

Experiments with BECs in a Painted Potential

Malcolm Boshier Changhyun Ryu, Paul Blackburn, Alina Blinova, Kevin Henderson, Calum MacCormick

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Outline

The Painted Potential

Toroidal waveguides

- Quantized circulation and Bessel beams
- Josephson junctions for a dc atom SQUID

Matter wave circuits

- Straight and bent waveguides
- Y-junctions
- Excitations at bends

THE PAINTED POTENTIAL

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Painted Potential

- Red-detuned (attractive) optical dipole potentials
- Typical painting frequency 10 kHz, typical trap frequency 400 Hz
- Evaporate ⁸⁷Rb to form BEC by lowering intensity of light sheet
- K. Henderson *et al*, New J. Phys. **11**, 043030 (2009)
- Earlier work: time-averaged barriers at UT Austin, Hannover, Weizmann

BECs in Arbitrary Shapes

Interference patterns confirm BEC. TOF image from painted triple well:

The painted potential is dynamic

Can adjust intensity during scan to flatten potential

Quantized circulation and Bessel beams

TOROIDAL WAVEGUIDES

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

BECs in Toroidal Traps and Waveguides

Phillips (NIST) Plugged magnetic trap

> ↓^g ⊗^g

Campbell/Phillips (NIST) LG beam + light sheet Hadzibabic (Cambridge) LG beam + light sheet

Arnold (Strathclyde) Magnetic waveguide

Stamper-Kurn (Berkeley) Two-color trap + light sheet Stamper-Kurn (Berkeley) Magnetic waveguide

Superfluid Circulation is Quantized

Superfluid velocity is

$$\mathbf{v} = \frac{\hbar}{m} \, \nabla \theta$$

 Ψ must be single-valued, so superfluid circulation

$$\oint \mathbf{v} \cdot \mathbf{d} \mathbf{l} = \frac{\hbar}{m} \,\Delta\theta = n \frac{h}{m}$$

is quantized (*n* = winding number)

Creating BEC in a Rotating Trap

toroidal trapping potential

Direct condensation of atoms into a rotating trap with a high potential barrier

BEC size: 40,000 atoms Diameter: 19 μm

n = 1 rotation frequency ~ 1.5 Hz

calculated ground state 2D density

- -Turn on the horizontal beam and tweezer beam
- -Turn off the magnetic trap
- -Wait for 200ms
- -Lower the horizontal beam power
- for the evaporative cooling
- -Lower the barrier for 200ms
- -Wait for 100ms and turn off the trap for TOF images

Measuring rotation velocity

- Centrifugal effects are small, so look at BEC after free expansion
- Classical: central hole develops with asymptotic radius proportional to velocity
- Quantum prediction: wavefunction at long times is proportional to initial momentum space wavefunction:

$$\psi(\mathbf{r},t) = A \exp(imr^2/2\hbar t) \frac{\Phi(mr/\hbar t, t=0)}{\hbar t/m}$$

• For a thin torus $\psi(r, \phi) = \delta(r - R)\exp(-in\phi)$ the momentum space wavefunction is a Bessel function:

$$\Phi(k, 0) = J_n(kR)$$

• GPE simulations show that the effects of finite width, interactions, and the third dimension are small

Successive TOF Images (2 Hz rotation)

Quantization of circulation of a BEC in a toroidal trap

Ryu et al, Bull. Am. Phys. Soc. 55, BAPS.2010.DAMOP.M1.31 (2010) (related work at NIST and Cambridge)

Control of Quantized Circulation

System should find energy minimum of Hamiltonian in rotating frame

Energy E is minimized when winding number n is nearest integer to ω/ω_0

Related work at NIST (G. Campbell and W. Phillips)

Matter Wave Bessel Beams

Since $\nabla^2 J_n(\rho) e^{-in\phi} = -J_n(\rho) e^{-in\phi}$ plane waves with Bessel function amplitude distribution satisfy the wave equation and are "diffraction free" (Durnin et. al, PRL 1987) Free evolution of a rotating toroidal BEC produces a Bessel-like beam.

C Ryu, K C Henderson and M G Boshier, New J. Phys. 16, 013046 (2014)

Josephson Junctions for a dc Atom SQUID

TOROIDAL WAVEGUIDES WITH TUNNEL JUNCTIONS

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Superconducting Quantum Interference Device (SQUID)

Essential ingredients: multiply-connected geometry with quantized flux and Josephson Junctions

Josephson Junctions on a ring

Basis for the most sensitive magnetometer

Atom SQUID: a BEC analog of a SQUID

Quantized circulation makes critical current a periodic function of rotation frequency, so the atom SQUID may be a path to a compact rotation sensor

Josephson Junctions and Weak Links for BECs

Inguscio (Florence) Optical lattice JJ

Oberthaler (Heidelberg) Optical lattice JJ

Steinhauer (Technion) Blue detuned laser JJ

Thywissen (Toronto) RF dressed magnetic trap JJ

Campbell/Phillips (NIST) Blue-detuned laser weak link

BEC analog of a dc SQUID

Create symmetric junctions on a toroidal trap for a BEC by reducing intensity of painting beam

8 μm diameter Barrier width: 2 μm Depth: 75nK Barrier height: 44nK

$$z = (N_1 - N_2) / N$$

$$\phi = \phi_1 - \phi_2$$

Number: 1,000-8,000 Chemical potential: 29nK-58nK

1

2

Josephson equations $(z \ll 1)$

$$\mathbf{I} = \dot{z} = \mathbf{I}_{c} \sin \phi \qquad \dot{\phi} =$$

 $\dot{\phi} = -\frac{\Delta\mu}{\hbar}$

 $I_{c} = 2E_{J} / \hbar N$ $\Delta \mu = \hbar \omega_{c} (z - z_{0})$ $\omega_{c} = E_{C} / 2\hbar N$

Fantoni (1999) Bergeman (2006)

Josephson Plasma Oscillation

DC Josephson Effect

AC Josephson Effect

$$\phi = \phi_0 \sin\left(\sqrt{I_C \omega_C} t\right) \qquad I_0 = I_c \sin\phi_0 \qquad I = -I_c \sin\left(\frac{\Delta \mu}{\hbar} t\right)$$

Observation of oscillations in number is difficult because of the small amplitude

Observation of Josephson Effects

- Giovanazzi, Smerzi, and Fantoni PRL 84, 4521(2000)
- A bias current can be generated by moving junctions relative to atoms $\dot{z}_0 = I_{bias} = 4f$
- Measurement of critical currents can be used to observe Josephson effects

In the experiment we reduce oscillations by accelerating the barrier gradually

Experimental Results

$$\mathbf{I}_c = 2E_J / \hbar N$$

Critical current can be changed by changing atom number at fixed barrier height

Experimental Results

$$\mathbf{I}_c = 2E_J / \hbar N$$

Critical current can be changed by changing atom number at fixed barrier height

No tunneling: z = 0Tunneling: z = 0.245

Experimental Results

 $\mathbf{I}_c = 2E_J / \hbar N$

Critical current can be changed by changing atom number at fixed barrier height


```
No tunneling: z = 0
Tunneling: z = 0.245
```


Solid line is best fit of Josephson equations to data (free parameters are trap depth, and initial and final values of z)

Current-Phase Relation

Measured critical currents and dynamic behavior are in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment.

C. Ryu, P.W. Blackburn, A.A. Blinova, and M.G. Boshier, PRL **111**, 205301 (2013) [see also F. Jendrzejewski, PRL **113**, 045305 (2014)]

MATTER WAVE CIRCUITS

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Goal: An Integrated Coherent Matter Wave Circuit

The de Broglie wave analog of an integrated optical circuit - a single device in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected.

[Light: Science & Applications (2012) 1, e38]

Motivation

- Guided atom interferometers
- Precisely controlled delivery of atoms the "atom laser pointer"
- Wiring up circuits of atomtronic transistors, diodes, batteries, ...
- Creating complex atomic superfluid circuits

Circuit Elements for Guided Cold Thermal Atoms

Magnetic Potentials

Waveguide Bends Anderson (1999)

Y-junctions Schmiedmayer (2000)

Anderson (2000)

Atom Chip Schmiedmayer (2000)

Optical Dipole Potentials

Microlens Arrays Birkl (2002)

Guiding atoms out of surface MOT Mlynek (2003)

Limited source coherence and multimode propagation

Circuit Elements for Guided BECs

Magnetic Potentials

BEC on a Chip Hansch/Reichel (2001)

BEC propagation in linear waveguides on atom chips
Ketterle (2002)Anderson (2005)

Propagation in macroscopic waveguidesStamper-Kurn (2005)Sackett (2006)Arnold (2005)

[See also talks by Garraway and von Klitzing]

Circuit Elements for Guided BECs

Magnetic Potentials

Н

es 16)

Guided BEC Circuit To-Do List

Bends connecting straight waveguides, preferably single-mode

Coherent waveguide splitters, preferably single mode

□ Arbitrary waveguide circuit geometries, preferably dynamic

[See also talks by Garraway and von Klitzing]

Painting Complex Matter Waveguides

Red detuned for ⁸⁷Rb BEC Beam waist = 2.15 μ m Waveguide trap frequency = 1705 Hz Waveguide trap depth = 1.39 μ K Painting frequency = 10 kHz K. Henderson *et al*, New J. Phys. **11**, 043030 (2009)

Painting Complex Matter Waveguides

Red detuned for 87 Rb BECPaBeam waist = 2.15 µm(image detuned)Waveguide trap frequency = 1705 HzWaveguide trap depth = 1.39 µKWaveguide trap depth = 1.39 µKCompPainting frequency = 10 kHzK. Henderson *et al*, New J. Phys. **11**, 043030 (2009)

Painted optical dipole potentials (image dimensions ~ 100μm x 100μm)

Complexity: 100x100 addressable spots

Ryu & Boshier arXiv:1410:8814

Matter Wave Source : Launching a BEC into the Waveguide

- In situ absorption images
- Atom number ~ 4000
- Experimental sequence:
 - 1. Create BEC in short waveguide
 - 2. Switch to circuit potential with slope at BEC location
 - 3. Allow BEC to accelerate for 1.3ms, to v = 19 mm/s
 - 4. Switch to flat circuit potential
 - 5. Image
- Timing is relative to end of launch
- We have tuned velocity up to 25 mm/s

Waveguide Bends

Waveguide Y-junction

Y-junction Arm separation = $3.7 \mu m$ v = 21 mm/s

50/50 beam splitter

Tunable splitting ratio

Switching by jumping splitting ratio during BEC transit

Phase Coherence

Phase Coherence

Superfluid Atom Circuits

- Painted potential waveguides support superfluid flow.
- May be possible to add leads to a dc atom SQUID and drive current through it

Emulate current source with high moving barrier

BEC filling a painted circuit

Excitation of Fast Wavepackets at Waveguide Bends

Circular bends

No interactions v = 12 mm/s Guide freq. = 1.2 kHz Guide depth = 940 nK Contour = 470 nK

It is known that a classical description works well [Bromley & Esry, PRA **69**, 053620 (2004)].

Excitation is minimized when a particle completes an integer number of oscillations inside the bend

Quantifying Excitation

Almost Single-Mode Propagation Around a Bend

Relative ground state population after bend = 92(9)%

Designing Bends to Reduce Excitation

Two alternatives to tuning velocity to bend radius, both compatible with the painted potential

Offset circular bends

 $m \omega^2 \Delta R = m v^2/(R + \Delta R)$

Euler spiral bends Curvature

 $\kappa(s) = s/a^2$

(Cornu spiral or clothoid)

Comparison of the Three Bend Types

Evolution of excited state fraction over four laps of the stadium

Euler curve bend is best, returning to almost 100% occupation of ground state in the straight sections of the stadium.

Summary

Toroidal waveguides

- Quantized circulation
- Bessel beams
- Josephson junctions for atom SQUID

Matter wave circuits

- Launching into straight and curved waveguides
- Phase-coherent splitting at Y-junction
- Excitation at bends

