Centro de Ciencias de Benasque Pedro Pascual Gravity – New perspectives from strings and higher dimensions July 12th - 24th 2015

Guifre Vidal

Guille Viual

PERIMETER **P** INSTITUTE FOR THEORETICAL PHYSICS

SIMONS FOUNDATION

JOHN TEMPLETON FOUNDATION

Centro de Ciencias de Benasque Pedro Pascual Gravity – New perspectives from strings and higher dimensions July 12th - 24th 2015

FOUNDATION

SIMONS FOUNDATION

Why this talk, *here*?

What can MERA do, *for sure*?

(2005)

e.g. critical Ising model

input

1D quantum / 2D classical Hamiltonian

- on the lattice
- at a critical point

output

(approx. an hour on your laptop)

Numerical determination of conformal data:

- central charge c
- scaling dimensions $\Delta_{\alpha} \equiv h_{\alpha} + \bar{h}_{\alpha}$ and conformal spins $s_{\alpha} \equiv h_{\alpha} - \bar{h}_{\alpha}$
- **OPE coefficients** $C_{\alpha\beta\gamma}$

Pfeifer, Evenbly, Vidal 08

 $\begin{array}{ll} (\Delta_{\mathbb{I}}=0) \\ \Delta_{\sigma}\approx 0.124997 \\ \Delta_{\varepsilon}\approx 0.99993 \\ \Delta_{\mu}\approx 0.125002 \\ \Delta_{\psi}\approx 0.500001 \\ \Delta_{\overline{\psi}}\approx 0.500001 \end{array} \qquad \begin{array}{ll} C_{\epsilon\sigma\sigma}=\frac{1}{2} \\ C_{\epsilon\psi\overline{\psi}}=i \\ C_{\epsilon\overline{\psi}\psi}=-i \\ C_{\psi\mu\sigma}=\frac{e^{-\frac{i\pi}{4}}}{\sqrt{2}} \\ C_{\overline{\psi}\mu\sigma}=\frac{e^{\frac{i\pi}{4}}}{\sqrt{2}} \\ C_{\overline{\psi}\mu\sigma}=\frac{e^{\frac{i\pi}{4}}}{\sqrt{2}} \end{array}$

<u>outline</u>

Part 1: (old stuff)

- quantum circuit
- RG transformation

Multi-scale entanglement renormalization ansatz (MERA)

Part 2: (recent developments)

- RG flow in the space of tensors
- Local scale transformations on the lattice
 - plane to cylinder
 - hyperbolic plane (MERA)
 - thermal states / black holes

Many-body wave-function of N spins

$$\Psi \rangle = \sum_{i_1, i_2, \dots, i_N} \Psi_{i_1 i_2 \dots i_N} | i_1 i_2 \dots i_N \rangle \qquad \begin{array}{c} 2^N \\ parameters \end{array}$$
tensor network
$$\Psi = \qquad \begin{array}{c} tensor network \\ \mu = \\ i_1 i_2 \dots i_N \end{array}$$
graphical
notation
$$\begin{array}{c} & & & & & \\ 0 & & & & & \\ i & & & & \\ 0 & & & & \\ i & & & & \\ i & & & & \\ c_{ij} & & \\ c_{ij}$$

why bother?

 $\sum_{ijklmnop} A_{ijk}B_{jlm}C_{nko}D_{kmr}x_iy_lz_nv_r$

Many-body wave-function of N spins

Multi-scale entanglement renormalization ansatz (MERA)

- Variational class of states for 1d systems, which extends in space and scale
- Variational parameters for different length scales stored in different tensors
- It is secretly a **quantum circuit** and an **RG transformation**

ground state ansatz $|\Psi
angle=U\,|0
angle^{\otimes N}$

Entanglement introduced by gates at different "times" (= length scales)

MERA = tensor network + isometric/unitary constraints

~ hyperbolic plane? (Swingle 2009) ~ de Sitter space?

(Beny 2011, Czech 2015)

Causal structure

essential for many MERA properties and computational efficiency

MERA as RG Transformation

Entanglement renormalization (2005)

MERA as RG Transformation

MERA as a sequence of ground state wave-functions

$$|\Psi\rangle \rightarrow |\Psi'\rangle \rightarrow |\Psi''\rangle \rightarrow \cdots$$

MERA as a sequence of ground state wave-functions

$$|\Psi\rangle \rightarrow |\Psi'\rangle \rightarrow |\Psi''\rangle \rightarrow \cdots$$

MERA as a sequence of ground state wave-functions

 $|\Psi''\rangle$

$$|\Psi\rangle \rightarrow |\Psi'\rangle \rightarrow |\Psi''\rangle \rightarrow \cdots$$

MERA defines an RG flow in the space of wave-functions

 $|\Psi\rangle \rightarrow |\Psi'\rangle \rightarrow |\Psi''\rangle \rightarrow \cdots$

... and in the space of Hamiltonians

 $H \to H' \to H'' \to \cdots$

local operators are mapped into local operators !

Entanglement entropy and correlations

entanglement entropy

$$S_L \approx \log(L)$$

Computation of density matrix requires tracing out $\sim \log(L)$ indices

two-point correlations

$$C(L) \approx L^{-2\Delta}$$

Geodesic distance $D \approx \log(L)$

$$C(L) \approx e^{-D} = e^{-2\Delta \log(L)} = L^{-2\Delta}$$

• Entanglement entropy and correlations as in 1+1 critical ground states

 $S_L \approx \log(L)$ $C(L) \approx L^{-2\Delta}$

blah, blah, blah... However, does it work?

[Given lattice Hamiltonian H,

optimize variational parameters by energy minimization]

input

<u>outline</u>

Part 1: (old stuff)

- quantum circuit
- RG transformation

Multi-scale entanglement renormalization ansatz (MERA)

• RG flow in the space of tensors

- Local scale transformations on the lattice
 - plane to cylinder
 - hyperbolic plane (MERA)
 - thermal states / black holes

Euclidean path integral

Tensor Network Renormalization (TNR)

local scale transformations

example 1: Plane to cylinder

(radial quantization in CFT)

$$z \equiv x + iy$$
$$z = 2^{w}$$

$$w \equiv s + i\theta$$

• Extraction of scaling dimensions, OPE

local scale transformations

 $|\Psi\rangle \sim e^{-\tau H} |\phi_0\rangle$

example 2:

[Evenbly, Vidal, 15]

Upper half plane to cylinder

1000s of iterations over scale

local minima

correct ground ?

٠

٠

TNR -> MERA

- single iteration over scale
- rewrite tensor network for ground state ٠
- certificate of accuracy ٠

MERA for a thermal state (or black hole in holography)

 $\rho_{\beta} \sim e^{-\beta H}$

Summary

Multi-scale entanglement renormalization ansatz (MERA)

 Part I: variational ansatz for ground states of CFTs (on the lattice)

$$\mathsf{MERA}\sim\mathsf{CFT}$$

• Part II: by-product of coarse-graining the Euclidean path integral

$$\mathsf{TNR} \rightarrow \mathsf{MERA}$$

 $\mathsf{MERA} \leftrightarrow \mathsf{holography}$

MERA operates at scale of AdS radius For smaller scale? \rightarrow cMERA

Useful test bed

Generalized notion of *holographic* description?

Tensor network for ground state/Hilbert space of CFT, organized in extra dimension corresponding to scale

generic CFT (no large N, strong interactions)

e.g. for Ising model

dictionary			
boundary		bulk	
state of CFT (or Hilbert space of CFT)		tensor network (?) (or unitary map, EHM)	
scaling dimension Δ		mass $\sim \Delta$	
entanglement entropy		"minimal connecting surface"	
global on-site symmetry (e.g. Z ₂)		local/gauge symmetry (e.g. Z ₂)	

THANK YOU!

