# PES G GW G0W0 Beyond GW Conclusions

#### Matteo Gatti

#### European Theoretical Spectroscopy Facility (ETSF) LSI - Ecole Polytechnique & Synchrotron SOLEIL - France matteo.gatti@polytechnique.fr - http://etsf.polytechnique.fr - http://www.etsf.eu

TDDFT school - Benasque 2014



| PES     |  | G <sub>0</sub> W <sub>0</sub> |  |
|---------|--|-------------------------------|--|
| Outline |  |                               |  |



- One-particle Green's function
- 3 GW approximation
- 4 In practice:  $G_0W_0$  and beyond
- 5 Beyond GW
- 6 Conclusions





- L. Hedin and S. Lundqvist Solid State Physics 23 (Academic, New York, 1969).
- 🔋 G. Strinati

Rivista del Nuovo Cimento 11, (12)1 (1988).

- G. Onida, L. Reining, and A. Rubio Rev. Mod. Phys. **74**, 601 (2002).
- F. Bruneval and M. Gatti

Topics in Current Chemistry, in press

F. Bruneval

PhD thesis, Ecole Polytechnique (2005)
http://theory.polytechnique.fr/people/bruneval/
bruneval\_these.pdf

| PES     |  | G <sub>0</sub> W <sub>0</sub> |  |
|---------|--|-------------------------------|--|
| Outline |  |                               |  |

Photoemission

- One-particle Green's function
- 3 GW approximation
- 4 In practice:  $G_0W_0$  and beyond

#### 5 Beyond GW

6 Conclusions



v





photon in - electron out

 $E(N) + h\nu = E(N-1, i) + E_{kin}$ 

$$E_i = E(N) - E(N-1, i) = E_{kin} - h\nu$$

...plus momentum conservation  $\Rightarrow$  ARPES



occupied states







$$E_i = E(N) - E(N-1, i) = E_{kin} - h\nu$$

...plus momentum conservation  $\Rightarrow$  ARPES



M. Guzzo et al., PRL 107 (2011).





electron in - photon out

 $E(N) + E_{kin} = E(N+1, i) + h\nu$ 

$$E_i = E(N+1, i) - E(N) = E_{kin} - h\nu$$

aka Bremsstrahlung isochromat spectroscopy (BIS)



empty states





Sawatzky and Allen PRL 53 (1984)

| PES     |        | G <sub>0</sub> W <sub>0</sub> |  |
|---------|--------|-------------------------------|--|
| Photoem | ission |                               |  |







Not discussed here:

- matrix elements cross sections (dependence on photon energy / photon polarization)
- sudden approximation vs. interaction photoelectron system
- surface sensitivity

• ..

S. Hüfner, Photoelectron spectroscopy (1995)

#### E. Papalazarou et al., PRB 80 (2009)

#### Photoemission: additional charge

PES



 PES
 G
 GW
 G0W0
 Beyond GW
 Conclusions

 Photoemission: additional charge







| PES     |  | G <sub>0</sub> W <sub>0</sub> |  |
|---------|--|-------------------------------|--|
| Outline |  |                               |  |

#### Photoemission

- One-particle Green's function
- GW approximation
- 4 In practice:  $G_0W_0$  and beyond

#### 5 Beyond GW

6 Conclusions

What is the one-particle Green's function  $G(1, 2) = G(\mathbf{x}_1, \mathbf{x}_2, t_1 - t_2)$ ?

What is the one-particle Green's function  $G(1, 2) = G(\mathbf{x}_1, \mathbf{x}_2, t_1 - t_2)$ ?

The one-particle Green's function G

Propagation of one additional particle in the system

$$iG(\mathbf{x_1}, \mathbf{x_2}, t_1 - t_2) = \langle N | T \left[ \psi(\mathbf{x_1}, t_1) \psi^{\dagger}(\mathbf{x_2}, t_2) \right] | N 
angle$$

How to calculate G?

What is the one-particle Green's function  $G(1,2) = G(\mathbf{x}_1, \mathbf{x}_2, t_1 - t_2)$ ?

The one-particle Green's function G

Propagation of one additional particle in the system

$$iG(\mathbf{x_1}, \mathbf{x_2}, t_1 - t_2) = \langle N | T \left[ \psi(\mathbf{x_1}, t_1) \psi^{\dagger}(\mathbf{x_2}, t_2) \right] | N 
angle$$

How to calculate G?

**2** Resolvent of  $H(\omega) = H_0 + \Sigma(\omega) = h_0 + V_H + \Sigma(\omega)$ :

$$G^{-1}(\omega) = (\omega - \mathcal{H}_0 - \Sigma(\omega)) = (G_0^{-1}(\omega) - \Sigma(\omega))$$

What is  $H(\omega)$ ? What is  $\Sigma(\omega)$ ?

PES G GW G0W0 Beyond GW Conclusions
One-particle Green's function

#### The one-particle Green's function G

#### Definition and meaning of G:

$$iG(\mathbf{x_1}, t_1; \mathbf{x_2}, t_2) = \langle N | T \left[ \psi(\mathbf{x_1}, t_1) \psi^{\dagger}(\mathbf{x_2}, t_2) \right] | N \rangle$$

for 
$$t_1 > t_2 \Rightarrow iG(\mathbf{x}_1, t_1; \mathbf{x}_2, t_2) = \langle N | \psi(\mathbf{x}_1, t_1) \psi^{\dagger}(\mathbf{x}_2, t_2) | N \rangle$$
  
for  $t_1 < t_2 \Rightarrow iG(\mathbf{x}_1, t_1; \mathbf{x}_2, t_2) = -\langle N | \psi^{\dagger}(\mathbf{x}_2, t_2) \psi(\mathbf{x}_1, t_1) | N \rangle$ 

 PES
 G
 GW
 G0W0
 Beyond GW
 Conclusions

 One-particle Green's function

$$t_{1} > t_{2}$$

$$\langle N | \psi(\mathbf{r}_{1}, t_{1}) \psi^{\dagger}(\mathbf{r}_{2}, t_{2}) | N \rangle$$

$$(\mathbf{r}_{2}, \mathbf{t}_{2})$$

$$(\mathbf{r}_{1}, \mathbf{t}_{1})$$

$$\begin{array}{c} t_{1} < t_{2} \\ -\langle N | \psi^{\dagger}(\mathbf{r}_{2}, t_{2}) \psi(\mathbf{r}_{1}, t_{1}) | N \rangle \\ \end{array} \\ \hline \left( \begin{array}{c} (\mathbf{r}_{2}, \mathbf{t}_{2}) \\ 0 \\ 0 \\ (\mathbf{r}_{1}, \mathbf{t}_{1}) \end{array} \right) \end{array}$$

### One-particle Green's function

#### What is G?

G

Definition and meaning of G:

$$G(\mathbf{x}_1, \mathbf{x}_2, t_1 - t_2) = -i < N | T \left[ \psi(\mathbf{x}_1, t_1) \psi^{\dagger}(\mathbf{x}_2, t_2) 
ight] | N >$$

Insert a complete set of N + 1 or N - 1-particle states and Fourier transform. This yields:

$$G(\mathbf{x}_1, \mathbf{x}_2, \omega) = \sum_j \frac{f_j(\mathbf{x}_1) f_j^*(\mathbf{x}_2)}{\omega - E_j + i\eta sgn(E_j - \mu)}$$

where:

$$E_{j} = \begin{cases} E(N+1,j) - E(N), & E_{j} > \mu \\ E(N) - E(N-1,j), & E_{j} < \mu \end{cases}$$

$$f_{j}(\mathbf{x}_{1}) = \begin{cases} \langle N | \psi(\mathbf{x}_{1}) | N+1, j \rangle, & E_{j} > \mu \\ \langle N-1, j | \psi(\mathbf{x}_{1}) | N \rangle, & E_{j} < \mu \end{cases}$$





One-particle excitations  $\rightarrow$  poles of one-particle Green's function G

 PES
 G
 GW
 G\_0 W\_0
 Beyond GW
 Conclusions

 One-particle Green's function

#### Spectral function

A useful definition: the spectral function

$$A(\mathbf{x},\mathbf{x}';\omega) = \frac{1}{\pi} \mid \text{Im} G(\mathbf{x},\mathbf{x}';\omega) \mid = \sum_{j} f_{j}(\mathbf{x}) f_{j}^{*}(\mathbf{x}') \delta(\omega - E_{j}).$$

One particle excitations  $\rightarrow$  peaks of spectral function A

PES G GW G0W0 Beyond GW Conclusions One-particle Green's function

#### One-particle Green's function

From one-particle G we can obtain:

- one-particle excitation spectra
- ground-state expectation value of any one-particle operator: e.g. density  $\rho$  or density matrix  $\gamma$ :

$$\rho(\mathbf{r},t) = -i\mathbf{G}(\mathbf{r},\mathbf{r},t,t^{+}) \qquad \gamma(\mathbf{r},\mathbf{r}',t) = -i\mathbf{G}(\mathbf{r},\mathbf{r}',t,t^{+})$$

ground-state total energy (e.g. Galitskii-Migdal)

 PES
 G
 GW
 G0W0
 Beyond GW
 Conclusions

 One-particle Green's function: absorption?



 PES
 G
 GW
 G0W0
 Beyond GW
 Conclusions

 One-particle Green's function: absorption?



 PES
 G
 GW
 G0W0
 Beyond GW
 Conclusions

 One-particle Green's function: absorption?



| PES      | G        |    | G <sub>0</sub> W <sub>0</sub> |  |
|----------|----------|----|-------------------------------|--|
| How to c | alculate | G? |                               |  |

#### Straightforward?

$$iG(\mathbf{x_1}, t_1; \mathbf{x_2}, t_2) = \langle N | T \left[ \psi(\mathbf{x_1}, t_1) \psi^{\dagger}(\mathbf{x_2}, t_2) \right] | N \rangle$$

| PES      | G        |    | G <sub>0</sub> W <sub>0</sub> |  |
|----------|----------|----|-------------------------------|--|
| How to c | alculate | G? |                               |  |

#### Straightforward?

$$G(\mathbf{x}_1, t_1; \mathbf{x}_2, t_2) = \langle N | T \left[ \psi(\mathbf{x}_1, t_1) \psi^{\dagger}(\mathbf{x}_2, t_2) \right] | N \rangle$$

|N > = ??? Interacting ground state!

#### See e.g. A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems

## PES G GW G0W0 Beyond GW Conclusions How to calculate *G*?

#### G as the solution of a differential equation (with boundary conditions)

#### Equation of motion

$$\left[i\frac{\partial}{\partial t_1} - h_0(1)\right]G(1,2) = \delta(1,2) - i\int d3v(1,3)G_2(1,3,2,3^+)$$

where  $h_0 = -\frac{1}{2}\nabla^2 + v_{ext}$ 

Interaction  $\rightarrow$  two-particle excitations

## PES G GW G0W0 Beyond GW Conclusions How to calculate *G*?

#### G as the solution of a differential equation (with boundary conditions)

#### Equation of motion

$$\left[i\frac{\partial}{\partial t_1} - h_0(1)\right]G(1,2) = \delta(1,2) - i\int d3v(1,3)G_2(1,3,2,3^+)$$

where  $h_0 = -\frac{1}{2}\nabla^2 + v_{ext}$ 

#### Interaction $\rightarrow$ two-particle excitations

 $\begin{array}{rcl} \text{Unfortunately, hierarchy of equations} \\ G(1,2) &\leftarrow & G_2(1,2;3,4) \\ G_2(1,2;3,4) &\leftarrow & G_3(1,2,3;4,5,6) \\ \vdots &\vdots &\vdots &\vdots \end{array}$ 



$$\left[i\frac{\partial}{\partial t_1} - h_0(1)\right]G(1,2) = \delta(1,2) - i\int d3v(1,3)G_2(1,3,2,3^+)$$

#### Self-energy

$$\left[i\frac{\partial}{\partial t_{1}}-h_{0}(1)-V_{H}(1)\right]G(1,2)=\delta(1,2)+\int d3\Sigma(1,3)G(3,2)$$

- $\Sigma$  = non-local effective potential (exchange and correlation)
- $\Sigma = \Sigma[G]$ : self-consistency



$$\left[i\frac{\partial}{\partial t_{1}}-h_{0}(1)-V_{H}(1)\right]G(1,2)=\delta(1,2)+\int d3\Sigma(1,3)G(3,2)$$

Fourier transform: G as resolvent

$$\left[\omega - h_0(\mathbf{r}_1) - V_H(\mathbf{r}_1)\right] G(\mathbf{r}_1, \mathbf{r}_2, \omega) = \int d\mathbf{r}_3 \Sigma(\mathbf{r}_1, \mathbf{r}_3, \omega) G(\mathbf{r}_3, \mathbf{r}_2, \omega)$$

$$(\omega - H_0)G(\omega) = \Sigma(\omega)G(\omega) \quad \Rightarrow \quad G^{-1}(\omega) = (\omega - H_0 - \Sigma(\omega))$$

 $\Sigma = \Sigma(\omega)$ : folding of higher-order excitations



$$\begin{bmatrix} i\frac{\partial}{\partial t_1} - h_0(1) - V_H(1) \end{bmatrix} G(1,2) = \delta(1,2) + \int d3\Sigma(1,3)G(3,2)$$
$$\begin{bmatrix} i\frac{\partial}{\partial t_1} - h_0(1) - V_H(1) \end{bmatrix} G_0(1,2) = \delta(1,2)$$

#### Dyson equation

$$G(1,2) = G_0(1,2) + \int d34G_0(1,3)\Sigma(3.4)G(4.2)$$

| PES     | G       | G <sub>0</sub> W <sub>0</sub> |  |
|---------|---------|-------------------------------|--|
| Dyson e | quation |                               |  |

#### Dyson equation

$$G(1,2) = G_0(1,2) + \int d34G_0(1,3)\Sigma(3.4)G(4.2)$$

Two general properties:

1

$$egin{aligned} G &= G_0 + G_0 \Sigma G \ &= G_0 + G_0 \Sigma G_0 + G_0 \Sigma G_0 \Sigma G_0 + ... \ &= (G_0^{-1} - \Sigma)^{-1} \end{aligned}$$

| PES     | G       | G <sub>0</sub> W <sub>0</sub> |  |
|---------|---------|-------------------------------|--|
| Dyson e | quation |                               |  |

#### Dyson equation

$$G(1,2) = G_0(1,2) + \int d34G_0(1,3)\Sigma(3.4)G(4.2)$$

Two general properties:

1

2

$$egin{aligned} G &= G_0 + G_0 \Sigma G \ &= G_0 + G_0 \Sigma G_0 + G_0 \Sigma G_0 \Sigma G_0 + ... \ &= (G_0^{-1} - \Sigma)^{-1} \end{aligned}$$

$$G = G_0 + G_0 \Sigma G \Rightarrow \left\{ egin{array}{l} G_1 = G_0 + G_0 \Sigma_1 G_2 \ G = G_1 + G_1 \Sigma_2 G_2 \end{array} 
ight.$$
| PES     | GW | G <sub>0</sub> W <sub>0</sub> |  |
|---------|----|-------------------------------|--|
| Outline |    |                               |  |

- 1 Photoemission
- 2 One-particle Green's function
- 3 GW approximation
- 4 In practice:  $G_0W_0$  and beyond
- 5 Beyond GW
- 6 Conclusions







### Non-interacting particles













Interacting particles Screening  $W(\mathbf{r}_1,\mathbf{r}_2,\omega) = \int d\mathbf{r}_3 \epsilon^{-1}(\mathbf{r}_1,\mathbf{r}_3,\omega) v(\mathbf{r}_3,\mathbf{r}_2)$ 

GW



## Quasiparticle





-ω

μ

ε







additional charge  $\rightarrow$  reaction: polarization, screening

#### GW approximation

- polarization made of noninteracting electron-hole pairs (RPA)
- classical (Hartree) interaction between additional charge and polarization charge

| PES     |           | GW | G <sub>0</sub> W <sub>0</sub> |  |
|---------|-----------|----|-------------------------------|--|
| GW appr | roximatio | n  |                               |  |







L. Hedin, Phys. Rev. 139 (1965)







 $\Sigma = iGW$   $G = G_0 + G_0 \Sigma G$   $\Gamma = 1$  P = -iGG W = v + vPW

L. Hedin, Phys. Rev. 139 (1965)



| PES       |          | GW | G <sub>0</sub> W <sub>0</sub> |  |
|-----------|----------|----|-------------------------------|--|
| Self-ener | gy and C | GW |                               |  |

#### The self-energy

Self-energy = exchange + induced Hartree + induced exchange-correlation

$$\Sigma(12) = iG(12)v(12) + iG(12)W_{p}(12) + iG(1\bar{4})\frac{\delta\Sigma(\bar{4}2)}{\delta\rho(\bar{5})}\chi(\bar{5}\bar{3})v(\bar{3}1)$$

$$W_{p}(12) = W(12) - v(12) = v(1\bar{3})\chi(\bar{3}\bar{4})v(\bar{4}2)$$

GW = exchange + induced Hartree (with RPA  $\chi$ )

Remember:  $v = \delta V_H / \delta \rho$ 

PES G GW G0W0 Beyond GW Conclusions

#### Dynamical screening

#### Convolution in frequency domain

$$\Sigma_{c}(\mathbf{r}_{1},\mathbf{r}_{2},\omega)=\frac{i}{2\pi}\int d\omega' e^{i\eta\omega'}G(\mathbf{r}_{1},\mathbf{r}_{2},\omega+\omega')W_{p}(\mathbf{r}_{1},\mathbf{r}_{2},\omega')$$

## Correlation = coupling of excitations

GW

### Dynamical screening

Convolution in frequency domain

$$\Sigma_{c}(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \frac{i}{2\pi} \int d\omega' e^{i\eta\omega'} G(\mathbf{r}_{1},\mathbf{r}_{2},\omega+\omega') W_{p}(\mathbf{r}_{1},\mathbf{r}_{2},\omega')$$
$$W_{p}(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = 2\sum_{s} \frac{\omega_{s} W_{s}(\mathbf{r}_{1},\mathbf{r}_{2})}{\omega^{2} - (\omega_{s} - i\eta)^{2}}$$

# Correlation = coupling of excitations

#### Dynamical screening

Convolution in frequency domain

$$\Sigma_{c}(\mathbf{r}_{1},\mathbf{r}_{2},\omega)=\frac{i}{2\pi}\int d\omega' e^{i\eta\omega'}G(\mathbf{r}_{1},\mathbf{r}_{2},\omega+\omega')W_{p}(\mathbf{r}_{1},\mathbf{r}_{2},\omega')$$

$$W_{p}(\mathbf{r}_{1},\mathbf{r}_{2},\omega)=2\sum_{s}\frac{\omega_{s}W_{s}(\mathbf{r}_{1},\mathbf{r}_{2})}{\omega^{2}-(\omega_{s}-i\eta)^{2}}$$

$$\Sigma_{c}(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \sum_{j,s\neq 0} \frac{f_{j}(\mathbf{r}_{1})f_{j}^{*}(\mathbf{r}_{2})W_{s}(\mathbf{r}_{1},\mathbf{r}_{2})}{\omega - E_{j} + \omega_{s}\mathrm{sgn}(\mu - E_{j})}$$

Coupling of addition/removal  $E_i$  and neutral excitations  $\omega_s$ 

| PES     |  | G <sub>0</sub> W <sub>0</sub> |  |
|---------|--|-------------------------------|--|
| Outline |  |                               |  |

- 1 Photoemission
- 2 One-particle Green's function
- 3 GW approximation
- 4 In practice:  $G_0W_0$  and beyond
- 5 Beyond GW
- 6 Conclusions

PES G GW G0W0 Beyond GW Conclusions GW: Self-consistent solution

### $G = G_0 + G_0 \Sigma[G] G$



### Self-consistent GW

- bad for spectral properties in solids
- OK for atoms, small molecules
- necessary for total energy (conserving approximation)
- o computationally very heavy!

Standard perturbative G<sub>0</sub>W<sub>0</sub>

$$H_0(\mathbf{r})\phi_i(\mathbf{r}) + \int d\mathbf{r}' \ \Sigma(\mathbf{r},\mathbf{r}',\omega=E_i) \ \phi_i(\mathbf{r}') = E_i \ \phi_i(\mathbf{r})$$

### Standard perturbative G<sub>0</sub>W<sub>0</sub>

$$H_0(\mathbf{r})\phi_i(\mathbf{r}) + \int d\mathbf{r}' \ \Sigma(\mathbf{r}, \mathbf{r}', \omega = E_i) \ \phi_i(\mathbf{r}') = E_i \ \phi_i(\mathbf{r})$$
$$H_0(\mathbf{r})\varphi_i(\mathbf{r}) + V_{xc}(\mathbf{r})\varphi_i(\mathbf{r}) = \epsilon_i\varphi_i(\mathbf{r})$$

 $G_0W_0$ 

#### Standard perturbative G<sub>0</sub>W<sub>0</sub>

$$\begin{aligned} H_0(\mathbf{r})\phi_i(\mathbf{r}) + \int d\mathbf{r}' \ \Sigma(\mathbf{r},\mathbf{r}',\omega=E_i) \ \phi_i(\mathbf{r}') &= E_i \ \phi_i(\mathbf{r}) \\ H_0(\mathbf{r})\varphi_i(\mathbf{r}) + V_{xc}(\mathbf{r})\varphi_i(r) &= \epsilon_i\varphi_i(\mathbf{r}) \end{aligned}$$

G<sub>0</sub>W<sub>0</sub>

First-order perturbative corrections with  $\Sigma = iGW$ :

$$E_i - \epsilon_i = \langle arphi_i | \Sigma(E_i) - V_{xc} | arphi_i 
angle$$

#### Standard perturbative G<sub>0</sub>W<sub>0</sub>

$$\begin{aligned} H_0(\mathbf{r})\phi_i(\mathbf{r}) + \int d\mathbf{r}' \ \Sigma(\mathbf{r},\mathbf{r}',\omega=E_i) \ \phi_i(\mathbf{r}') &= E_i \ \phi_i(\mathbf{r}) \\ H_0(\mathbf{r})\varphi_i(\mathbf{r}) + V_{xc}(\mathbf{r})\varphi_i(r) &= \epsilon_i\varphi_i(\mathbf{r}) \end{aligned}$$

G<sub>0</sub>W<sub>0</sub>

First-order perturbative corrections with  $\Sigma = iGW$ :

$$E_{i} - \epsilon_{i} = \langle \varphi_{i} | \Sigma(E_{i}) - V_{xc} | \varphi_{i} \rangle$$
$$\Sigma(E_{i}) = \Sigma(\epsilon_{i}) + (E_{i} - \epsilon_{i}) \partial_{\omega} \Sigma(\omega) |$$

Quasiparticle energies

$$\begin{split} E_i &= \epsilon_i + Z_i \langle \varphi_i | \Sigma(\epsilon_i) - V_{xc} | \varphi_i \rangle \\ Z_i &= (1 - \langle \partial_\omega \Sigma(\omega) |_{\epsilon_i} \rangle)^{-1} \end{split}$$

Hybersten and Louie, PRB 34 (1986); Godby, Schlüter and Sham, PRB 37 (1988)



G<sub>0</sub>W<sub>0</sub>

M. van Schilfgaarde et al., PRL 96 (2006)



### Great improvement over LDA. Drawback: dependency on the starting point

#### G<sub>0</sub>W<sub>0</sub> results

- OK for sp electron systems
- questionable for *df* electron systems (and whenever LDA is bad)

#### Looking for a better starting point

- Kohn-Sham with other functionals (EXX, LDA+U) e.g. Rinke 2005, Miyake 2006, Jiang 2009,...
- Generalized Kohn-Sham: hybrid functionals (HSE06) e.g. Fuchs 2006,...

#### effective quasiparticle Hamiltonians

- QSGW scheme Faleev 2004
- Hedin's COHSEX approximation Bruneval 2005

#### Looking for a better starting point

- Kohn-Sham with other functionals (EXX, LDA+U) e.g. Rinke 2005, Miyake 2006, Jiang 2009,...
- Generalized Kohn-Sham: hybrid functionals (HSE06) e.g. Fuchs 2006,...
- effective quasiparticle Hamiltonians
  - QSGW scheme Faleev 2004
  - Hedin's COHSEX approximation Bruneval 2005

### Beyond G<sub>0</sub>W<sub>0</sub>: QSGW scheme



GnWn

S. V. Faleev, M. van Schilfgaarde, and T. Kotani, PRL 93 (2004) M. van Schilfgaarde, T. Kotani, and S. V. Faleev, PRL 96 (2006)

| PES     |  | G <sub>0</sub> W <sub>0</sub> | Beyond GW |  |
|---------|--|-------------------------------|-----------|--|
| Outline |  |                               |           |  |

- 1 Photoemission
- One-particle Green's function
- 3 GW approximation
- 4 In practice:  $G_0W_0$  and beyond

### 5 Beyond GW

6 Conclusions

 PES
 G
 GW
 G0W0
 Beyond GW
 Conclusions

 Beyond GW: vertex corrections

### Beyond GW

- multiple plasmon satellites: cumulant expansion
- self-screening
- atomic limit
- additional interactions: T matrix





M. Guzzo et al., PRL 107 (2011).





 PES
 G
 GW
 Gold
 Beyond GW
 Conclusions

 Multiple satellites in silicon: GW

 GW spectral function: bottom valence at Γ

 A plasmaron satellite



B. I. Lundqvist, Phys. Kondens. Mater. 6 (1967)


GW spectral function



 PES
 G
 GW
 GOVE
 Beyond GW
 Conclusion

 Decoupling approximation:
 exponential solution
 Conclusion
 Conclusion

Equation of motion of G:

$$G = \tilde{G}_0 + \tilde{G}_0 V_H G + \tilde{G}_0 U G + i \tilde{G}_0 v \frac{\delta G}{\delta U}$$
 with  $\tilde{G}_0 = (\omega - h_0)^{-1}$ 

**)** Linearize: 
$$V_H = V_H^0 + v_\chi U + \dots$$

$$G = G_0 + G_0 \overline{U}G + iG_0 W \frac{\delta G}{\delta \overline{U}} \quad \text{with} \quad \overline{U} = \epsilon^{-1} U, G_0 = (\omega - h_0 - V_H^0)^{-1}$$

Decoupling approximation: exponential solution

Equation of motion of G:

$$G = \tilde{G}_0 + \tilde{G}_0 V_H G + \tilde{G}_0 U G + i \tilde{G}_0 v \frac{\delta G}{\delta U}$$
 with  $\tilde{G}_0 = (\omega - h_0)^{-1}$ 

Linearize: 
$$V_H = V_H^0 + v_\chi U + ...$$
  
 $G = G_0 + G_0 \overline{U}G + iG_0 W \frac{\delta G}{\delta \overline{U}}$  with  $\overline{U} = \epsilon^{-1} U, G_0 = (\omega - h_0 - V_H^0)^{-1}$ 

2 Optimize QP such that G and  $G_{QP}$  are diagonal in the basis  $|k\rangle$ :

$$\begin{aligned} &\text{holes:} \quad G_k^{QP}(\tau) = i\theta(-\tau)e^{-i\epsilon_k^{QP}\tau} \\ &\forall k: G = G^{QP} + G^{QP}(\bar{U} - \Delta^{QP})G + iG^{QP}W\frac{\delta G}{\delta \bar{U}} \end{aligned}$$

 PES
 G
 GW
 GOW
 Decoupling approximation: exponential solution
 Conclus

Equation of motion of G:

$$G = \tilde{G}_0 + \tilde{G}_0 V_H G + \tilde{G}_0 U G + i \tilde{G}_0 v \frac{\delta G}{\delta U}$$
 with  $\tilde{G}_0 = (\omega - h_0)^{-1}$ 

Linearize: 
$$V_H = V_H^0 + v\chi U + ...$$
  
 $G = G_0 + G_0 \overline{U}G + iG_0 W \frac{\delta G}{\delta \overline{U}}$  with  $\overline{U} = \epsilon^{-1} U, G_0 = (\omega - h_0 - V_H^0)^{-1}$ 

2 Optimize QP such that G and  $G_{QP}$  are diagonal in the basis  $|k\rangle$ :

$$\begin{aligned} &\text{holes:} \quad G_k^{QP}(\tau) = i\theta(-\tau)e^{-i\epsilon_k^{QP}\tau} \\ &\forall k: G = G^{QP} + G^{QP}(\bar{U} - \Delta^{QP})G + iG^{QP}W\frac{\delta G}{\delta\bar{U}} \end{aligned}$$

Exact solution:

$$G(t_1, t_2) = G^{QP}(t_1 - t_2) e^{i\Delta^{QP}(t_1 - t_2)} e^{i\int_{t_1}^{t_2} dt' \left[ U(t') - \int_{t'}^{t_2} dt'' W(t', t'') \right]}$$

### Pes g G G G G Conclusion Multiple satellites in silicon: exponential solution

Plasmon-pole approximation to W:  $W(\tau) = -i\lambda_k \left[\theta(\tau)e^{-i\tilde{\omega}_k\tau} + \theta(-\tau)e^{i\tilde{\omega}_k\tau}\right]$ 



Exponential solution - cumulant expansion

$$A_k(\omega) = \frac{e^{-a_k}}{\pi} \sum_{n=0}^{\infty} \frac{a_k^n}{n!} \frac{\mathrm{Im}\epsilon_k^{QP}}{(\omega - \mathrm{Re}\epsilon_k^{QP} + n\,\tilde{\omega}_k)^2 + (\mathrm{Im}\epsilon_k^{QP})^2},$$

Pes a aw a<sub>0</sub>w<sub>0</sub> Beyond aw Conclusions Multiple satellites in silicon: exponential solution

Plus contributions from:

extrinsic effects, interference effects, cross sections, background



```
M. Guzzo et al., PRL 107 (2011)
```



Beyond GW



M. Gatti and M. Guzzo, PRB 87 (2013)

| PES    |        |        | G <sub>0</sub> W <sub>0</sub> | Beyond GW |  |
|--------|--------|--------|-------------------------------|-----------|--|
| GW app | oroxin | nation |                               |           |  |



| PES       |       | G <sub>0</sub> W <sub>0</sub> | Beyond GW |  |
|-----------|-------|-------------------------------|-----------|--|
| Self-scre | ening |                               |           |  |

#### Particle in a box: add or remove

$$(-\nabla^2/2 + V_{box})\phi = \varepsilon\phi$$
  
$$\varepsilon = -(E_{N=0} - E_{N=1}) = E_{N=1} - E_{N=0}$$

| PES       |       | G <sub>0</sub> W <sub>0</sub> | Beyond GW |  |
|-----------|-------|-------------------------------|-----------|--|
| Self-scre | ening |                               |           |  |

#### Particle in a box: add or remove

$$(-\nabla^2/2 + V_{box})\phi = \varepsilon\phi$$
  
$$\varepsilon = -(E_{N=0} - E_{N=1}) = E_{N=1} - E_{N=0}$$

- Kohn-Sham  $(-\nabla^2/2 + V_{box} + \rho v - \rho v)\phi = \varepsilon \phi$
- Hartree-Fock  $(-\nabla^2/2 + V_{box} + \rho v)\phi - \phi^*\phi v\phi = \varepsilon\phi$
- GW

$$\begin{aligned} (-\nabla^2/2 + V_{box} + \rho v)\phi - \phi^* \phi v \phi + \Sigma_c \phi &= \varepsilon \phi \\ W &= v + W_\rho = v + v \chi^{RPA} v \quad W_\rho \text{ should be zero!} \end{aligned}$$

| PES      |       |   | G <sub>0</sub> W <sub>0</sub> | Beyond GW |  |
|----------|-------|---|-------------------------------|-----------|--|
| Self-scr | eenin | a |                               |           |  |

#### Corrections to GW

W test-charge use exact χ instead of χ<sup>RPA</sup> ⇒ χ = χ<sub>0</sub> ⇒ W<sub>p</sub> = vχ<sub>0</sub>v ≠ 0
W test-electron local vertex: W<sub>p</sub> = (v + f<sub>xc</sub>)χ<sub>0</sub>v = 0 (f<sub>xc</sub> = -v)

W. Nelson, P. Bokes, P. Rinke, and R. W. Godby, Phys. Rev. A 75 (2007)
P. Romaniello, S. Guyot, and L. Reining, JCP 131 (2009)
F. Aryasetiawan, R. Sakuma, and K. Karlsson, arXiv:1110.6765



#### One electron in two-site Hubbard model



P. Romaniello, S. Guyot, and L. Reining, JCP 131 (2009)

### Interacting particles







#### GW

- Add one primary electron e, spin ↓
- Disexcitation  $(e,\downarrow) \rightarrow (e',\downarrow)$
- Creation of electron-hole pairs *e*<sub>2</sub>-*h* in both spin channels.

#### Note

- primary electron: final spin = initial spin (no spin flips)
- no interaction between primary electron and secondary particles
- analogously for additional hole





#### T matrix

- Add one primary electron e, spin  $\downarrow$
- Disexcitation  $(e,\downarrow) 
  ightarrow (e_2,\downarrow)$
- Creation of electron-hole pairs *e*<sub>1</sub>-*h* in both spin channels
- Interaction between primary electron and hole of electron-hole pair (A,B)
- Interaction between primary electron and electron of electron-hole pair (C)

#### Note

- (B) spin flips: coupling with spin-waves, magnons, paramagnons
- analogously for additional hole

V. P. Zhukov, E. V. Chulkov, and P. M. Echenique, PRB 72 (2005)



T matrix: hole-hole interaction 6 eV satellite in Nickel



M. Springer, F. Aryasetiawan, and K. Karlsson, PRL 80 (1998)

| PES     |  | G <sub>0</sub> W <sub>0</sub> | Conclusions |
|---------|--|-------------------------------|-------------|
| Outline |  |                               |             |

- 1 Photoemission
- 2 One-particle Green's function
- 3 GW approximation
- 4 In practice:  $G_0W_0$  and beyond

### 5 Beyond GW









## What is wrong? What is missing?



# What is wrong? What is missing?

We need the BSE...



## What is wrong? What is missing?

### We need the BSE... and Ilya.

| PES |  | G <sub>0</sub> W <sub>0</sub> | Conclusions |
|-----|--|-------------------------------|-------------|
|     |  |                               |             |

## Many thanks!

| PES     |      |       | G <sub>0</sub> W <sub>0</sub> | Conclusions |
|---------|------|-------|-------------------------------|-------------|
| Acknowl | edge | ments |                               |             |

- Fabien Bruneval
- Rex Godby
- Valerio Olevano
- Lucia Reining
- Pina Romaniello
- Francesco Sottile