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Inclusive jet and dijet cross sections

look at the production of jets of hadrons with large transverse energy in

inclusive jet events pp→ j +X

exclusive dijet events pp→ 2j

cross sections measured as a function of the jet pT , rapidity y and dijet invariant mass mjj in
double differential form

d2σ

dpT dy
=

1

εLeff

Njets

∆pT (2 ·∆|y|)



Inclusive jet cross section

Jets up to |y| = 3.0, pT = 2.5 TeV. Six rapidity bins of ∆|y| = 0.5. @ 8TeV
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theory: NLO QCD⊗NP

overall good agreement with data with similar predictions at low-pT

except ABM11→ not included jet data in their fit since NNLO corrections may be large
significant mismatch in the predictions at high-pT between all sets

δexperimental ∼ 15− 40% (JES, luminosity, unfolding)

δtheory ∼ 10− 50% (PDF, µR, µF )



Dijet cross section

Jets up to |y| = 2.5, Mjj = 5.5 TeV. Six rapidity bins of ∆|ymax| = 0.5. @ 8TeV
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overall good agreement with data within statistical/systematical uncertainties in all rapidity bins

theory predictions show differences of O(10%)

theoretical and experimental uncertainties are of comparable size even at high Mjj

δexperimental ∼ 5− 20% (JES, luminosity, unfolding)

δtheory ∼ 5− 40% (PDF, µR, µF )



Towards NNLO QCD

Motivation for NNLO

to include higher-order effects→ only way to reduce theoretical uncertainties in the
fixed-order predictions used in experimental analysis

to make reliable theory comparisons with LHC jet data

to make jet data consistently included in NNLO PDF fits

(NNPDF collaboration)

particularly sensitive to gluon
PDF at medium and large values
of x→ reduce PDF uncertainty

different data constrain different
parton combinations at different x

check NNLO consistency with
HERA, DIS and Tevatron data

check consistency with tt̄ data
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Inclusive jet and dijet cross sections

State of the art:

dijet production is known in NLO QCD
[Ellis, Kunszt, Soper ’92]
[Giele, Glover, Kosower ’94], [Nagy ’02]

NLO+Parton shower
[Alioli, Hamilton, Nason, Oleari, Re ’11]

NLO EW corrections
[Dittmaier, Huss, Speckner ’12]

approximate NNLO threshold corrections
[Kidonakis, Owens ’00], [Florian, Hinderer,
Mukherjee, Ringer, Vogelsang ’13]

Mjj = 5.5 TeV

Goal:

obtain the jet cross sections at NNLO exact accuracy in double differential form

d2σ

dpT d|y|
d2σ

dmjjdy∗



NNLO ingredients

QCD jet cross section perturbative expansion at hadron colliders

dσ =
∑
i,j

∫ [
dσ̂LOij +

(αs
2π

)
dσ̂NLOij +

(αs
2π

)2
dσ̂NNLOij + O(α3

s)

]
fi(x1)fj(x2)dx1dx2

NNLO m-jet correction contains three contributions:

dσ̂NNLO =

∫
dΦ4

dσ̂RRNNLO +

∫
dΦ3

dσ̂RVNNLO +

∫
dΦ2

dσ̂V VNNLO

explicit infrared poles from loop integrations

implicit poles in phase space regions for single and double unresolved gluon emission

procedure to extract the infrared singularities and assemble all the parts in a parton-level
generator

differential cross sections→ kinematics of the final state intact to apply arbitrary phase space
observable cuts



NNLO antenna subtraction

dσ̂NNLO =

∫
dΦ4

(
dσ̂RRNNLO − dσ̂SNNLO

)
+

∫
dΦ3

(
dσ̂RVNNLO − dσ̂TNNLO

)
+

∫
dΦ2

(
dσ̂V VNNLO − dσ̂UNNLO

)
extract singularities keeping the kinematics of the final state intact
IR pole cancellation analytic and local in phase space

double unresolved configurations

double soft
triple collinear
double collinear
single soft and single collinear

single unresolved configurations

single soft
single collinear

remove overlapping of various single and double soft and/or collinear limits



leading-NF contributions at NNLO

NNLO contributions perturbative order
gg → qq̄gg tree-level (RR)
gg → qq̄g one-loop (RV)
gg → ggg one-loop (RV)
gg → gg two-loop (VV)
gg → qq̄ two-loop (VV)

dσ̂RRNNLO → dσ̂SNNLO

dσ̂RVNNLO → dσ̂TNNLO

27 independent double/single unresolved singularities at RR level, e.g.,
triple collinear final-state Pqq̄g → g, Pqgg → q

triple collinear initial-state Pĝqq̄ → ĝ, Pĝqg → ˆ̄q, Pĝgg → ĝ

NLO and NNLO antenna functions correctly approximate the matrix elements in all unresolved
configurations
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NNLO antenna subtraction - VV process

VV antenna subtraction term IR pole structure [Currie, Glover, Wells 2013]

integrated single unresolved emission from RV process ∝ tree-level single soft function

Poles(dσ̂U,aNNLO) ∼ J1(ε, 1̂g , 2̂g , ig , jg)
(
A1

4(ˆ̄1g , ˆ̄2g , ig , jg)−
b0

ε
A0

4(ˆ̄1g , ˆ̄2g , ig , jg)
)

integrated iterated NLO emissions of RR process in analytic one-to-one
correspondence with (I1)2 operator of Catani

Poles(dσ̂U,bNNLO) ∼ J1(ε, 1̂g , 2̂g , ig , jg)⊗ J1(ε, 1̂g , 2̂g , ig , jg)A0
4(ˆ̄1g , ˆ̄2g , ig , jg)

integrated double unresolved emission of RR process ∝ tree-level double soft function
integrated single unresolved emission of RV process ∝ one-loop single soft function
when added are in analytic one-to-one correspondence with I2 operator of Catani

Poles(dσ̂U,cNNLO) ∼ J2(ε, 1̂g , 2̂g , ig , jg)A0
4(ˆ̄1g , ˆ̄2g , ig , jg)

double virtual antennae subtraction term dσ̂UNNLO written compactly rederives the predicted
Catani pole structure of the two-loop contribution in the antennae language



leading-NF VV contribution gg → gg

all independent double/single unresolved singularities at RR, RV level, collapse to a simple
structure once integrated down to the VV level

dσU = Ĵ1
4(1g , 2g , ig , jg)A1

4(1g , 2g , ig , jg)

+ J1
4(1g , 2g , ig , jg)Â1

4(1g , 2g , ig , jg)

+ J1
4(1g , 2g , ig , jg)⊗ Ĵ1

4(1g , 2g , ig , jg)A0
4(1g , 2g , ig , jg)

+ Ĵ2
4(1g , 2g , ig , jg)A0

4(1g , 2g , ig , jg)

allowing us to define integrated dipoles (in one-to-one correspondence with IR-Catani pole
operators) with an analytic expansion in d = 4− 2ε for all possible flavour combinations, e.g.,

Ĵ2
4(1g , 2g , ig , jg) = Ĵ2

2(1̂g , 2̂g) + Ĵ2
2(2̂g , ig) + Ĵ2

2(ig , jg) + Ĵ2
2(jg , 1̂g)

→ leading-NF FF, IF, II gluon-gluon dipoles

Ĵ
2
2(1̂g, 2̂g) = G 0

4,gg(s12) + F̂1
3 (s12) +

bF

ε
F0

3 (s12)

(( |s12|
µ2

)−ε
− 1

)
−

1

2
Γ̄
2
gg,F (z1)−

1

2
Γ̄
2
gg,F (z2)

+
1

2

bF

ε
Γ
1
gg(z1) +

1

2

bF

ε
Γ
1
gg(z2) +

1

2

b0

ε
Γ̂
1
gg(z1) +

1

2

b0

ε
Γ̂
1
gg(z2)

+Sg→qΓqg(z1)G 0
3,qg(s12) + Sg→qΓqg(z2)G 0

3,gq(s12) +
1

2
Γ
1
gq(z1)Γ

1
qg(z1) +

1

2
Γ
1
gq(z2)Γ

1
qg(z2)



leading-NF VV contribution gg → qq̄

Similarly,

dσU = J1
4(iq , 1g , 2g , jq̄)B

1
2(iq , 1g , 2g , jq̄)

+
1

2
J1

4(iq , 1g , 2g , jq̄)⊗ J1
4(iq , 1g , 2g , jq̄)B

0
2(iq , 1g , 2g , jq̄)

+ J2
4(iq , 1g , 2g , jq̄)B

0
2(iq , 1g , 2g , jq̄)

− J̄2
4(iq , 1g , 2g , jq̄)B

0
2(iq , 1g , 2g , jq̄)

allowing us to define the integrated dipoles, J(2)
2 (q, ĝ), J̄(2)

2 (q, ĝ) such that IR pole
cancellation between real and virtual corrections at NNLO is achieved in transparent and
analytic way

Poles
(

dσ̂V VNNLO − dσ̂UNNLO

)
= 0 for gg → qq̄

Advantages,

integrated dipoles are process independent

need to be derived once and for all and then can be recycled to compute other processes at
NNLO

calculation organized in a way that naturally leads to automation of the method



Jet production partonic channels

Fraction of jets per initial state contribution
LHC

gg → gg dominates at low pT

qg → qg important in all pT regions

qq → qq dominant at high pT

Tevatron

qg and qq̄ dominant

Numerical results at NNLO for

gg → gg at leading colour

gg → gg at subleading colour

qq̄ → gg at leading colour

Ongoing work

numerical implementation of qg and qq
dipoles to extract predictions for qg and qq
initial states
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Numerical setup

pp collisions at
√
s = 8 TeV

jets identified with the anti-kT jet algorithm with resolution parameter R = 0.7

jets accepted at rapidities |y| < 4.4

leading jet with transverse momentum pT > 80 GeV

subsequent jets required to have at least pT > 60 GeV

MSTW2008nnlo PDF for all fixed-order predictions

dynamical factorization and renormalization scales equal to the leading jet pT
(µR = µF = µ = pT1)

present results for full colour gg → gg scattering and qq̄ → gg leading colour combined at
NNLO



Inclusive jet pT distribution at NNLO
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Double differential inclusive jet pT distribution at NNLO
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Scale choice for theory prediction
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Double differential exclusive dijet mass distribution at NNLO
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Comparison with approximate NNLO predictions

Approximate NNLO results from an improved threshold calculation for the single jet inclusive
production [de Florian, Hinderer, Mukherjee, Ringer, Vogelsang ’13]

pp→ j +X with the threshold limit given by s4 = P 2
X → 0

near threshold phase space available for real-gluon emission is limited
higher kth order coefficient functions dominated by large logarithmic corrections

αk
sw

(k)
ab → αk

s

(
logm(z)

z

)
+

, m ≤ 2k − 1, z =
s4
s

δ(z) 7, 4th tower 7, O(z) 7

(all-channels)
(gluons only channel) - rapidity integrated



NNLO benchmark predictions for jet production

S. Carrazza, JP, arXiv:1407.7031

understand and characterise the validity of the NNLO threshold approximation by comparing it
with the exact computation using the gg-channel

µR = µF = pT for both predictions

comparison performed differential in pT and rapidity following the exact experimental setups

NNPDF23 nnlo as 0118 set for all fixed order predictions

NLO benchmark curves

green dashed curves → NLO-threshold gg-channel
black dashed curves → NLO-exact gg-channel
blue dashed curves → NLO-exact all channels

NNLO benchmark curves

pink long-dashed curves → NNLO-threshold gg-channel→ dσthresh
gg,NNLO/dσgg,LO

black long-dashed curves → NNLO-exact gg-channel → dσexact
gg,NNLO/dσgg,LO



Tevatron CDF Run-II
√
s=1.96 TeV

S. Carrazza, JP, arXiv:1407.7031

differences ≤ 15% at low-pT in the central regions
in the forward region differences ≥40% for all pT regions



LHC ATLAS 2010
√
s=7 TeV

S. Carrazza, JP, arXiv:1407.7031

differences large at small pT and increase with rapidity
exact NNLO k-factor decreases with rapidity, NNLO threshold k-factor increases with rapidity



Threshold approximation - gg channel
S. Carrazza, JP, arXiv:1407.7031
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Gluon-PDF

jet data has a big impact on the medium to large-x gluon PDF reducing its uncertainty

fit at NNLO obtained using a |δ| < 10% criteria which excluded many jet data

need exact NNLO all-channel prediction to include full jet dataset



Conclusions

jet cross sections at the LHC delivered with increasing experimental accuracy making jet
measurements precision physics

double-differential jet measurements have a big impact on the extraction of the gluon PDF at
medium to large-x

experimental and theory errors of comparable size

presented exact results for gg → gg +X and qq̄ → gg +X at NNLO

leading-NF gg RR, RV and VV corrections derived

perfomed comparison between exact NNLO results and approximate NNLO results from
threshold resummation in the gg-channel

largest differences arise at low-pT for central rapidities and all pT at large rapidities
differences are smaller at the Tevatron than at the LHC 7 TeV

Ongoing work:

numerical implementation of qg and qq integrated dipoles to extract predictions for qg and qq
initial states

qg channel - most important at the LHC

qq channel - important at high pT



Back-up slides



Threshold approximation - gg channel

S. Carrazza, JP, arXiv:1407.7031

Summary of exclusion regions in pT and rapidity |y| as a function of the relative difference
between exact and threshold k-factors for the gluon-gluon channel

χ2/dof for aNNLO PDF fits as a function of exclusion criteria |δ|


	

