Nonperturbative quantum dynamics

. Laser interactions with atoms/molecules
Il. Model systems and TDDFT
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Outline

Model systems and TDDFT

e Double ionization of Helium
e Relevance of the derivative discontinuity
e Adiabatic approximations
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Nonsequential double ionization of Helium
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Walker et al., PRL 73, 1227 (1994)

Experimental observations:

e double ionization orders of magnitude
larger than expected from sequential
lonization

“seguential” ionization probability
means:
Pseq = p(He — He™) p(He"™ — He™ ™)

e He’t knee at He' saturation intensity
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Nonsequential double ionization of Helium
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Experimental observations:

e double ionization orders of magnitude
larger than expected from sequential
lonization

“seguential” ionization probability
means:
Pseq = p(He — He™) p(He"™ — He™ ™)

e He’t knee at He' saturation intensity

Walker et al., PRL 73, 1227 (1994) Theory: Knee is reproduced by

e exact solution of the two-body TDSE
e S-matrix theory (Becker and Faisal)

e TDDFT with derivative discontinuity
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Time-dependent density functional theory

e Runge-Gross theorem:
The density n(r, t) determines the external potential uniquely (up to a time
dependent constant).

e Time-dependent Kohn-Sham (KS) scheme:
Ficticious system of non-interacting particles described by orbitals ¢y

n(r,t) = X [on(r, )
i%gpk(r,t) = (=3 V? + vks(r, 1)) r(r, t)

oks[nr(,t) = vosa (1, 8) + [ 58 + e (1)

e Physical observables are calculated as functionals of the density.
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TDDFT for two electrons

For Helium (two electrons in a singlet state), there is only one KS orbital

@T(rv t) — Qpi(rv t) — QO(I', t)
and
n(r,t) = 2o (r, 1)

The exact exchange potential is
vk (r, t) = —2on(r, ),
and furthermore

x-only TDDFT = TD Hartree-Fock.
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Conventional TDDFT for He double ionization

e Simple expressions for the xc potential: adiabatic LDA, LDA-SIC, TDKLI,

e Mean-field approach for ionization probabilities:
Assume V¥(rq,ra,t) ~ Kohn-Sham state

= p(He) = ([, drlo(e.t)?)’,  p(HeT) = (1= [, drlo(r,t)?)’

— No success to reproduce the knee
Underestimation of single ionization



Conventional TDDFT for He double ionization
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Fig. 2. Calculated double-ionization probabilities from the
ground state of the Heliwm atom irradiated by a 6-cycle
(16 fs). 780-nm laser pulse. using equation (14) and for dif-
ferent exchange-correlation potentials (see text).

Petersilka and Gross, Laser Phys. 9, 105 (1999)
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A one-dimensional two-electron model atom

Two electrons along a line parallel to the laser polarization axis:

_ 10 _190° 2 2 L
H(t) = —3 07 T 203 JEil 1 21 + T + E(t)(z1 + 22)

[Grobe and Eberly, PRA 48, 4664 (1993)]

All particle-particle interactions are soft-core potentials with Coulomb tall
(gives Rydberg series).

The TDSE can be solved numerically exactly, so the model is useful to
obtain

e qualitative insight into ionization mechanisms,

e exact results for comparison with DFT approaches.
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Calculation of ionization probabilities

Box integration: consider electron as free when it is farther
from the nucleus than some given distance, e.g. a = 5 a.u.:

= [dz [ dz] Y(z1, 22)|°

p(He™) =2 [dz [ dz |V(21,22)

—a \z2\>a
p(H —H_ f le f dZQ‘ \IJ(Z]_,ZQ)‘2
|z1|>a |z2|>a

Only approximate, but useful for comparison with DFT results.
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Origin of the knee structure

Both the exact 1D He simulation as well as using the exact densities in
the mean-field functional for ionization probabilities reproduces a knee:
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Figure 2. Single- and double-ionization yields of He from the fully correlated exact model (full
triangles and squares). and the estimate based on equations (8) and (9) in the text with the same
‘exact’ electron densities (open triangles and squares),

Lappas and v. Leeuwen, J. Phys. B 31, L249 (1998)
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Calculation of exact xc potential

One-dimensional model system

198 18* 2 2 1
HU) = =20 ~200 ~ o ~ Vam | Ve TPt R)
Solve time-dependent Schrédinger equation and calculate exact
time-dependent density n(z,t) and current j(z,t)

Calculate exact KS orbital p(z,t) = \/n(z,t)/2 exp (ia(z,t))

with phase « from current density j = 1 (¢*9,¢ — c.c.) = nd,a

1

Calculate “exact” KS potential by inversion of the split-operator
propagator: ¢(z,t 4 0t) = e~ "1s0te=2ivks0t o =010t (5t §¢)

+iTsot/h

_ __h p(2,t+0t)
— |vks(2,1) = —55; arcsin S - T (o sty T Const
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Exact xc potential for a model system

To avoid numerical difficulties: choose (ramped up) static field

FE =0.14 a.u.
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Exact xc potential for a model system

Densities/potentials at different times (t=0, t=108au, t=215au, t=323au)
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M.L., S. Kimmel, PRL 94, 143003 (2005)
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Exact xc potential for a model system

Comparison of TD Hartree-Fock and exact potentials
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— x-only DFT gives e good description of initial state
e Wrong time-evolution
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Exact xc potential for a model system

Relation to derivative discontinuities in static DFT

v, () (hartree)
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Exact xc potential for a model system

Exact static potentials for various fractional particle numbers
N =1 +k¢,
using the ground-state density n(z) = (1 — €)ni(z) + eno(2)

L 1 |
=20 -10 0 10 2@0 -10 O 10 20 -10 0 10 2

z (a.u.) z (a.u.) z (a.u.)

(a)N=15  (b)N=1.1  (c) N=1.0001

solid: vy,
dashed: v,
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Derivative discontinuity

Fractional particle numbers in static DFT:

Xc potential jumps by A,. when the particle number passes
through an integer.

Interpretation of time-dependent results:

In ionization a small fraction of an electron is ejected; if the
process is adiabatic, a ground-state with fractional number of
bound electrons is left.

Difficulty: the discontinuity around N = 1 is not in the
exchange but in the correlation potential.
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Derivative discontinuity

Suitable quantity for comparison of DFT and exact
calculations:

the number of bound electrons Nyouna = [, n(r) d*r
with an appropriate region V' around the nucleus.

Advantage compared to ionization probabillities: no problems
with expressing the functional.
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3D TDDFT calculations with derivative discontinuity

TDDFT using LDA-SIC-KLI

e usual form: discontinuity only at integer spin-particle number (SPN)

e modification: discontinuity at total particle number (TPN) by
“reassigning” spin

Results:
He double ionization Be double ionization
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Heslar et al., PRA 87, 052513 (2013)

sx1014

-p. 19



N-Adiabatic approximation

Goal: avoid suddenly switching potential shape at integer particle number

TDKS scheme with the following additions:

e Determine at every time the (fractional) number
Npound = N — 1 + € of bound electrons.

e Construct ground-state density for this fractional particle
number: no(r) = [1 —e(t)| non—1(r) + €(t) no n(r) |

e Determine exact static KS potential for this ground-state
density.

e Use correlation part of the static KS potential in the TDKS
scheme.
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N-Adiabatic approximation

Good results for “total ionization” = number of lost electrons:
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A. de Wijn, M.L., S. Kiimmel, Europhys. Lett. 84, 43001 (2008)
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Exact adiabatic potential

e For given density n, construct the external potential v24!2 that yields n
as ground state density of an interacting system.

(Use an iterative scheme based on repeated solution of the static

many-body Schrdodinger equation)

e Construct the potential v&4 that yields n as ground state densitites
of a noninteracting system.

For two electrons: vig(2) = 575 T9) | const with ¢(z2) = \/n(z)/2

e Obtain adiabatic exchange correlation potential as

adia adia adia

Uge = UKS — Uext — UH-
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Exact adiabatic potential

Excellent agreement with exact xc potential
(calculation for 1D He in a ramped up static field):

t=20 t = 21.5a.u. t = 43 a.u.

vg (a.L)
=

Vo (aw)

"H.z 1 L 1 L | 1 ' 1 ' | L |
-4 0 4 2 0 2 4 & 0 10 20 30
Z{a.u) Z(auw.) Z (A1)

M. Thiele, E.K.U. Gross, S. Kimmel, Phys. Rev. Lett. 100, 153004 (2008)
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Exact adiabatic potential in a TDKS calculation

1D He in a 780 nm field: results undistinguishable from exact results

[+ T | T T T T | T T T T | T T T T | T T T T
i 0.0006
0.20 -
Z I
— {].15 — ]
== i 0 7
2 -0 50 100 -
= i i
~ 010 —
z L= -
0.05 - —
i I, a
{I.{m i L | i L i i | i 7]
0 50 100 150 200
t{auw)

FIG. 3. Total ionization during the interaction of the two-
electron atom with a laser pulse of maximum intensity I, =
4 X 10" W /em? (lower two curves) and I, = 7 X 10" W /cm?
(upper two curves). Solid curves: exact TDSE calculation:
dashed curves: adiabatically exact TDKS scheme. The inset
shows a magnification of the first part of the curve.

M. Thiele, E.K.U. Gross, S. Kimmel, Phys. Rev. Lett. 100, 153004 (2008) ~p.24



Adiabatic approximation based on ground-state spin C

Thiele et al. have used the exact adiabatic potential in a time-dependent
KS calculation — computationally very demanding

Alternative: solve ground-state problem for n — v mapping with an
approximate method, which nevertheless mimics static correlation

— Ground-state spin DFT

Still use vadia = padia _ gadia 4 put now with v241* chosen such that it

ext ext

reproduces then given density n within ground-state spin DFT:

_1d%.(2)
2 dz?

+ UKS,J[”T? nd(z)gba(z) = €5 $o(2)

adia

vkS,o 11, ] (2) = Vo™ + Vo[04, 1 ](2) + Ve 0 (2)

Vhx 4 (2) = /dz’ n (ZNw(z —2"), ovnx(2) = /dz’ ny(Zw(z — 2)
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Spin-symmetry breaking in spin DFT

Molecule at large internuclear distance R beyond a critical distance:

“spontaneous” localization of the spin densities

z
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Results for 1D H

—1 4 —1
V(z—R1)24+1  \/(2—R2)2+1

— Good agreement with exact correlation potential (dashed), especially
above critical distance for spin-symmetry breaking:
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|. Dreissigacker and M.L., Chem. Phys. 391, 143 (2011) .27



Results for 1D LIH

_ —1 1 —1
V(z—R1)240.7 = \/(2—R2)2+2.25

Input density: exact density for vey(2)

Reproduces step and peak of the exact correlation potential (dashed):
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|. Dreissigacker and M.L., Chem. Phys. 391, 143 (2011)
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Results for 1D He in ramped-up static field

Good agreement with the exact potential (dashed):
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|. Dreissigacker and M.L., Chem. Phys. 391, 143 (2011)

-p.29



Failures of adiabatic correlation potential

Example: Rabi cycling between ground and excited state in 1D He

Comparison of exact (black) and adiabatic (red) potentials:
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Conclusions

Derivative discontinuity plays a key role in ionization
processes.

Nonlocal adiabatic approximations are a promising tool
for ionization processes in realistic laser fields.

Adiabatic correlation fails when excited bound states are
strongly populated.

Spin DFT can mimic static correlation.
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