

Daniel Britzger, **Klaus Rabbertz**, Georg Sieber, Fred Stober, Markus Wobisch (DESY, KIT * 3, Louisiana Tech University)

in cooperation with

Enrico Bothmann, Steffen Schumann (Uni Göttingen)

Klaus Rabbertz

Part 1

fastNLO v2 & Toolkit Development

Klaus Rabbertz

- ✓ 1. Cross-checked old v1.4 versus new v2.1 tables
- 2. Converted existing v1.4 tables to new format
- ✓ 3. Cross-checked new table reader code in C++ vs. Fortran
- ✓ 4. Public release of table reader code as autotools tarball:
 - First release 14.02.2012: fastNLO_reader 2.1.0-1062
- ✓ 5. Transformed C++ reader code into linkable library
 - Latest release 14.02.2014: fastNLO_reader 2.1.0-1689
- Installation:
 - Requirements: LHAPDF5 or 6

LHAPDF, M. Whalley et al., hep-ph/0508110, LHAPDF6, A. Buckley et al., arXiv:1405.1067.

- ./configure --prefix=/path/to/install/directory [--with-lhapdf=/path]
- fnlo-tk-config available to list config info and compiler/linker options
- 6. Implemented new functionalities ...

Klaus Rabbertz

Use of alternative α_s evolutions

- ✓ CRunDec 08/2012
 - included in fastNLO
- ✓ QCDNUM v17-00-06
 - 🔹 … [--with-qcdnum=/path/...]
 - Makefiles adapted, need -fPIC on x86_64 systems
- HOPPET v1.1.5
 - … [--with-hoppet=/path/...]

RunDec, B. Schmidt, M. Steinhauser, CPC183, 2012;
K. Chetyrkin, J. Kühn, M. Steinhauser, CPC133, 2000.
QCDNUM, M. Botje, CPC182, 2011.
HOPPET, G. Salam, J. Rojo, CPC180, 2009.

Klaus Rabbertz

Use of HOPPET for μ_{f} variation

- ✓ fastNLO v1.4 used extra tables for µ_f variation with fixed scale factors
 - straightforward also @ NNLO
 - avoids additional integrations
 - increases table size
- In fastNLO v2.3 can also use HOPPET for µ_r variation
 - Same method as used in APPLgrid
 - continuous curve

APPLgrid, T. Carli et al., EPJC 66 (2010) 503.

Benasque, Spain, 19.02.2015

[fastNLO, APPLqrid] [fastNLO]

[fastNLO]

[fastNLO]

Factorization scale variations

- Calculate LO DGLAP splitting functions using HOPPET [APPLgrid, fastNLO]
- Store coefficients for desired scale factors
- Flexible-scale implementation
- Scale variations for NNLO calculations
 - renormalization scale variations become more complicated
 - NLO splitting functions are needed for factorization scale variations e.g. with HOPPET
 - Calculations become slower again => Not desired for fast repeated calculations

Problem

- Scale variations become more difficult in NNLO than in NLO
- Current available implementations for NLO calculations

Renormalization scale variations

- Scale variations applying RGE
 - Use LO matrix elements times $n\beta_0 \ln(c_r)$
- Flexible-scale implementation

Store scale-independent weights:

6

- Storage of scale-independent weights enable full scale flexibility also in NNLO
 - Additional logs in NNLO

 $\omega(\mu_{R},\mu_{F}) = \omega_{0} + \log(\mu_{R}^{2})\omega_{R} + \log(\mu_{F}^{2})\omega_{F} + \log^{2}(\mu_{R}^{2})\omega_{RR} + \log^{2}(\mu_{F}^{2})\omega_{FF} + \log(\mu_{R}^{2})\log(\mu_{F}^{2})\omega_{RF}$ log's for NLO additional log's in NNLO

• Store weights: w_0 , w_R , w_F , w_{RR} , w_{FF} , w_{RF} for order α_s^{n+2} contributions

Advantages

- Renormalization and factorization scale can be varied *independently* and by any factor
 - No time-consuming 're-calculation' of splitting functions in NLO necessary
- Only small increase in amount of stored coefficients

fastNLO implementation

- Two different observables can be used for the scales
 - e.g.: H_T and $p_{T,max}$
 - or e.g.: p_T and |y|
 - ..
- Any function of those two observables can be used for calculating scales

'Flexible-scale concept': Best choice for performant NNLO calculations

Klaus Rabbertz

Flexible-scale tables in DIS

fastnlo @ HepForge	Note: All HERA tables are flexible-scale tables ==> The C++ reader versions must be used.		
— . —	HERA: ep @ sqrt(s) = 319 GeV		
Tables from recent H1 multi-jet study use $\sqrt{Q^2}$ and pT	fnh5001_11301218	H1 inclusive jet HERA-II (kt and anti-kt); LO, NLO	
		inSPIRE no HepData yet	no RIVET analysis available
	fnh5002_11301218	H1 dijet HERA-II (kt and anti-kt); LO, NLO	
		inSPIRE no HepData yet	no RIVET analysis available
	fnh5003kt_11301218	H1 dijet HERA-II (kt); LO, NLO	
		inSPIRE no HepData yet	no RIVET analysis available
	fnh5003ak_11301218	H1 dijet HERA-II (anti-kt); LO, NLO	
		inSPIRE no HepData yet	no RIVET analysis available
	fnh4002_1875006	ZEUS inclusive dijet HERA-I+II (kt); LO, NLO	
		inSPIRE no HepData	no RIVET analysis available
	(Note: This table only works with the new fastnlo_toolkit reader, but not yet with the old fastnlo_reader.)		
Use of this method	fnh5201_1838435	H1 inclusive jets at low Q^2 HERA-I (kt); LO, NLO	
in factNU O datas		inSPIRE no HepData	no RIVET analysis available
In Tasineo dales	(Note: This table only works with the new fastnlo_toolkit reader, but not yet with the old fastnlo		not yet with the old fastnlo_reader.)
back to 2011 when	fnh5401_1818707	H1 inclusive jets at high Q^2 HERA-I (kt); LO, NLO	
		inSPIRE no HepData, only normalized x section publ.	no RIVET analysis available
going from		(Note: This table only works with the new fastnlo_toolkit reader, but	not yet with the old fastnlo_reader.)
v1.4 to v2.1.	fnh5101_1753951	H1 inclusive jets HERA-I (kt); LO, NLO	
Useful for DIS,		inSPIRE HepData	no RIVET analysis available
		(Note: This table only works with the new fastnlo_toolkit reader, but not yet with the old fastnlo_reader.)	
now also for pp.	fnh4401_1724050	ZEUS inclusive jets HERA-I (kt); LO, NLO	
		inSPIRE HepData	no RIVET analysis available
e.g. with scales M_z and pT_z .	(Note: This table only works with the new fastnlo_toolkit reader, but not yet with the old fastnlo_reader.)		
	()	HERA: ep @ sqrt(s) = 300 GeV	
	fnh4301_l593409	ZEUS inclusive jets HERA (kt); LO, NLO	
		INSPIRE HepData	no RIVET analysis available
		(Note: This table only works with the new fasthio_toolkit reader, but	not yet with the old fasthlo_reader.)

Klaus Rabbertz

Demo plot using Python extension

Python extension available ... [--enable-pyext] Easy example plotting 2D scale dependence: CMS 1 TeV $\leq M_{11} \leq 1.23$ TeV, $2 \leq |y_{max}| \leq 2.5$, $\mu = p_{T,12}$ 4.8 4.7 4.6 Cross 4.5 Section [pb/GeV] 4.4 4.3 4.2 4.1 4.0 2.0 20 1.8 18 1.6 1.6 1.4 1.4 1.2 1.2 1.0 0.8 0.6 06 0.4 04

#! /usr/bin/env python2 **Setup Python** with fastNLO from fastnlo import fastNLOLHAPDF import matplotlib import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import axes3d import numpy as np Select table, fnlo = fastNLOLHAPDF('fnlotable.tab') fnlo.SetLHAPDFFilename('CT10nlo.LHgrid') PDF & mem. fnlo.SetLHAPDFMember(0) **Define** μ_r , μ_f mufs = np.arange(0.1, 1.5, 0.10)murs = np.arange(0.1, 1.5, 0.10)xs = np.zeros((mufs.size, murs.size)) ranges for i, muf in enumerate(mufs): Loop over for j, mur in enumerate(murs): fnlo.SetScaleFactorsMuRMuF(mur, muf) μ_r , μ_f fnlo.CalcCrossSection() xs[i][j] = np.array(fnlo.GetCrossSection())[0] fig = plt.figure(figsize=(13,13)) Plot ... plotting details ax.set_ylabel('Scale factor \$\mu_F\$') ax.set_xlabel('Scale factor \$\mu_R\$') ax.set_zlabel('Cross Section [pb/GeV]') plt.show() ... plotting details

Derived from one fastNLO flexible-scale table

Klaus Rabbertz

Extra slide: ATLAS dijet mass

Central scale: µ = pT_{max}

Central scale: $\mu = pT_{max} \cdot exp(0.3 y^*)$

Derived from one fastNLO flexible-scale table

Klaus Rabbertz

Benasque, Spain, 19.02.2015

11

Use with Rivet 2 & YODA Format

Summer student project of Stefanos Tyros (with Peter Skands):

- Provide YODA formatted output for fastNLO tables
 - 🔹 fnlo-tk-yodaout fnlotable.tab
- Compare with data (or MC) histograms using Rivet
 - 🔹 rivet-mkhtml fnlotable.yoda
 - 🔹 browser plots/index.html
- Can provide e.g. NLO plots to mcplots.cern.ch
- Test inclusion of fastNLO in GENSER successful

RIVET, A. Buckley et al., CPC184 (2013), rivet.hepforge.org, yoda.hepforge.org.

12

- 1. Code split into:
- Toolkit library for creating & evaluating interpolation grids
 - Independent of any generator
 - First pre-release 17.07.2014: fastnlo_toolkit 2.3.1pre-1854
- Specific helper interfaces, if required, to N(N)LO programs
 - e.g. to use with NLOJet++: fastnlo_interface_nlojet 2.3.1pre-1855
- ✓ 2. Checked backwards compatibility with v2.1
- ✓ 3. Facilitated use with extensible steering files
- ✓ 4. Interface other theory programs ...

NLOJet++, Z.Nagy,

PRD68 2003. PRL88 2002

Simple example for use of Toolkit

Klaus Rabbertz

Benasque, Spain, 19.02.2015

PDFs for the LHC

Differential ttbar in approx. NNLO: $d\sigma/dp_T$, $d\sigma/dy$

Precision study of fastNLO tables over DiffTop standalone vs. no. of x nodes

(total uncertainty: quadr. sum of PDF, scale, α_s , m_t variations)

Part 2

New: Interface to Sherpa via MCgrid

in collaboration with Enrico Bothmann & Steffen Schumann

Klaus Rabbertz

fastNLO Toolkit access implemented:

- Events generated with Sherpa 2.1.1
- Two analyses from Rivet 2.2.0 tested
- MCgrid 2.0 for cross section projection into grids (to be released)
- Same toolkit functions accessed either via direct calls from MCgrid-enabled Rivet analysis or via steering file
- Usable with large number of processes available via Sherpa and one-loop generators like BlackHat, GoSam, OpenLoops, NJET, ...

```
Sherpa, T. Gleisberg et al., JHEP02, 2004; JHEP02, 2009.
BlackHat, C.F. Berger et al., PRD78, 2008.
GoSam, G. Cullen et al., EPJC72, 2012.
OpenLoops, F. Cascioli et al., PRL108, 2012.
NJET, S. Badger et al., CPC184, 2013.
```


Snippets of Rivet+MCgrid analysis

Drell-Yan Z rapidity:

- 1M (phase space)/10M (fill) events
- Interpolation in x only

No optimizations performed for either fastNLO or APPLgrid

Drell-Yan @ Tevatron 1.96 TeV

Agreement between interpolations and to Sherpa at sub-permille level!

Klaus Rabbertz

Jet pT distribution:

- 10M (phase space)/10M (fill) events
- Interpolation in x and scales
- No optimizations for either fastNLO or APPLgrid

Inclusive Jets @ LHC 7 TeV

Updated versions of fastNLO Toolkit and MCgrid to be released soon.

Agreement between interpolations and to BlackHat+Sherpa at permille level!

PDFs for the LHC

Outlook

- The toolkit provides simple access to full capability of creating, filling, reading, and evaluating fast interpolation tables in the fastNLO format
- A simplified interface to NLOJet++ is publically available as well
- Uses flexible-scale table format, well-suited for NNLO
- Tested at (approx.) NNLO with DiffTop and by BlackHat ==> well prepared for i.a. jets at NNLO :-)
- Other theory programs can be/have been interfaced
- Demonstrated new application with MCgrid and Sherpa
- New release of the fastNLO Toolkit imminent
- Will be synchronized with new release of MCgrid
- Work in progress with Herwig++/Matchbox
- Work on inclusion of statistical uncertainty of calculation within table
- and last but not least ...

- Started large-scale table production as stress test on computing centers as private cloud providers
 - Uses Karlruher generic grid submission tool grid-control and HTCondor & OpenStack
- Test production at Xmas:
 - 800 virtualised CPUs
 - 🔹 13000 jobs
 - 95000 h of CPU time
 - 10¹² events
 - 13 fastNLO tables
- Anything on your wishlist?

Many thanks to the Computing Centre of the University Freiburg for providing the bwForCluster test system!

Summary of job timings

walltime per job distribution

Backup Slides

Excerpt of steering.str

Name and describe scenario ScenarioName fnl2342b I902309 v23 flex ScenarioDescription { "d2sigma-jet_dpT_dy_[pb_GeV]" JetAlgo 2 # fastjet jet algorithm: 0,1,2=kT,CA,anti-kT Riet 0.5 # Jet size parameter: Required for all jets # Minimal jet pT ptjmin 18. 0.0 # Minimal jet rapidity yjmin 3.0 # Maximal jet rapidity yjmax ... extensible LeadingOrder 2 # Number of jets for the LO process 2 DifferentialDimension # Dimensionality of binning # Labels (symbol and unit) for dimensions DimensionLabels { # Defines the observables to be calculated! "|y|" "pT [GeV]" } FlexibleScaleTable # Create table fully flexible in mu_f true "pT jet [GeV]" # This defines the scale to be used ScaleDescriptionScale1 ScaleDescriptionScale2 "pT_max_[GeV]" # Specify 2nd scale name and unit DoubleDifferentialBinning {{ "----- Array of bin-grid for 2nd dimension -----" 1stDimLo 1stDimUp 21. 24. 28. 32. 37. 43. 49. 0.0 0.5 18. 56. Running any other scenario can be as simple as adapting some }} kinematical cuts & binning, often not even a recompile necessary! Klaus Rabbertz Benasque, Spain, 19.02.2015 PDFs for the LHC 25

DY with reduced flavour-basis

Store identical subprocesses into same "process bin" instead of full 121 flavour basis

Dramatic reduction in required storage space!

Drell-Yan @ Tevatron 1.96 TeV

- But not exactly an apple-to-apple comparison anymore
 - Statistical variations visible between exclusive Sherpa events and interpolated results
- Anyway still ok at sub-percent level

PDFs for the LHC