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Outline

Model systems and TDDFT

• Double ionization of Helium

• Relevance of the derivative discontinuity

• Adiabatic approximations
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Nonsequential double ionization of Helium

Walker et al., PRL 73, 1227 (1994)

Experimental observations:

• double ionization orders of magnitude
larger than expected from sequential
ionization

“sequential” ionization probability
means:
pseq = p(He → He+) p(He+ → He++)

• He2+ knee at He+ saturation intensity

– p. 3



Nonsequential double ionization of Helium

Walker et al., PRL 73, 1227 (1994)

Experimental observations:

• double ionization orders of magnitude
larger than expected from sequential
ionization

“sequential” ionization probability
means:
pseq = p(He → He+) p(He+ → He++)

• He2+ knee at He+ saturation intensity

Theory: Knee is reproduced by

• exact solution of the two-body TDSE

• S-matrix theory (Becker and Faisal)

• TDDFT with derivative discontinuity
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Time-dependent density functional theory

• Runge-Gross theorem:
The density n(r, t) determines the external potential uniquely (up to a time
dependent constant).

• Time-dependent Kohn-Sham (KS) scheme:
Ficticious system of non-interacting particles described by orbitals ϕk

n(r, t) =
∑N

k=1 |ϕk(r, t)|2
i ∂
∂t
ϕk(r, t) =

(

− 1
2∇2 + vKS(r, t)

)

ϕk(r, t)

vKS[n]r(, t) = vext(r, t) +
∫ n(r′,t)

|r−r′| + vxc[n](r, t)

• Physical observables are calculated as functionals of the density.
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TDDFT for two electrons

For Helium (two electrons in a singlet state), there is only one KS orbital

ϕ↑(r, t) = ϕ↓(r, t) = ϕ(r, t)

and

n(r, t) = 2|ϕ(r, t)|2.

The exact exchange potential is

vx(r, t) = − 1
2vH(r, t),

and furthermore

x-only TDDFT = TD Hartree-Fock.
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Conventional TDDFT for He double ionization

• Simple expressions for the xc potential: adiabatic LDA, LDA-SIC, TDKLI,
...

• Mean-field approach for ionization probabilities:
Assume Ψ(r1, r2, t) ≈ Kohn-Sham state

⇒ p(He) =
(∫

A
d3r|ϕ(r, t)|2

)2
, p(He++) =

(

1−
∫

A
d3r|ϕ(r, t)|2

)2

→ No success to reproduce the knee

Underestimation of single ionization
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Conventional TDDFT for He double ionization

Petersilka and Gross, Laser Phys. 9, 105 (1999) – p. 7



A one-dimensional two-electron model atom

Two electrons along a line parallel to the laser polarization axis:

H(t) = − 1
2

∂2

∂z2
1

− 1
2

∂2

∂z2
2

− 2√
z2
1+1

− 2√
z2
2+1

+ 1√
(z1−z2)2+1

+ E(t)(z1 + z2)

[Grobe and Eberly, PRA 48, 4664 (1993)]

All particle-particle interactions are soft-core potentials with Coulomb tail
(gives Rydberg series).

The TDSE can be solved numerically exactly, so the model is useful to
obtain

• qualitative insight into ionization mechanisms,

• exact results for comparison with DFT approaches.
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Calculation of ionization probabilities

Box integration: consider electron as free when it is farther
from the nucleus than some given distance, e.g. a = 5 a.u.:

p(He) =
a
∫

−a

dz1

a
∫

−a

dz2| Ψ(z1, z2)|2

p(He+) = 2
a
∫

−a

dz1
∫

|z2|>a

dz2 |Ψ(z1, z2)|2

p(He++) =
∫

|z1|>a

dz1
∫

|z2|>a

dz2| Ψ(z1, z2)|2

Only approximate, but useful for comparison with DFT results.
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Origin of the knee structure

Both the exact 1D He simulation as well as using the exact densities in
the mean-field functional for ionization probabilities reproduces a knee:

Lappas and v. Leeuwen, J. Phys. B 31, L249 (1998)
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Calculation of exact xc potential

• One-dimensional model system
H(t) = − 1

2
∂2

∂z2
1

− 1
2

∂2

∂z2
2

− 2√
z2
1+1

− 2√
z2
2+1

+ 1√
(z1−z2)2+1

+E(t)(z1+z2)

• Solve time-dependent Schrödinger equation and calculate exact
time-dependent density n(z, t) and current j(z, t)

• Calculate exact KS orbital ϕ(z, t) =
√

n(z, t)/2 exp (iα(z, t))

with phase α from current density j = 1
i
(ϕ∗∂zϕ− c.c.) = n∂zα

• Calculate “exact” KS potential by inversion of the split-operator
propagator: ϕ(z, t+ δt) = e−iTsδte−2ivKSδte−iTsδtϕ(z, t− δt)

→ vKS(z, t) = − ~

2δt arcsinℑ
e+iTsδt/~ϕ(z,t+δt)
e−iTsδt/~ϕ(z,t−δt)

+ const
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Exact xc potential for a model system

To avoid numerical difficulties: choose (ramped up) static field

E = 0.14 a.u.
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Exact xc potential for a model system

Densities/potentials at different times (t=0, t=108au, t=215au, t=323au)

M.L., S. Kümmel, PRL 94, 143003 (2005)
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Exact xc potential for a model system

Comparison of TD Hartree-Fock and exact potentials
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→ x-only DFT gives • good description of initial state
• wrong time-evolution
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Exact xc potential for a model system

Relation to derivative discontinuities in static DFT
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Exact xc potential for a model system

Exact static potentials for various fractional particle numbers
N = 1 + ǫ,

using the ground-state density n(z) = (1− ǫ)n1(z) + ǫ n2(z)
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Derivative discontinuity

Fractional particle numbers in static DFT:

xc potential jumps by ∆xc when the particle number passes
through an integer.

Interpretation of time-dependent results:

In ionization a small fraction of an electron is ejected; if the
process is adiabatic, a ground-state with fractional number of
bound electrons is left.

Difficulty: the discontinuity around N = 1 is not in the
exchange but in the correlation potential.

– p. 17



Derivative discontinuity

Suitable quantity for comparison of DFT and exact
calculations:

the number of bound electrons Nbound =
∫

V
n(r) d3r

with an appropriate region V around the nucleus.

Advantage compared to ionization probabilities: no problems
with expressing the functional.
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3D TDDFT calculations with derivative discontinuity

TDDFT using LDA-SIC-KLI
• usual form: discontinuity only at integer spin-particle number (SPN)
• modification: discontinuity at total particle number (TPN) by

“reassigning” spin

Results:

He double ionization Be double ionization

Heslar et al., PRA 87, 052513 (2013) – p. 19



N-Adiabatic approximation

Goal: avoid suddenly switching potential shape at integer particle number

TDKS scheme with the following additions:

• Determine at every time the (fractional) number

Nbound = N − 1 + ǫ of bound electrons.

• Construct ground-state density for this fractional particle

number: n0(r) = [1− ǫ(t)]n0,N−1(r) + ǫ(t)n0,N (r) .

• Determine exact static KS potential for this ground-state

density.

• Use correlation part of the static KS potential in the TDKS

scheme.
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N-Adiabatic approximation

Good results for “total ionization” = number of lost electrons:

A. de Wijn, M.L., S. Kümmel, Europhys. Lett. 84, 43001 (2008)

– p. 21



Exact adiabatic potential

• For given density n, construct the external potential vadiaext that yields n

as ground state density of an interacting system.

(Use an iterative scheme based on repeated solution of the static
many-body Schrödinger equation)

• Construct the potential vadiaKS that yields n as ground state densitites
of a noninteracting system.

For two electrons: v0KS(z) =
1

2φ(z)
d2φ(z)
dz2 + const with φ(z) =

√

n(z)/2

• Obtain adiabatic exchange correlation potential as

vadiaxc = vadiaKS − vadiaext − vH.
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Exact adiabatic potential

Excellent agreement with exact xc potential
(calculation for 1D He in a ramped up static field):

t = 0 t = 21.5 a.u. t = 43 a.u.

M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008)
– p. 23



Exact adiabatic potential in a TDKS calculation

1D He in a 780 nm field: results undistinguishable from exact results

M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008) – p. 24



Adiabatic approximation based on ground-state spin DFT

Thiele et al. have used the exact adiabatic potential in a time-dependent
KS calculation → computationally very demanding

Alternative: solve ground-state problem for n → v mapping with an
approximate method, which nevertheless mimics static correlation

→ Ground-state spin DFT

Still use vadiaxc = vadiaKS − vadiaext − vH but now with vadiaext chosen such that it
reproduces then given density n within ground-state spin DFT:

−1

2

d2φσ(z)

dz2
+ vKS,σ[n↑, n↓](z)φσ(z) = ǫσ φσ(z)

vKS,σ[n↑, n↓](z) = vadiaext + vhx,σ[n↑, n↓](z) + vc,σ(z)

vhx,↑(z) =

∫

dz′ n↓(z
′)w(z − z′), vhx,↓(z) =

∫

dz′ n↑(z
′)w(z − z′)
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Spin-symmetry breaking in spin DFT

Molecule at large internuclear distance R beyond a critical distance:

“spontaneous” localization of the spin densities
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Results for 1D H2

Input density: exact density for vext(z) = −1√
(z−R1)2+1

+ −1√
(z−R2)2+1

.

→ Good agreement with exact correlation potential (dashed), especially
above critical distance for spin-symmetry breaking:
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I. Dreissigacker and M.L., Chem. Phys. 391, 143 (2011) – p. 27



Results for 1D LiH

Input density: exact density for vext(z) = −1√
(z−R1)2+0.7

+ −1√
(z−R2)2+2.25

.

Reproduces step and peak of the exact correlation potential (dashed):

I. Dreissigacker and M.L., Chem. Phys. 391, 143 (2011)
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Results for 1D He in ramped-up static field

Good agreement with the exact potential (dashed):
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Failures of adiabatic correlation potential

Example: Rabi cycling between ground and excited state in 1D He

Comparison of exact (black) and adiabatic (red) potentials:

Elliot et al., PRL 109, 266404 (2012)
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Conclusions

• Derivative discontinuity plays a key role in ionization
processes.

• Nonlocal adiabatic approximations are a promising tool
for ionization processes in realistic laser fields.

• Adiabatic correlation fails when excited bound states are
strongly populated.

• Spin DFT can mimic static correlation.
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