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Ab initio molecular dynamics

© Ab initio molecular dynamics
© Why Quantum Dynamics?

nonadiabatic molecular dynamics



Reminder from last lecture: potential energy surfaces

We have electronic structure methods for electronic ground and excited states...
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Reminder from last lecture: potential energy surfaces

We have electronic structure methods for electronic ground and excited states...
Now, we need to propagate the nuclei...
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LURGHEN G T BTG BT Why Quantum Dynamics?

Why Quantum dynamics?

Ab initio nonadiabatic molecular dynamics

GS adiabatic dynamics (BO vs. CP)

BO MR(t) = —V min, Exs({$i[p]})
CP uildi(t)) = =555 Exs({6i()}) + 555 {constr.}
MR (t) = =V Exs({#i(t)})

ES nonadiabatic quantum dynamics

@ Wavepacket dynamics (MCTDH)

@ Trajectory-based approaches

- Tully's trajectory surface hopping (TSH)
- Bohmian dynamics (quantum hydrodyn.)
- Semiclassical (WKB, DR)
- Path integrals (Pechukas)

- Mean-field solution (Ehrenfest dynamics)

@ Density matrix, Liouvillian approaches, ...



Why[Quantra] Dynamics
Why Quantum dynamics?

GS adiabatic dynamics

[ First principles Heaven ]

Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]
classical MD
Coarse-grained MD

[ No principles World |

ES nonadiabatic quantum dynamics

[ First principles Heaven l

Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]

l
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Why[Quantra] Dynamics
Why Quantum dynamics?

GS adiabatic dynamics

[ First principles Heaven ]

Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]
classical MD
Coarse-grained MD

[ No principles World |

ES nonadiabatic quantum dynamics
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We cannot get read of electrons

L Nuclei keep some QM flavor

- e

)
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o . .
g | -) Accuracy is an issue
u -) Size can be large (diffuse excitons)
(+) Time scales are usually short (< ps)
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hy[Quansum[Dynanics?
Nonadiabatic effects requires quantum nuclear dynamics

The nuclear dynamics cannot be described by a single classical trajectory (like in
the ground state -adiabatically separated- case)

Photoproduct
Photoproduct ¥

Reactive
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Why[Quantra] Dynamics
Why trajectory-based approaches?

W1 In “conventional” nuclear wavepacket propagation potential energy surfaces
are needed.

W2 Difficulty to obtain and fit potential energy surfaces for large molecules.

W3 Nuclear wavepacket dynamics is very expensive for large systems (6 degrees
of freedom, 30 for MCTDH). Bad scaling.

T1 Trajectory based approaches can be run on-the-fly (no need to parametrize
potential energy surfaces).

T2 Can handle large molecules in the full (unconstraint) configuration space.

T3 They offer a good compromise between accuracy and computational effort.

Photoproduct

Reactive
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Mixed quantum-classical dynamics

Starting point

The starting point is the molecular time-dependent Schrédinger equation :

AY(r,R, t) = ih%w(r, R, t)

where A is the molecular time-independent Hamiltonian and W(r, R, t) the total
wavefunction (nuclear + electronic) of our system.

In mixed quantum-classical dynamics the nuclear dynamics is described by a
swarm of classical trajectories (taking a "partial” limit 2 — O for the nuclear wf).

In this lecture we will discuss two main approximate solutions based on the following
Ansatze for the total wavefucntion

W(r, R, t) 22, an r:R)(R, t)

Huang

. t
W(r,R, t) 2 (¢, £)Q(R, t) exp [% / Ee,(t’)dt’}
to
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Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

@ Nonadiabatic Ehrenfest dynamics dynamics
I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

@ Adiabatic Born-Oppenheimer MD equations

@ Nonadiabatic Bohmian Dynamics (NABDY)
B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

o Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]
C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, |. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

e Time dependent potential energy surface approach
based on the exact decomposition: W(r, R, t) = Q(R, t)®(r, t).
A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)
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Ebventestldynanics
Ehrenfest dynamics

o t
W(r, R, t) St o(r, £)Q(R, t) exp [%/ Ee/(t/)dt'}
to

Inserting this representation of the total wavefunction into the molecular td Schrédinger equation and
multiplying from the left-hand side by Q" (R, t) and integrating over R we get

ROt

0 + [/dR Q*(R, ) V(r, R)Q(R, t)] ®(r, t)

here U/(r,R) = < 22y
where V/(r, )_ZIQ ‘r7 y Z%im.
In a similar way, multiplying by ®*(r, t) and integrating over r we obtain

OQ(R, t)
e Z M-IV Q(R, 1) [/dr & (1, ) d(r, t)] Q(R, 1)
Conservation of energy has also to be imposed through the condition that d(I:I)/dt =0.
Note that both the electronic and nuclear parts evolve according to an average potential generated by the
other component (in square brakets). These average potentials are time-dependent and are responsible for the

feedback interaction between the electronic and nuclear components.

io nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

We start from the polar representation of the nuclear wavefunction
Q(R, t) = A(R, t) exp {hS(R t)]

where the amplitude A(R, t) and the phase S(R, t)/F are real functions.
Inserting this representation for Q(R, t) and separating the real and the imaginary
parts one gets for the phase S in the classical limit A — 0

——;;M;l(w) | far & 7R RIS )

This has the form of the "Hamilton-Jacobi” (HJ) equation of classical mechanics,
which establishes a relation between the partial differential equation for S(R, t) in
configuration space and the trajectories of the corresponding (quantum)
mechanical systems.

Ab initio nonadiabatic molecular dynamics



Ebventestldynanics
Ehrenfest dynamics - the nuclear equation

S(dy=a
s(0)=a

Instead of solving the field equation for S(R, t), find the equation of motion for
the corresponding trajectories (characteristics).
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Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

The identification of S(R, t) with the "classical” action, defines a point-particle
dynamics with Hamiltonian, H, and momenta

P = VrS(R).

The solutions of this Hamiltonian system are curves (characteristics) in the

(R, t)-space, which are extrema of the action S(R, t) for given initial conditions
R(to) and P(to) = VRS(R)‘R(tD)-

Newton-like equation for the nuclear trajectories corresponding to the HJ equation

dP

Y= v, [/dr «(r, R)O(r, t)

Ehrenfest dynamics

w = ’}:[e,(r; R)®(r;R, t)

M/ﬁ, = —V/<7:(e/(l’; R)>

ih
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Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

The identification of S(R, t) with the "classical” action, defines a point-particle
dynamics with Hamiltonian, H, and momenta

P = VrS(R).

The solutions of this Hamiltonian system are curves (characteristics) in the

(R, t)-space, which are extrema of the action S(R, t) for given initial conditions
R(to) and P(to) = VRS(R)‘R(%).

Newton-like equation for the nuclear trajectories corresponding to the HJ equation

P, far e 071t RO

Ehrenfest dynamics - Densityfunctionalization (¢x: KS orbitals)
1

2me

M[ﬁ/ = —VIE[p(ra t)]

ih%(ﬁk(r, t) = Vf(bk(r, t) aF Veﬂr[p7 Cbo](l’7 t) ¢)k(|’7 t)
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W DELIGTENTITREERSTEI G EN T Ehrenfest dynamics

Ehrenfest dynamics - Example

Ehrenfest dynamics

2m
MR, = =V (H(r; R))

ih%¢k(r7 t) = _va(ﬁk(rv t) + Veff[p7 (DO](ra t) ¢k(r7 t)

plrt) = o (1)

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics and mixing of electronic states

Ehrenfest dynamics

w = He(r; R)O(r; R, )

M/R/ = —V/< (I’ R)>

ih
Consider the following expansion of ®(r; R, t) in the static basis of electronic
wavefucntions {®x(r; R)}
(r;R,t) ch J®k(r; R)

The time-dependency is now on the set of coefficients {ck(t)} (|ck(t)]? is the
population of state k). Inserting in the Ehrenfest’s equations...

Ab initio nonadiabatic molecular dynamics



Ebventestldynanics
Ehrenfest dynamics and mixing of electronic states

Ehrenfest dynamics

ihe(t) = c(t)ES' — ik _ ¢(t)Dy
J

oo
MR, ==V, Z e (t)2E¢
k=0

where

OR 0

o . 3
Dig = (®kl 5 101) = (@4l 5 5 107) = R(@4[V]0)) = R diy

Thus we incorporate directly nonadiabatic effects.

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics: the mean-field potential

Energy
Energy

— @

® Ry

ihé(t) = ci(t)ES ,hzcj ) Dy

MR, = -V, Z e (t)PE¢
k=0
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Ehionfestldynamics
Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

@ Nonadiabatic Ehrenfest dynamics dynamics
I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

o Adiabatic Born-Oppenheimer MD equations

@ Nonadiabatic Bohmian Dynamics (NABDY)
B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

o Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]
C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, |. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

e Time dependent potential energy surface approach
based on the exact decomposition: W(r, R, t) = Q(R, t)®(r, t).
A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)
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Mixed quantum-classical dynamics BW-VIELETEINETTTEG]

Born-Oppenheimer approximation

W(r, R, t) 22, Zd) (rR)Q(R, t)

Huang

In this equation, {®;(r; R)} describes a complete basis of electronic states solution
of the time-independent Schrodinger equation:

He(r; R)D;(r;R) = Ej(R)®;(r; R)

R is taken as a parameter.
Eigenfunctions of H¢(r; R) are considered to be orthonormal, i.e. (®;|®;) = §;;

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics BW-VIELETEINETTTEG]

Born-Oppenheimer approximation

Born
V(r,R,t) o an r;R)Q(R, t)

Electrons are static. Use your favorite el. str. method.

For the nuclei, insert this Ansatz into the molecular time-dependent Schrodinger
equation

HV(r,R, t) = ih%\U(r, R, t)

After left multiplication by ®(r; R) and integration over r, we obtain the
following equation (we used (®;|®;) = d;) :

h? d
—Z ——V? 4+ E4x(R) Rt—l—ZDkJ (R, t) = ih=—Q(R, t)

2M, ot
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Mixed quantum-classical dynamics BW-VIELETEINETTTEG]

Born-Oppenheimer approximation

S w2y E L (R QuR, DQ(R. t) = ih—Q,(R,
Z,:2M/V'+ 1.k (R) | Qu( t)+zj: k<%(R, t) ihas (R, t)

@ Equation for the nuclear “wavepacket”, (R, t), dynamics.

o £ «(R) represents a potential energy surface for the nuclei.

Important additional term : Dy; | NONADIABATIC COUPLING TERMS

o,
S

+ 2/: Mi/ {/ 5 (r; R) [—ihV ] &;(r; R)dr} [—ihV/]

Dy; :/d)i(r; R) ®;(r; R)dr

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Adiabatic Born-O

Born-Oppenheimer approximation

®;(r; R)dr

/

+3 o | [ erR v o Ryar| (i)

* hz

If we neglect all the Dy; terms (diagonal and off-diagonal), we have the
Born-Oppenheimer approximation.

ﬁ2 ) R 3
[_ z/: iV + Ee,,k(R)] (R, 1) = ih (R, 1)

Mainly for ground state dynamics or for dynamics on states that do not couple

with others.
(Back to nonadiabatic dynamics later).

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Adiabatic Born-O

Born-Oppenheimer approximation: the nuclear trajectories

h? 0
-> Q—MIv% -+ Ee,,k(R)] (R, ) = ih7 Q(R, t)
I

Using a polar expansion for Q(R, t), we may find a way to obtain classical
equation of motions for the nuclei.

Qk(R, t) = Ak(R7 t) exp [%Sk(R, t):| .

Ak(R, t) represents an amplitude and S(R, t)/h a phase.

Further: insert the polar representation into the equation above, do some algebra,
and separate real and imaginary part, we obtain an interesting set of equations:

Ab initio nonadiabatic molecular dynamics



AdiabaticlBonn0)
Born-Oppenheimer approximation: the nuclear trajectories

a5 h? V2A 1
B m T LM T M (Vi) B
i i

O0A _ 1 _
Sr =~ 2 MIVIANIS = 5 Y M AN S
[ !
Dependences of the functions S and A are omitted for clarity (k is a index for the
electronic state; in principle there is only one state in the adiabatic case).

We have now a time-dependent equation for both the amplitude and the phase.
Since we are in the adiabatic case there is only one PES and the second equation
becomes trivially a diffusion continuity equation.

The nuclear dynamics is derived from the real part (%). This equation has again
the form of a classical Hamilton-Jacobi equation.

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics BW-VIELETEINETTTEG]

Born-Oppenheimer approximation: the nuclear trajectories

A
@:E w1 Yl "—fZM (Vi5e)* ~

OAK
ot

AL Z M,V AV Sy — 5 Z ML AVZ S,
I li

S(dy=a
s(0)=a

Instead of solving the field equation for S(R, t), find the equation of motion for
the corresponding trajectories (characteristics).

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics BW-VIELETEINETTTEG]

Born-Oppenheimer approximation: the nuclear trajectories

szz A "ZM (V15" -

The classical limit is obtained by taking!: 7 — 0

7:—72/\4 (V15K)° ~

These are the classical Hamllton—Jacobl equation and S is the classical action
related to a particle.

S(t):/ttL(t')dt’:/tt[Ek,-n(t Epoe()] ot

The momentum of a particle / is related to

Vi

V[S—pl— MI

LCaution! This classical limit is subject to controversy...

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Adiabatic Born-O

Born-Oppenheimer approximation: the nuclear trajectories

Therefore, taking the gradient,

—Vjask**VJZM V/Sk —|—VJEk

and rearranging this equation using V;Sx/M, = vk, we obtain the (familiar)

Newton equation:

d
Mjavﬁ = —V,Ex

In Summary:
Adiabatic BO MD

Hel(r; R)®4(r; R) = EZ'(R)Dk(r; R)
MR, = -V, EZ'(R) = — vy (P Her| D)

min® k

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Adiabatic Born-O

Mean-field vs. BO MD (adiabatic case)

Ehrenfest dynamics
od(r; R, t)
ot
MR, = =V (Ha(r; R))

Explicit time dependence of the electronic wavefunction.

ih = Heo(r; R)O(r; R, t)

Born-Oppenheimer dynamics

He(r; R)Ok(r; R) = EZ/(R)®4(r; R)
MR, = —V,Ef(R) = — (Ok|HLet| i)

I
min®

The electronic wavefunction are static (only implicit time-dependence.

Ab initio nonadiabatic molecular dynamics



GlabatcBor0
Mean-field vs. BO MD (adiabatic case)

Method Born-Oppenheimer MD Ehrenfest MD
adiabatic MD (one PES) nonadiabatic MD (mean-field)
Efficient propagation of the nuclei  Get the “real” dynamics of the electrons
Adiabatic nuclear propagation Propagation of nuclei & electrons
0t ~10-20 a.u. (0.25-0.5 fs) 0t ~0.01 a.u. (0.25 as)
Simple algorithm Common propagation of the nuclei
and the electrons implies
more sophisticated algorithms

Exact quantum dynamics?

Can we derive “exact” quantum equations of motion for the nuclei?
(without taking the classical limit & — 07)

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Adiabatic Born-O

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

@ Nonadiabatic Ehrenfest dynamics dynamics
I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

@ Adiabatic Born-Oppenheimer MD equations

e Nonadiabatic Bohmian Dynamics (NABDY)

B. Curchod, IT*, U. Rothlisberger, PCCP, 13, 32313236 (2011)
o Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]

C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, |. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

e Time dependent potential energy surface approach
based on the exact decomposition: W(r, R, t) = Q(R, t)®(r, t).
A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics BW.GIELETN:LIG RG]

Nonadiabatic dynamics: Multi-trajectory solutions

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics

Nonadiabatic Bohmian dynamics

Transverse coordinate[mm]

=6

L L . h . R
3000 4000 5000 6000 7000 8000
Propagation distance[mm]

Pioneers in quantum hydrodynamics: D. Bohm, P. R. Holland, R. E. Wyatt, and
many others.

o nonadiabatic molecular dynamics



Mixed quantum-classical dynamics

NABDY: “exact” trajectory-based nonadiabatic dynamics
Using
® U(r,R,t) = 37 &;(r RIQ(R, 1)

@ Q;(R,t) = Ai(R, t)exp [£ Si(R, t)]

in the exact time-dependent Schrédinger equation for the nuclear wavefucntion we get

o5(Rt) . 1 s 2 el LZVZ (R, t)
at 7; M, (V&R 0)7 + 7R = 2My AR, 1)
A,-(R,r) b n? VAR, ¢
+ZM ) ( A(R’t)&e[e - d7(R)

M., i )ga [ei¢]
Vi T Aj(R, 1)
+ Z ’IY(R)A,.(RJ)

S [of®
V+Si(R, 1) |e
v M Aj(R, ) ! [ }
and
9A;i(R, t) 1
P A —V R, )V R,
ot ;M'y ~Aj(R, 1)V ( t) —

; iAj(R,t)V2 Si(R, t)
+27D’Y(RA ®, 93 | - —d RV AR, )3 [¢/]
My v, i My

- —dj’IY(RA (R, )V S;(R, )R [ei¢],
Vi

where both Sj(R, t) and A;(R, t) are real fields and ¢ = (S;(R, t) — Si(R, t))
Ab initio nonadiabatic molecular dynamics




Mixed quantum-classical dynamics

NABDY: “exact” trajectory-based nonadiabatic dynamics

From the NABDY equations we can obtain a Newton-like equation of motion

(using the HJ definition of the momenta V3S;(R, t) = P})
d’R ;
My s ==V [EUR) + QR 0) + 3, Dy(R. 1)

where Q;(R, t) is the quantum potential responsible for all coherence/decoherence
“intrasurface” QM effects, and D;j(R, t) is the nonadiabatic potential responsible
for the amlpitude transfer among the different PESs.

For more informations see:
B. Curchod, IT, U. Rothlisberger, PCCP, 13, 3231 — 3236 (2011)

NABDY limitations
@ Mainly numerical challenges
@ Instabilities induced by the quantum potential

o Compute derivatives in the 3N dimensional(R3V) configuration space

Ab initio nonadiabatic molecular dynamics



NABDY: “exact” trajectory-based nonadiabatic dynamics

NABDY

Figure: NABDY: sketch of the dynamics

nonadiabatic molecular dynamics



ed quantum-classical dynamics

Gaussian wavepacket on an Eckart potential (Ex = 3/4V)

Density evolution

Main picture of a QTM trajectory

A 008
254 —— InBal wavepacket
—— Final vavepaciet
— == Echaf potential
Inaal kinets: energy
01 -
P e
& oy -
g 154 1 b ]
-1 A b a
e o i =z
104 i 1 d
/ \
i \ a
¥ \
054 ) % !
\
/| ~
00 — —
a & n L
X{auw)

io nonadiabatic molecular dynamics




Mixed quantum-classical dynamics

Gaussian wavepacket on an Eckart potential (Ex = 3/4V)

Main picture of a QTM trajectory
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Mixed quantum-classical dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

@ Nonadiabatic Ehrenfest dynamics dynamics
I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

@ Adiabatic Born-Oppenheimer MD equations

@ Nonadiabatic Bohmian Dynamics (NABDY)
B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

@ Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]
C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, |. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

e Time dependent potential energy surface approach
based on the exact decomposition: W(r, R, t) = Q(R, t)®(r, t).
A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)

Ab initio nonadiabatic molecular dynamics



iLtajcctory}Suifacelbiopping
Applications in Photochemistry and Photophysics

Trajectory-based solutions of the “exact” nonadiabatic equations are still
impractical.

Approximate solutions are available. Among the most popular is

Trajectory Surface Hopping (TSH)

Ab initio nonadiabatic molecular dynamics



Trajectory Surface Hopping
TSH nonadiabatic MD

There is no derivation of TSH dynamics. The fundamental hypothesis beyond
TSH is that it is possible to design a dynamics that consists of:

@ propagation of a “quantum” amplitude, C(t), associated to each PES, /
V(r R, ) =Y G (t)Pk(rR)
K

(the label « is to recall that we have a different contribution from each
different trajectory).

o classical (adiabatic) time evolution of the nuclear trajectories on adiabatic
states solution of the Schrodinger equation for the electronic sub-system.

e transitions (hops) of the trajectories between electronic states according to a
stochastic algorithm, which depends on the nonadiabatic couplings and the
amplitudes CZ(t).

See also: J. Tully, Faraday discussion, 110, 407 (1998) and B. Curchod, U. Rothlisberger, IT, in preparation.

Ab initio nonadiabatic molecular dynamics



Mixed quantum-classical dynamics Trajectory Surface Hopping

Tully's surface hopping - How does it work?

The main claim of TSH is that, the collection of a large enough set of independent
trajectories gives an accurate representation of the nuclear wave packet

_ Ng(R%,dV,t%) 1

CLipa ;o
R, t
e (RE9) Neot dv

~ JU(R* )P ~ [Clga o |

Inserting
V(r R, ) =) G (t)Pk(riR)
k

into the molecular time-dependent Schrodinger equation and after some
rearrangement, we obtain:

ihCo(t Zc )(Hig — inR™ - df})

with Hyj = (®4(r; R))|[Fler|®;(r; R)).
In the adiabatic representation, we have Hy, = E,f’ and H,; =0 .

Ab initio nonadiabatic molecular dynamics



iLtajcctory}Suifacelbiopping
Tully's surface hopping - How does it work?

Equation of motion for the amplitudes:

ihCE(t) = C(t)(Hig — ihR™ - dfy)

J

Switching algorithm:

In the fewest switches algorithm, the transition probability from state j to state k
in the time interval [t, t + dt] is given by:

gttt d) 2 /+ L S1GE ()G Hy(1)] = RIG (1) G ()= (1)
it : GG

where =¢;(7) = R” ~d;(7). A hop occurs between j and k if

Y ogr << g,

I<k—1 1<k

where ( is generated randomly in the interval [0, 1].
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LLiaiectoryjSurfacelHopping]
Tully's surface hopping - Summary

Tully’s surface hopping
inCe(t) = C(t)(Hig — inR™ - dfy)
J

MR, = —V,E{(R)

> &l <¢<) éf
I<k—1 1<k
Some warnings:
@ Evolution of classical trajectories (no QM effects — such as tunneling — are
possible).
@ Rescaling of the nuclei velocities after a surface hop (to ensure energy
conservation) is still a matter of debate.
© Depending on the system studied, many trajectories could be needed to
obtain a complete statistical description of the non-radiative channels.

For more details (and warnings) about Tully’s surface hopping, see G. Granucci and M. Persico,
J Chem Phys 126, 134114 (2007).
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CLNTENTTT R EEETE NTENTEEN  Trajectory Surface Hopping

Tully's surface hopping - The algorithm

o nonadiabatic molecular dynan

according 1o the classical ensemble distribution corre:

simulation coupled to & thermostat).

Initialization of the classical variables (pesitons and velocities)

1o the target femperature (for sxample wsing an adiabatic MD

l

Calculation of the electronic adiabatic states
using LA-TODFT and the corresponding
farces an the nucksi.

™

!

Propagation of the classical variables for
the cesired timestep &1 using the velocity
Varlet algorithm.

|

Reconstruction of the TDDFT excited wave
functions using eq. {2.10) and calculstion of the
NAC {o,} according to equation (2.6).

y

of the electronic i

{C}} according 1o eq. (2.4) for the time interval At
using the 4" order Aunge-Kutta algorithm.

no /Ecaluaﬂon of =
switching probability \
:\ using eq.(2.8) //
\‘S‘wm:h 2
e

yes 1

| Store all quantities necessany for ihe nex ltesatlon. )

nuckei, and redistribution of the excess anemgy

(" Ghange of the driving surtace for the classical
{ amang the classical degrees of freedam.
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iiraeceorvjSuriacclbiopping
Tully's surface hopping - Examples

1D systems
004 T T T
t=0.0000 hbar / By step -0
ta} : Eq <0066 Ey N =1 0000 () [
| I— a0 -5 _n 3 nn .05 L1
002 f i ‘ ¥
I
It ;_/
»’;
[ ) - —! \\_—-A————— s
1 s
Al s
|

\
P [hbar /]

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

it g,

ns 1
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Tully's surface hopping - Examples

1D systems
004 T T
ta}
I
i~ +50
0.0z n
"
AT
/! Y
L R T - {
|
-0.02 |- t 4 E —

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

On the right: population of
the upper state (k=mom)

o exact
e TSH
— Landau-Zener
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iiraeceorvjSuriacclbiopping
Tully's surface hopping - Examples

1D systems
’ b tep -
005 ;: -:“m’u;;f‘n ::;nll TP [E,]
El ] ns 1 =
£
5 o I
& 3
g [
-0.05 ——
R a0
+ . t 7
E
J.C. Tully, J. Chem. Phys. (1990), 93, 1061 =
20

nonadiabatic molecular dynamics



iiraeceorvjSuriacclbiopping
Tully's surface hopping - Examples

1D systems

(=]

ENERGY (a.u)

o
2

05

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

On the right: population of
the upper state o)

o exact

(c)

L
° oM -4 -3 2

loge (E) (au)
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(\VDELIGTENITTREERSTEI G EN T Trajectory Surface Hopping

Comparison with wavepacket dynamics

Butatriene molecule: dynamics of the radical cation in the first excited state.

1) Ree
H\ =

JPCA,107,621 (2003)

Ab initio nonadiabatic molecular dynamics



(\VDELIGTENITTREERSTEI G EN T Trajectory Surface Hopping

Comparison with wavepacket dynamics

Butatriene molecule: dynamics of the radical cation in the first excited state.

\\\\\“\~'\‘

11 4 QO \
105 ‘\\§§\\\E
;‘ 95 1 \\\ % min
9 \\\\
8.5 1
90
d

JPCA,107,621 (2003)

CASSCF PESs for the radical cation (Q4: symmetric stretch, 6: torsional angle).
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iLtajcctory}Suifacelbiopping
Comparison with wavepacket dynamics

Dersity fab ] Eergrr[oV]

Nuclear wavepacket dynamics on
fitted potential energy surfaces
(using MCTDH with 5 modes) .
Reappearing of the wavepacket in
S, after ~ 40fs.

Camsity [arta |

Density [at.]

Dengty [art |

JPCA,107,621 (2003)

Dersity farty]

io nonadiabatic molecular dynamics



(\VDELIGTENITTREERSTEI G EN T Trajectory Surface Hopping

Comparison with wavepacket dynamics

X A
4 4 1.48
2 9138
% g {1287 On-the-fly dynamics with 80
2F 4119 . .
trajectories (crosses).
aC ] F 4148
o 2 J L - 4138
e g | RIS f - 128 R, . . .
0 00 1% T @ | Bl Trajectories are not coming back
1148 close to the conical intersection.
- - 138
101 (= 128 Ry
Loue What is the reason for this
i T discrepancy? The independent
26 | ;@, 1 128 Rees trajectory approximation?, i.e.
' " the fact that trajectories are not
= ERE:]
L {138 correlated?
el N b (Or it has to do with differences
E s in the PESs?)
ks . a1
Y R E R
F 4119 JPCA,107,621 (2003)
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| IPECRGTENTTTOREEEETE NG ITE M Trajectory Surface Hopping

Comparison with wavepacket dynamics

On-the-fly dynamics with 80

1 . . : . trajectories.
0.9
08 | 1 Trajectories are not coming back
g o7} 1 close to the conical intersection.
< 081 )
g os| What is the reason for this
% 0.4 discrepancy? The independent
a 03 trajectory approximation?, i.e.
ozt the fact that trajectories are not
A | correlated?
% 2 S 50 80 w0 (Or it has to do with differences

Time [is] in the PESs?)

JPCA,107,621 (2003)
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TDDFT-based trajectory surface hopping

© TDDFT-based trajectory surface hopping
@ Nonadiabatic couplings in TDDFT

Ab initio nonadiabatic molecular dynamics



Tully's surface hopping - On-the-fly dynamics

Tully's surface hopping
ihC(t) = C(t)(Hig — iR™ - dfy)
J

MR, = -V, EZ(R)

Y& << &,

I<k—1 1<k

What about the electronic structure method for on-the-fly dynamics? We
need:

@ Potential energy surfaces — MR-CISD, LR-TDDFT, semiempirical, ...

Ab initio nonadiabatic molecular dynamics



Tully's surface hopping - On-the-fly dynamics

Tully's surface hopping
ihC(t) = C(t)(Hig — iR™ - dfy)
J

MR, = —V,Ef'(R)

Y& << &,

I<k—1 1<k

What about the electronic structure method for on-the-fly dynamics? We
need:

@ Potential energy surfaces — MR-CISD, LR-TDDFT, semiempirical, ...
@ Forces on the nuclei — MR-CISD, LR-TDDFT, semiempirical methods, ... .
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Tully's surface hopping - On-the-fly dynamics

Tully's surface hopping
inCE(t) = 3 G (e)(Hy — inR™ - dy)
J

MR, = —V,Ef'(R)

2. & <C<D g,

I<k—1 1<k

What about the electronic structure method for on-the-fly dynamics? We
need:

@ Potential energy surfaces — MR-CISD, LR-TDDFT, semiempirical, ...
@ Forces on the nuclei — MR-CISD, LR-TDDFT, semiempirical methods, ... .

° — MR-CISD, LR-TDDFT (?), semiempirical
methods, ... .
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TDDFT-based trajectory surface hopping Nonadiabatic couplings in TDDFT

Nonadiabatic couplings with LR-TDDFT?

Nonadiabatic coupling vectors are defined in terms of electronic wavefunctions:

(@ (R)| VR Her|D;(R))
E;j(R) — Ex(R)

dij = (®«(R)|Vr|®;(R)) =

The main challenge is to compute all these quantities as a functional of the ground
state electronic density (or equivalently, of the occupied Kohn-Sham orbitals).

dy; — dy;[p]

Different approaches for the calculation of dg;[p] are available 2.
Here we will use the method based on the auxiliary many-electron wavefunctions.

2V. Chernyak and S. Mukamel, J. Chem. Phys. 112, 3572 (2000); R. Baer, Chem. Phys.
Lett. 364, 75 (2002); E. Tapavicza, |. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98,
023001 (2007); C. P. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007).
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TDDFT-based trajectory surface hopping Nonadiabatic couplings in TDDFT

The density response SOS formula
In TDDFT the density response x(w) is
x(w) = 872 (W’I — Qw)) '8 T2

[T
where Z,, are the TDDFT eigenvectors of the pseudoeigenvalue equation, (Sjjo ki = %)
o~ fio)€lo —€ko
QZ, = i Z,,
with

Qjjo ki = Oor0ibj(€1r — ko)’ + 2\/(fia — fio)(€jo — €io)Kijo,kir \/(fkr — fir)(€1r — €kr)
Using the spectral representation of the (w2l — Q(w))™!, we can write

z,z}

2 )2
wp w

(@I 0w) =3

n

Therefore 3

Z S’l/ZZnZ:S’l/Z

w
x(w) 2 o —
and finally the perturbation of any observable (§O(w) = Zijo‘ 0ijo O Pjjor)

S=Y2Z, )40 (ZTS1/2Y,.
6OTDDFT(W):Z ) Oijg( n)iko (Z)) )k v E(w).

2 _ 2
n ijo, kit Wh W

3M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong, World Scientific, Singapore (1995), JCP, 130, 124107

(2007)
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blonaciabaticfeoliplinE=lnRR IT)
In MBPT the density response x(w) is

2wio (Wo|O|W ) (W, [0/ E(w)|Wo)
OMBPT( ) Z wzo —

Equating 5O TPPFT (w) with §OMBPT () residue-by-residue,

(fio—fi5)>0 1
(WolOlW,) = > ——0ju(S7?Zy)j6
ijo “n

For any one-body operator, O, a mapping between MBPT and TDDFT quantities
gives (for the moment, we only consider transitions from the ground state Wg)

01s12Z, = wl/>(Wo|O|V,) J

where the operator O = >~ o;ag?alTUéaU has components 0.5 = (¢ |O|ta5) *
with wo, = E, — Ep. All matrices and vectors are given in the basis of KS orbitals
{¢is } with corresponding occupations f;, and orbital energies €;,.

N
> stands for S0, 3022, D oc{a.8}
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TDDFT-based trajectory surface hopping Nonadiabatic couplings in TDDFT

The auxiliary wavefunction

For practical purposes we introduce the auxiliary linear-response many-electron
wavefunctions 5 as a linear combination of singly excited Slater determinants

Sul{p 3= ck, 3L, 5 P0[{4.}],

IaO'
with

-1
c k Siao e k
iac iac

Wok

where ®[{¢.}] is the Slater determinant of all occupied KS orbitals {¢;s }.;,
which, at a turn, are promoted into a virtual (unoccupied) orbitals, ¥,

We therefore have (in linear response!)

5JCP, 130, 124107 (2007), JCP, 131, 196101 (2009).
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TDDFT-based trajectory surface hopping Nonadiabatic couplings in TDDFT

Nonadiabatic couplings

@ The nonadiabatic coupling elements at the mid step t + t/2 of a
LR-TDDFT AIMD can therefore be calculated as

R dogl o2 01611 = (B0 R() | Vr | Bul R)) - R = (o(r:R(0) | 2 | 846 R())

~ L [(Bo(ri R(D)IBi(ri R(E + 52))) — (Bo(ri R(t + 5))|Su(r R(1))) |

e The nonadiabatic coupling vectors between pairs of excites states (second
order response)

(®4(R)|VrHe|;(R))
E;(R) — Ex(R)

» Auxiliary many-electron wavefunctions give exact couplings between ground
state and any (singly) excited state.

» Auxiliary many-electron wavefunctions give high quality couplings between
pairs of (singly) excited states (“exact” in the TDA and up to O(5p%) in full
response).

di[{o.}] =

Ab initio nonadiabatic molecular dynamics



Nonadisbaviclcovplines TP DN
Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the
xc-functional used...

dii[{¢.}] = (P(R)|Vr|®;(R))

MR-CISD

Protonated formaldimine: nonadiabatic coupling vectors dp; with LR-
TDDFT/TDA.
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Nonadisbaviclcovplines TP DN
Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the
xc-functional used...

dii[{¢.}] = (P(R)|Vr|®;(R))

PBE PBE0 MR-CISD

Protonated formaldimine: nonadiabatic coupling vectors dj» with LR-
TDDFT/TDA.
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TDDFT-TSH: Applications

@ TDDFT-TSH: Applications
@ Photodissociation of Oxirane
@ Oxirane - Crossing between S; and Sy
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TDDFT-TSH: Applications

Protonated formaldimine

The protonated formaldimine is a model compound for the study of isomerization
in rhodopsin chromophore retinal.

In addition to the ground state (GS), two excited electronic states are of interest:

Q@ 51 : 0 — 7* (low oscillator strength)

@ S, : m— «* (high oscillator strength)

Ab initio nonadiabatic molecular dynamics




Protonated formaldimine

Computational details
@ Isolated system
e LR-TDDFT/PBE/TDA
e SH-AIMD
@ 50 trajectories (NVT) each of ~100 fs.

CH,NH,*

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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Protonated formaldimine

Protonated formaldimine as a

model compound for the study of M
the isomerization of retinal.

Photo-excitation promotes
the system mainly into S,.

Relaxation involves at least
3 states:
50 (GS), 51 and 52.

Energy (eV)

[E. Tapavicza, I. T., U. Rothlisberger, PRL, 98,

023001 (2007); THEOCHEM, 914, 22 (2009)]

0 20 40 60 80 100
Time (fs)
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Protonated formaldimine

Typical trajectory

R [ | IR | L ) o ] |
0 10 20 30 40 50 60 70

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).

0
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TDDFT-TSH: Applications

Protonated formaldimine

Nonadiabatic couplings o, = R” -dy;

coupling [fs']

10
PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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Protonated formaldimine

States population

] T ‘ T T T T T
2
i ‘ — I,
2
0.8 - — IG,Or
I - — IC,0F |
2
. AA — IGor
v | |
2 L
=
g 04l
02
%

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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Protonated formaldimine

States population - Average over many trajectories.
Dashed line = CASSCF result.

______________________

Average occupation
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Protonated formaldimine

Geometrical modifications

14+
121

910
8_

Energy (e

g O

o

0 10 20 30 40 50 60 70 80
Time (fs)
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Protonated formaldimine

Comparison with experiment and model calculations
@ In addition to the isomerization channel, intra-molecular proton transfer
reactions was observed (formation of CH;NH™).
@ H, abstraction is also observed in some cases.

@ Structures and life times are in good agreement with reference calculations
performed using high level wavefunction based methods.
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TDDFT-TSH: Applications Oxirane - Crossing between S; and Sq

Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening
and dissociation can occur.

Q]
o) h 0 0
/N —_— | . — | @
H-G—C-H H-C—C-H  H-¢—C-H
H H H H H H
(1) (2)
¥ i
p-c * §7H H-C—G~H
H H
(4) 3)

Figure: Mechanism proposed by Gomer and Noyes
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TDDFT-TSH: Applications Oxirane - Crossing between S; and Sq

Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening
and dissociation can occur.
Computational details

@ Isolated system

o LR-TDDFT/PBE/TDA

e SH-AIMD

@ 30 trajectories (NVT) each of ~100 fs.
JCP, 129, 124108 (2009).
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TDDFT-TSH: Applications Oxirane - Crossing between S; and Sq

Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening
and dissociation can occur.

7

6 y
KX ffc'_x_-x X 54

5

T4

&

g3

u \

%50 250 260 270 280
(@) Time (fs)

JCP, 129, 124108 (2009).
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TDDFT-TSH: Applications Oxirane - Crossing between S; and Sq

The photophysics of solvated Ruthenium(Il) tris-bipyridine

[Ru(bpy)3)]*" dye: photophysics

[Ru(bpy)3)]?* dye: Singlet state dynamics

'MLCT

@ Medium ]
1~ @ Opima — McT H 1
L IR
1020 30 40 100 20 30 40 50
Time (fs) Time (fs)

[Ru(bpy)s)]*t dye: triplet state dynamics

AE-NEN
|

[M.E. Moret, I.T., U. Rothlisberger, JPC B, 113, 7737 (2009); IT, B.

Curchod, U. Rothlisberger, Chem.Phys., 391, 101 (2011)]
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TSH with external time-dependent fields

© TSH with external time-dependent fields
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TSH with external time-dependent fields

Addition of an external field within the equations of motion of TSH:

A
E

Startegy

The idea is to induce electronic excitations through the direct interaction with the
time-dependent (td) electric field instead of “artificially” promote the system into
one of its excited states.

Method: extended TSH nonadiabatic dynamics.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields

TSH with external time-dependent fields

Short summary of the theory
The interaction Hamiltonian between the electrons and the td electric field is

~ e R
Hint = — Z A(ri,t) - B;

2mec

where A(r, t) is the (classical) vector potential of the electromagnetic field, p; is
the momentum operator of electron /, e is the electron charge, m, is the electron
mass, and c is the speed of light.

Remark
We are in the dipole approximation and therefore we do not need TDCDFT.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields

External field within TSH

It can be shown (Phys. Rev. A 81 052508 (2010)) that through the coupling with
the td electric field, Tully's propagation equations acquire an additional term

Sy ale o3 a : A a —iw
ihCH(t) = ZC, )(Hy — iR -dJ,+/wJ,?Oe>‘-p,J,e B

with
Ao(t)

fLL)J/

gy = (D Hine| D))
and where Ag(t) = Ape*e™/“! is the vector potential of the external td electric
field,
oy = —e(®)> #ild))
is the the transition dipole vector, and wy = (E; — E;)/h.

Note that Tully's hops probability should be modified accordingly.
IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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Effect of an electromagnetic field - Lithium fluoride

Different excitations can be obtained, depending on the polarization vector of the
laser pulse.

Electronic structure of

LiF AE (eV)y
e Ground state - X ol e “ s g
symmetry (GS) . e ’
o First excited state ooz

LUMO

(doubly degenerate) -
M symmetry (51) .
@ Second excited state - g. T
T symmetry (52) . s =05 HOMO
e Avoided crossing . T
between GS and S, LUMO

HOMO-1

o+ e 1'Z* - Ground state
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Effect of an electromagnetic field - Lithium fluoride

Pulse: A(t) = —Ape* exp (—(t_T—?)Z> sin(wt)

150

100 4

50 4

A(t)

=50 4

=100 4

-150 T T r T T
-2000 0 2000 4000 6000 R0O00 10000

Time [a.u.]
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

x-polarized pulse:

AE (eV))

4.69

e = (1,0,0)

L
| _2‘2‘-5) “ ----)’
HOMO-2

Lumo
& h ) ‘A
= 1'M1-5,
HOMO
.
Lumo
2 HOMO-1
4 — 1'Z*- Ground state
X
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

A
€ = (17 07 O)
] S
= 0sh .|
=
1] d)— — h
s G—_
g E— G5 T : E
g 3145 — s, ]
e F— 8
= omee | &
:E‘ I.S_ s
B 3155 - Running state 7]
- ro) : : 4
<

Time [fs]

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)




Effect of an electromagnetic field - Lithium fluoride

Energy [hartree]

1
1] 50 10K} 150
Time [f5]

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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