oo = U n +~-J E e
P ~ e o~ ’—C_.IEO—F e
K. K '
1 4 1 4
1 4
N/ — — NN
— > e 3 2
3 ~ 2 3 2
K K

~

K(1,2;3,4) = K(1,2;3,4) — 16(1;3)0(2;4)v(1;2)



The polarizability can then be expressed as

O - iQ P2 = i [ 1609 6001 TG4

where we defined the vertex function as

<«
—{ > ~—{ >

2 ~ ~

K, K

C(1,2:3) = 5(1,21)5(3,2) — / d(4567) K (1,5:2,4) G(4,6) G(7,5) T(6,7: 3)



For the kernel [ the following relation is valid

5EXC( ,3)
0G(4,2)

K(1,2:3,4) =

as follows from a diagrammatic proof

The equation for the vertex therefore becomes

0Yxe(1:2)
['(1.2:3) = 6(1:2" £ 9 4 ’
(1,2;3) = §(1;27)6(3; )+/d d5d6d7 5G45)

G(4;6)G(7;5)I'(6,7;3)

If we can further express the vertex in terms of the vertex we have a
closed set of functional differential equations



By a diagrammatic derivation we can also show that the self-energy can be
expressed in terms of the vertex

Y(1;2)

¥(1;2) = £id(1; 2)/d3 v(1;3)G(3;37) + i/d3d4 W(1;3)G(1;4)I'(4,2;3)

Let us collect all the equations that we derived



Hedin’s equations

G =Gy + GoXG

> =Yy +iGWT

P = +iGGT

W =v+ovPW

=6+ 22egor




2-particle Green’s function and Hedin’s equations:
Take home message

- For the 2-particle Green’s function we can derive an equation
with a reducible kernel, known as the Bethe-Salpeter equation.

- The reducible kernel is the functional derivative of the self-energy
with respect to the Green’s function.

- From the diagrammatic rules we can derive a set of
functional differential equations relating the vertex, the
Dyson and the Bethe-Salpeter equation. These equations are
known as the Hedin equations.

- The Hedin equations can be iterated in various ways to generate
different perturbation series.
It is not known whether all skeleton diagrams are generated
once by such a procedure.



Linear response functions

Tr T{e_i 5 dzﬁ(z)ﬁ(x, t)}
Tr ’T{e—ifv dzﬁ(z)}

(7(x,1)) =

If we make the variation H(z) = H(z) + 6V (2) oV (2) = /dx n(x) dv(xz)
then

Tr T{e_ifv BZHE) g (. t)5‘7(z1)}

S(h(x,1)) = —i L dz ilh(x, 1)) /y dz

Tr T{e—z‘f,y dzﬁ(i)}
which can be rewritten as
on(l) = /d2 x(1,2) 6v(2)

X(1,2) = =i [{T {nu ()0 (2)}) — n(1)n(2) ]



There is a close relation between the density response function and the
Bethe-Salpeter equation. We have

L(1,2;1,2") = — [G2(1,2;1",2") — G(1,1")G(2,2")]
= (T {bu(du(@)P} )0, (1) ) — (T {n ()} IUT {du (2}, })

and therefore

x(1,2) = =i [{T {an(D)an(2)}) —n(1)n(2)] = —i L(1,2;17,27)

In combination with the Bethe-Salpeter equation we can then further
derive that

x(1,2) = P(1,2) +/d3d4P(1,3)w(3,4)X(4, 2)

A diagrammatic expansion of the polarizability therefore directly gives
an approximation for the density response function



Random Phase Approximation and plasmons

L K
1 4 ] 4 1 1 4 4
~ Bethe-Salpeter
1 P |
- —— equation
3 2 3 2 3 3 2! 2

If we calculate the Bethe-Salpeter from the Hartree self-energy

3 @ s34

3 2

then the Bethe-Salpeter equation becomes



From x(1,2) = —iL(1,2;1%,2%) it then follows

if we take the retarded component of this expression and Fourier
transform then we find

XV (x1, X5 w) = X (X1, Xo;w) + /dX3dX4 Yoo (X1, X33 w)v (X3, X4) X (X4, X0 W)

This approximation for the density response function is also known
as the Random Phase Approximation (RPA).

A better name is the Time-Dependent Hartree Approximation
(it amounts to TDDFT with zero xc-kernel)



Let us now take the case of the homogeneous electron gas. Since the
system is translational invariant we can write

dp ip-(r—r’
ZXR(X,X’;w):/(%)?)ep( X (p,w)

oo’

Uq = — ¢ Fourier transform
q Coulomb potential

The RPA response function has poles at the poles of Xo(q, w)
and when

1— @qXO(Qaw) =0

The extra pole corresponding to this condition is known as the
plasmon and corresponds to a collective mode of the electron gas



q

Fermi sphere
with radius pr

pt+q

2 2 2
=P al P T pllq cos
'
5 qPF > € > 9 q Pr q:’ql

The particle-hole excitations lie between
two parabolas in the g-w plane

2w
V="9 'V
Pr A /
ya
//
4r plasmon //
dispersion £ article-hole
wp g — « P .
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frequency : 2f approximav//'/ smmm_ﬂ ~
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/
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q



Sudden creation of a positive charge (such as in the creation of a core-hole)

d dw q.p_;
5V(X,t) = H(t)% = / (27:1)3 %elq-r—lwt 5V(q,w)

4@ i i
oViq,w) = — =0 — .
(9, w) ¢°> w+in qu—i—m

We can calculate the induced density change from the RPA response function.
A few manipulations lead to

16 1 [ oC 1 — t
on(r,t) = — @1 / dq g sin qr/ ImXRPA(q,w) Vg i
0 0

(2r)4 7 o
d

The integral can be split into a contribution from particle-hole
excitations and a contribution from the plasmon



ch pairs

plasmons

total

0 <= The positive charge is screened
” at a time-scale of the inverse
plasmon frequency

Figure 15.7: This figure shows the 3D plot of the transient density in an electron gas with
rs = 3 induced by the sudden creation of a point-like positive charge ) = 1 in the origin
at £ = 0. The contribution due to the excitation of electron-hole pairs (a) and plasmons (b)
is, for clarity, multiplied by 47 (rpr)? in the plots to the right. Panel (c) is simply the sum
of the two contributions. Units: 7 is in units of 1/pg, ¢ is in units of 1/w, and all densities
are in units of p3.



In the long time limit we have

has spatial oscillations

: 1 [~ . . .
ong(r) = lim on(r,t) = —262—2—/ dq qsin(qr)tgq x(q,0) known as Friedel
e T oscillations

Suppose now that & =¢ = —1 is the same a the electron charge. The total density
change due to this test charge is

4001 (x) = ql3(x) + O ()
The interaction energy between this charge and a generic electron is

10 (1) = / dr' v, )0 (')

cunle) = [[aote,x’) |otr) + [ 535 60 8,0

+ +
dd  iqr 1~ ~2 R - +
N / (2m)3 eV [T + Tgx " (q, 0)] T
L dq iq-r R N e_T/ATF
B / @2r) W0 = r

In the static limit W describes the interaction between a test charge and an electron



Linear response: Take home message

- We can derive a diagrammatic expansion for the linear response
function from the diagrammatic rules for the 2-particle Green’s
function

- The linear response function gives direct information on
neutral excitation spectra such as measured in optical absorption
experiments

- The random phase approximation to the linear response function
describes the phenomena of plasmon excitation in metallic systems

- The screening of a an added charge in the electron gas happens
at a time-scale of the inverse plasmon frequency



Spectral properties of an electron gas : GW

We have seen that the spectral function describes the energy distribution of
excitations upon addition or removal of an electron. We therefore expect

so see both plasmon and particle-hole excitations when we do a photo-emission
experiment on an electron gas ( or electron gas like metals such a sodium )

Dyson equation

G (p,w) = g"(p,w) + ¢"(p, w) X" (p,w) G (p,w)

_ ! p|°
R | &

P, W - —

9" (p,w) w— €p + 1N P 2

:: GR(p,w) gR(paw) _ 1

T 1-gRBp,w)SEBp,w)  w-— ep — L(p,w)

Let us first discuss the scattering processes contained in the self-energy



Scattering processes : energy transfer to/from particle-hole excitations or plasmons

o
P w
o

q Vv
Loss of energy by a particle. Absorption of energy by a hole.
Scattering rate given by i X~ (p,w) Scattering rate given by —iX~(p,w)
Only relevant when p > pr Only relevant when p < pF
A plasmon can be excited A plasmon can be absorbed

only when  w > i + wp only when w <y — wy



The greater and lesser self-energies describe scattering rates for added or
removed particles with energy W and momentum p

w > WU =—> iY”(p,w) non-zero and positive
w< @ ==>» —i%7(p,w) non-zero and positive

The self-energy vanishes when W — [t due to the fact an added particle
can maximally lose energy w — i as states below the Fermi energy are
occupied

i(2>(paw) o E<(paw)) = —2Im ER(paw) — F(paw)

lim Im %" (p,w) = 0 S (p,w) = A(p,w) — %F(p,w)

w—r

We calculate the self-energy in the GW approximation using noninteracting
Green’s function we find

. ) k+p
1
= — dw’ dk k GS(k ’/ da g W= I
(p, w) (Zw)gp/ W/O (k,w") e qqW=(q,w —w)



Absorption of plasmons

by hole states
Energy loss to plasmons

by particle states

s

161
5 1, ptw)

Figure 15.9: The imaginary part of the retarded self-energy —Im[X®(p,w + )] = T'(p,w +
1)/2 for an electron gas at ry = 4 within the GoW), approximation as a function of the
momentum and energy. The momentum p is measured in units of pr and the energy w and
the self-energy in units of €,, = pf /2.



For the spectral function this implies the following X%(p,w) = A(p,w) — %F(p, w)

I'(p,w)

A(p,w) = —2Im G (p,w) = 5
(= p = A(p,w))? + (52

If T'(p,w) is small then the spectral function can only become large
(~1/T ) when

w—e€p — A(p,w) =0

The Luttinger-Ward theorem tells that this happens when ¢=pr, w=1p
p— €pp — Mpr, i) =0

(not explained in these lectures, requires a derivation of the
Luttinger-Ward functional, see G.Stefanucci, RvL, Nonequilibrium Many-Body
Theory of Quantum Systems)
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Absorption of plasmons

by hole states quasi-particle state

Energy loss
to plasmons
by particle
states

Figure 15.12: The spectral function A(p, pu+w) as a function of the momentum and energy for
an electron gas at rg = 4 within the GoW} approximation. The momentum p is measured
in units of pr and the energy w and the spectral function in units of €, = p& /2.



The momentum distribution in the electron gas is given by

K dw
%:/ “ Ap,w)

oo 2T

Due to the appearance of a delta peak in the spectral function at the

Fermi momentum pr the momentum distribution jumps discontinuously

at the Fermi momentum. The jump is the strength of the quasi-particle peak.
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Spectral properties of the electron gas: Take home message

- By addition or removal of an electron we create particle-hole
and plasmon excitations

- The self-energy at the Fermi-surface vanishes due to phase-space
restrictions. This has various consequences:

|) The momentum distribution of the electron gas jumps
discontinuously at the Fermi momentum

2) Quasi-particles at the Fermi surface have an infinite life-time.

- The GWV approximation gives extra plasmon structure in the
spectral function due to plasmons

- Multiple-plasmons excitations (satellites) are beyond GWV and require
vertex corrections.




Things we did not talk about

- Feynman diagrams for the grand canonical potential and the action.
Luttinger-Ward functionals, variational principles

- Connections to TDDFT and TD current DFT :
- Diagrammatic expansion of xc-kernel
- Sham-Schluter equation and TDOEP

- General initial states
- Bethe-Salpeter and excitons, Lehmann representation

- Non-equilibrium phenomena and the Kadanoff-Baym equations
(quantum transport)

- Conserving approximations and Ward identities

- Open quantum systems, T-matrix, superconductivity, phonons,
Bose condensates,.......etc.



