PDF-sensitive measurements

in Run I at CMS

...and some future plans

Benasque PDF workshop 15-21/02/2014

M. Gouzevitch, K. Lipka on behalf of CMS

General overview of the Run I results

The classification is approximative : only dominant sensitivity is indicated

Links to analyses and HEPDATA availables at

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

1) Valence quarks + light sea : • V measurements : x < 0.1• W asymmetry = $f(p_{T,W}, y_{I})$ • DY = $f(y_{y^{*/Z}}, p_{T,y^{*/Z}})$ • Jet measurements at high p_{τ} : x > 0.1 W/Z + jets ?2) Sea quarks : • c/b and heavy quark schemes: • W + c = $f(y_1)$ • Z + b = f(y_b), f(p_{T b}), f(p_{T z}) 3) Gluon : • Inclusive jets = $f(p_{\tau}, y)$ • $V = f(p_{T,V}, y_{V})$ Ttbar production

•γ + jets

• Jets

- Ttbar

5) Where CMS data are already used

<u>4) a</u>:

1.1) Valence and light sea : W asymmetry

Phys. Rev. Lett. 109 (2012) 111806

1) Electron 7 TeV, 1 fb⁻¹
 SMP-12-001 - HEPDATA
 3) Muon 7 TeV, 5 fb⁻¹
 SMP-12-021 - HEPDATA

Included in PDF fits by CMS, ABM, NNPDF at NLO and NNLO

8 TeV measurement ongoing covariance matrix will be published in a similar form

1.2) Valence and light sea : neutral Drell-Yan

probe light quark distributions: u, d, s expect constraints at 0.001 < x < 0.3

200

500

100

10-7

1.5

0.5

20

50

Data/theory

- Measurement done normalised to Z peak cross section.
- Correlation provided with Z cross section.
- Differential cross section for 15 < m < 2000 GeV

- Double-differential cross section for 20 < m < 1500 GeV 0 < |y| < 2.4.

- Analysis in referee review. HEPDATA would come as soon as it ends.

- For fun : second most accessed CMS measurement at HEPDATA (1034 times – nov. 2014)

2000

1000

m [GeV]

1.2) Valence and light sea : neutral Drell-Yan

- Double-differential cross sections done with high precision.

- NNLO calc. required for low mass region otherwise PDF fits do not converge well.

- For acceptance corrections NLO+PS MC is used reweighted for NNLO as function of m.

- At peak region and above NLO cross sections are enough.

- EWK corrections included

1.2) Valence and light sea : neutral Drell-Yan

- First published by CMS 8 TeV / 7 TeV ratio. We are excitied to see impact on PDFs.
- By construction ratio normalised to nearly 1 around Z mass.
- Globally well described by NNLO PDFs
- Low dependance on η at low mass.

1.3) W,Z inclusive cross section

1) Precise results are public based on low PU data.

2) Clearly sensitive to the previous generation of PDFs from
« PDF4LHC »-recommendation era.
3) In contrary to Atlas data not used in PDF fits. Why ?

2.1) Sea-quarks - Z+b jets

1) 7 TeV, 5 fb⁻¹

Sensitive to the flavour scheme

JHEP 1406 (2014) 120, arXiv:1402.1521

⁻SMP-13-004 – HEPD.

Cross section	Measured	MadGraph	amc@nlo	MCFM	MadGraph	amc@nlo
		(5F)	(5F)	(parton level)	(4F)	(4F)
σ_{Z+1b} (pb)	$3.52 \pm 0.02 \pm 0.20$	3.66 ± 0.22	$3.70^{+0.23}_{-0.26}$	$3.03^{+0.30}_{-0.36}$	$3.11^{+0.47}_{-0.81}$	$2.36^{+0.47}_{-0.37}$
σ_{Z+2b} (pb)	$0.36 \pm 0.01 \pm 0.07$	0.37 ± 0.07	$0.29^{+0.04}_{-0.04}$	$0.29^{+0.04}_{-0.04}$	$0.38^{+0.06}_{-0.10}$	$0.35^{+0.08}_{-0.06}$
σ_{Z+b} (pb)	$3.88 \pm 0.02 \pm 0.22$	4.03 ± 0.24	$3.99^{+0.25}_{-0.29}$	$3.23_{-0.40}^{+0.34}$	$3.49^{+0.52}_{-0.91}$	$2.71^{+0.52}_{-0.41}$
$\sigma_{Z+b/Z+j}$ (%)	$5.15 \pm 0.03 \pm 0.25$	5.35 ± 0.11	$5.38^{+0.34}_{-0.39}$	$4.75_{-0.27}^{+0.24}$	$4.63^{+0.69}_{-1.21}$	$3.65^{+0.70}_{-0.55}$

2) 8 TeV, 20 fb⁻¹

SMP-14-010 – close to preliminary

Similar to 7 TeV but with a differential measurement

3.1) Gluons : Z-boson transverse momentum

Drell-Yan@Z peak (81< m_{\parallel} <101 GeV): probe u, d, g PDF

8 TeV, 20 fb⁻¹

Few % uncertaintis for $p_{T,Z} \sim 100$ GeV double-differential cross sections in $p_{T,Z}$ and y_7

Preliminary SMP-14-004

Analysis is final review stage soon public, full covariance matrix will be provided in Spring 2015

3.2) W-boson transverse momentum

Preliminary SMP-13-006

8 TeV, 20 pb⁻¹ (low PU run)

- muon and electron channels,
- measurements performed for $W^{\scriptscriptstyle +}$ and $W^{\scriptscriptstyle -}$.
- ratio to $p_{\tau,z}$ and high precision normalised shepes under production.

- Interesting to try since it is not very precise above $p_{T,w} = 100$ GeV due to lack of stats

3.3) Gluons : what about Z, W + jets ?

Z+jets, 8 TeV Full Luminosity

CMS-PAS-SMP-14-009

W+jets, 7 TeV (Ongoing 8 TeV)

SMP-12-023, arXiv:1406.7533

- Differences in Sherpa/Madgraph larger than PDF error

- Data could be used in the PDF fit, but not clear the advantage wrt to the inclusive $p_{\tau,\nu}.$

3.4) Gluons : ttbar production

- Inclusive top cross section at 7 TeV a usual suspect for PDF fits at NNLO. At NLO it cannot be used due to large k-factors.

A study of PDF impact from ATLAS+CMS Xsections - inclusive at 7-8 + normalised differential at 7 TeV :

moderate improvement for large-x gluon.

- Need to be carefull on correlations between differential cross section and total cross section.

3.4) Gluons : ttbar production

8 TeV, 12 fb⁻¹

- At 8 TeV enough statistics for a precise differential measurement naturally increases (O(100k) events).

- Approximative NNLO predictions availables for single-top observables (DiffTop).
- In 2015 publication expected soon.

Preliminary TOP-12-027 Preliminary TOP-12-028

3.5) Gluons / High-x quarks : inclusive jets

Inclusive jets at 7 TeV included in PDF fits

8 TeV, 10 fb⁻¹

Preliminary SMP-12-012

- Full data set and ratio to 7 TeV ongoing.

- Analysis of jets at $\sqrt{s}=2.76$ GeV ongoing

SMP-12-28, arXiv: 1410.6765

Preliminary result CMS PAS SMP-12-012

3.5) Gluons / High-x quarks : inclusive jets

Few ingredients important to remind :

- SMP-12-028 change JES prescription for QCD-11-004 data. Stability of α_s fits have shown that the assumptions that single pion response uncertainty (3 %) was correlated over the detector was too strong.

JEC2a single-particle response barrel

JEC2b single-particle response endcap

JEC2c single-particle decorrelation |y| < 0.5

JEC2d single-particle decorrelation $0.5 \le |y| < 1.0$

JEC2e single-particle decorrelation $1.0 \le |y| < 1.5$

 The NLO+PS POWHEG+PYTHIA (average of Z2* and P11) is included into the NP corrections estimate with PYTHIA (Z2)/HERWIG(2.3). Enveloppe is used.

3.5) Gluons / High-x quarks : inclusive jets

Interesting discussion on PS corrections.

- May be a sizable effect. But require a dedicated POWHEG tuning.

 $\sigma_{\rm NLO+PS}$

 $\sigma_{\rm NLO}$

- Need to find a way to estimate the associated uncertainties.

4.1) Strong coupling : jets counting

- Nearly all Run I a_s results are published or under journal review. All 7 TeV based. Only 8 TeV inclusive jets is left to come.

- CMS is covering the high mass tail above 500 GeV of the a_s running. 8 TeV results shall extend up to $\mu = 2$ TeV.

- Top production provide the most precise hadrons colliders extraction at a scale close to M_7 because it is NNLO.

- Usual mantra : for jets need NNLO to take full advantage of data precision...

5.1) Where CMS data are used ?

- Some PDF sets may have been forgotten. Don't hesiate to remind me if you spot it.

- Surprisingly Inclusive W/Z cross sections from CMS seems not have been used...

	NNPDF	MSTW	CTEQ	ABM	CMS internal
W charge asymmetry (e, μ) EWK-10-006 (35 pb ⁻¹)		MSTWCPdeut MMHT2014			
W charge asymmetry (e) SMP-12-001 (840 pb ⁻¹)	NNPDF2.3 NNPDF3.0	MSTWCPdeut MMHT2014		ABM12	
W charge asymmetry (μ) SMP-12-021 (5 fb ⁻¹)	NNPDF3.0		CT14		SMP-12-021
DY SMP-13-003	NNPDF3.0	MMHT2014			Internally
W/Z inclusive EWK-10-005 SMP-12-011					
Z p _τ and y EWK-10-010		MSTWCPdeut MMHT2014			
Inclusive jets QCD-11-004	NNPDF3.0	MSTWCPdeut MMHT2014	CT14		SMP-12-028
W+c SMP-12-002	NNPDF3.0				SMP-12-021
Ttbar cross sections	NNPDF3.0	MSTWCPdeut MMHT2014		ABM12	

Future plans The measurement that may still be done with 8 TeV data:

- Associated Zc production probing intrinsic charm. May be not enough statistics. Would need Run II.
- Measurements of ratios Z/W, W+/W-, Z+jet/W+jets
- DY very low m_{II}, low p_T: possible access to photon PDF

Conclusions

- All the 7 TeV data are public and submitted to HEPDATA

- At 8 TeV only Z/W inclusive is public. DY is in journal review and p_{T_7} close to become public. Can probably go to the summer generation of PDFs.

- For other results one would need to wait at least 6 monthes.

2.1) Sea quarks - W+c jets: s PDF

SMP-12-002 – HEPD.

⁻SMP-12-021 – HEPD.

2.1) Sea quarks - W+c jets: s PDF

arXiv:1404.6469v1 [hep-ph] 25 Apr 2014

3.4) Gluons : ttbar production

