p-adic Hodge theory and Bloch-Kato theory

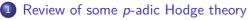
Bruno Joyal

Université McGill

Arithmetic of Euler Systems 2015 Centro de Ciencias de Benasque Pedro Pascual

< 47 ►

Outline



- Basic principles
- The ring B_{dR} and de Rham representations
- The ring B_{cris} and crystalline representations
- The subgroups H_e^1 , H_f^1 , H_g^1
- 2 The Bloch-Kato exponential, logarithm, and dual exponential maps
 - The exponential map
 - The dual exponential map
- Perrin-Riou's big logarithm
 - Iwasawa cohomology
 - The Perrin-Riou big logarithm (or regulator) map
 - Explicit formulae for the regulator
- 4 A fundamental example
 - Coleman series
 - Cyclotomic units and the Kubota-Leopoldt *p*-adic *L*-function
- Constructing the big logarithm: a sketch

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm: a sketch Basic principles

The ring B_{dR} and de Rham representations The ring B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

Basic principles of *p*-adic Hodge theory

- The aim of *p*-adic Hodge theory is to understand *p*-adic representations V of the Galois group G_K of a *p*-adic field K/Q_p.
- Understanding ℓ -adic representations of G_K , for $\ell \neq p$, is considerably easier.
- The main strategy of *p*-adic Hodge theory is the construction of *rings* of periods *B*, equipped with an action of G_K , such that

$$D_B(V) := (B \otimes_{\mathbb{Q}_p} V)^{G_K}$$

becomes an interesting invariant of the representation V.

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm; a sketch $\begin{array}{l} \textbf{Basic principles} \\ \text{The ring } B_{dR} \text{ and de Rham representations} \\ \text{The ring } B_{cris} \text{ and crystalline representations} \\ \text{The subgroups } H_e^1, H_f^1, H_g^1 \end{array}$

- A ring of periods B/\mathbb{Q}_p should satisfy the following requirements:
 - it should be a domain;
 - $Frac(B)^{G_{\kappa}} = B^{G_{\kappa}}$ (in particular $B^{G_{\kappa}}$ is a field);
 - If $y \in B$ is such that $y \cdot \mathbb{Q}_p \subseteq B$ is stable under G_K , then $y \in B^{\times}$.
- If V is a p-adic representation of G_K , we define

$$D_B(V) := (B \otimes_{\mathbb{Q}_p} V)^{G_K}.$$

• There is a natural map

$$B \otimes_{B^{G_{K}}} D_{B}(V) \to B \otimes_{\mathbb{Q}_{p}} V$$

which is injective because B is a domain.

• Therefore dim_{B^GK} $(D_B(V)) \leq \dim_{\mathbb{Q}_p}(V)$. We say that V is B-admissible if we have equality (equivalently, if the above map is an isomorphism).

< 口 > < 同 >

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm: a sketch Basic principles

The ring B_{dR} and de Rham representations The ring B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

- The category of *B*-admissible representations of G_K is stable under subquotients, sums, tensor products and duals.
- However, it is generally *not* stable under extensions.
- If *B* has extra structure (a grading, filtration, an action of an operator), and this extra structure is compatible with Galois action, then $D_B(V)$ inherits this structure.

A 3 b

< ∃ →

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm; a sketch Basic principles The ring B_{dR} and de Rham representations The ring B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

The ring B_{dR}

- Fontaine has constructed a field of periods *B*_{dR}. We list some of its properties.
- B_{dR} is the field of fractions of a complete discrete valuation ring B_{dR}^+ with residue field \mathbb{C}_p .
- The maximal ideal of B_{dR}^+ is generated by an element t which is a p-adic analogue of $2\pi i$ (depending on a choice $\epsilon = (\epsilon^{(n)})$ of compatible p-power roots of 1)
- $G_{\mathbb{Q}_p}$ acts on t via the cyclotomic character, i.e. $g(t) = \chi(g)t$ for $g \in G_{\mathbb{Q}_p}$.
- B_{dR} is therefore equipped with a descending filtration Fil^{*i*} = $\mathfrak{m}^{i}B_{dR}^{+}$, Fil^{*i*} \supseteq Fil^{*i*+1}, stable by the action of $G_{\mathbb{Q}_{p}}$

• □ ▶ • < </p>
• □ ▶ • < </p>

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm: a sketch Basic principles The ring B_{dR} and de Rham representations The ring B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

- By Hensel's lemma, $\overline{\mathbb{Q}_p} \subseteq B^+_{dR}$, compatibly with the action of $G_{\mathbb{Q}_p}$.
- (However, B_{dR}^+ is not a \mathbb{C}_p -algebra in any natural way. In fact, a theorem of Colmez says that $\overline{\mathbb{Q}_p}$ is dense in B_{dR} in a suitable topology.)
- We have $(B_{dR})^{G_K} = (B_{dR}^+)^{G_K} = K$, so if V is a p-adic representation of G_K , $D_{dR}(V) := D_{B_{dR}}(V)$ is a filtered K-vector space.

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm; a sketch Basic principles The ring B_{dR} and de Rham representations The ring B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

de Rham representations

• We say that a representation V of G_K is de Rham if it is B_{dR} -admissible, that is if

$$B_{\mathrm{dR}}\otimes_{\mathcal{K}} D_{\mathrm{dR}}(\mathcal{V}) \xrightarrow{\sim} B_{\mathrm{dR}}\otimes_{\mathbb{Q}_p} \mathcal{V},$$

or which is equivalent, $\dim_{\mathcal{K}} D_{dR}(V) = \dim_{\mathbb{Q}_p}(V)$.

• We have the *de Rham comparison theorem*, conjectured by Fontaine and proved by Faltings:

Theorem

Let X/K be a smooth proper variety, and $V = H^i_{\text{ét}}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_p)$, so that V is a p-adic representation of G_K . Then V is de Rham, and there is a natural isomorphism of filtered K-vector spaces

$$D_{\mathrm{dR}}(V)\cong H^i_{\mathrm{dR}}(X/K).$$

• Here $H^i_{dR}(X/K)$ is de Rham cohomology equipped with the Hodge filtration.

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm: a sketch Basic principles The ring B_{dR} and de Rham representations The ring B_{crit} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

The ring $B_{\rm HT}$ and Hodge-Tate representations

- The ring $B_{\rm HT}$ is the graded ring associated to the filtered ring $B_{\rm dR}$
- We have $B_{\mathsf{HT}} = \bigoplus_{j \in \mathbb{Z}} \mathbb{C}_p(j)$, since $\mathfrak{m}^j/\mathfrak{m}^{j+1} = \mathbb{C}_p(j)$
- A *p*-adic representation V of G_K is Hodge-Tate if it is B_{HT} -admissible.
- If V is Hodge-Tate, then D_{HT}(V) = D_{B_{HT}}(V) is a graded K-vector space.
- If V is de Rham, then $D_{\text{HT}}(V)$ is the graded vector space associated to the filtered vector space $D_{\text{dR}}(V)$. In particular, a de Rham representation is Hodge-Tate.
- A Hodge-Tate weight of V is an integer j such that $D_{HT}(V)_{-j} \neq 0$. Equivalently, if V is de Rham, $\operatorname{Fil}^{-j} D_{dR}(V) \neq \operatorname{Fil}^{-j+1} D_{dR}(V)$.
- With this convention, $\mathbb{Q}_p(j)$ has Hodge-Tate weight j.

・ロト ・同ト ・ヨト ・ヨト

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm: a sketch Basic principles The ring B_{dR} and de Rham representations **The ring** B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

The ring B_{cris} and crystalline representations

- Fontaine has defined a ring of periods B_{cris} , which is a subring of B_{dR} equipped with an induced filtration and Galois action.
- The ring B_{cris} contains the element t, and have $B_{\text{cris}} = B_{\text{cris}}^+[1/t]$, where $B_{\text{cris}}^+ = B_{\text{dR}}^+ \cap B_{\text{cris}}$.
- We have $B_{cris}^{G_K} = \mathbb{Q}_p^{unr} \cap K =: F$, and the action of φ on $B_{cris}^{G_K}$ is the Frobenius on F.
- The ring B_{cris} is equipped with a Frobenius $\varphi : B_{cris} \to B_{cris}$ commuting with the action of $G_{\mathbb{Q}_p}$, and inducing the usual Frobenius on $\mathbb{Q}_p^{unr} \subseteq B_{cris}$.
- Frobenius acts on t by $\varphi(t) = pt$.

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm: a sketch Basic principles The ring B_{dR} and de Rham representations **The ring B_{cris} and crystalline representations** The subgroups H_e^1 , H_f^1 , H_g^1

Crystalline representations

- We say that a *p*-adic representation V of G_K is *crystalline* if it is B_{cris} -admissible.
- If V is a crystalline representation, then

$$D_{\mathsf{cris}}(V) := D_{B_{\mathsf{cris}}}(V) = (B_{\mathsf{cris}} \otimes_{\mathbb{Q}_p} V)^{G_K}$$

is an F-vector space equipped with a filtration and a semi-linear Frobenius.

- If V is crystalline, then $K \otimes_F D_{cris}(V) = D_{dR}(V)$, as filtered K-vector spaces. Hence a crystalline representation is also de Rham.
- To summarize, we have

```
crystalline \Rightarrow de Rham \Rightarrow Hodge-Tate
```

< 口 > < 同 >

- The property of being crystalline, for a *p*-adic representation *V*, is analogous to the property of being unramified for an *ℓ*-adic representation (for *ℓ* ≠ *p*).
- For example, if V is the p-adic Tate module of an abelian variety A/K, then V is crystalline if and only if V has good reduction (lovita).
- One has the crystalline comparison isomorphism:

Theorem

Let k be a perfect field of characteristic p, let $\mathcal{O}_F = W(k)$ and $F = \operatorname{Frac}(\mathcal{O}_F)$. Let X/\mathcal{O}_F be a smooth, proper scheme, geometrically irreducible. Then for every $i \ge 0$, there is a functorial isomorphism

$$H^i_{\mathrm{et}}(X_{\overline{F}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\mathrm{cris}} \cong H^i_{\mathrm{cris}}(X_k/\mathcal{O}_F) \otimes_{\mathcal{O}_F} B_{\mathrm{cris}},$$

compatibly with filtrations, G_F-action and action of Frobenius.

< 口 > < 同 >

A 3 b

< ∃ >

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm; a sketch Basic principles The ring B_{dR} and de Rham representations **The ring** B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

- A classical result of crystalline cohomology states that $H^i_{cris}(X_k/\mathcal{O}_F) \cong H^i_{dR}(X/\mathcal{O}_F)$. Thus $H^i_{cris}(X_k/\mathcal{O}_F)$ has a natural filtration and $H^i_{dR}(X/\mathcal{O}_F)$ has a natural action of a Frobenius.
- The crystalline comparison isomorphism implies that $V = H^i_{\text{et}}(X_{\overline{F}}, \mathbb{Q}_p)$ is crystalline, and moreover that $D_{\text{cris}}(V) \cong H^i_{\text{cris}}(X_k/\mathcal{O}_F) \otimes_{\mathcal{O}_F} F \cong H^i_{dR}(X/F).$

The Bloch-Kato exponential, logarithm, and dual exponential maps Perrin-Riou's big logarithm A fundamental example Constructing the big logarithm: a sketch Basic principles The ring B_{dR} and de Rham representations The ring B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

The subgroups H_e^1 , H_f^1 , H_g^1

- Recall that there is a natural identification of H¹(K, V) with the set of isomorphism classes of extensions of Q_p by V.
- Given an extension

$$0 \to V \to W \xrightarrow{p} \mathbb{Q}_p \to 0,$$

choose $w \in W$ with p(w) = 1. Then for all $\sigma \in G_K$, $p(\sigma w) = \sigma p(w) = \sigma \cdot 1 = 1$, so $p(w - \sigma w) = 0$. In other words $w - \sigma w \in V$.

• The map $\sigma \mapsto w - \sigma w$ is a cocycle $G_K \to V$, whose cohomology class depends only on the isomorphism class of the extension.

A B M A B M

Basic principles The ring B_{dR} and de Rham representations The ring B_{cris} and crystalline representations The subgroups H_e^1 , H_f^1 , H_g^1

- Therefore, it is natural, given a property of *p*-adic representations, to look at the subset of H¹(K, V) consisting of those extensions of Q_p by V having that property.
- We define subgroups

$$H^1_e(K, V) \subseteq H^1_f(K, V) \subseteq H^1_g(K, V) \subseteq H^1(K, V)$$

as follows:

- The subgroup $H^1_e(K, V) = \ker(H^1(K, V) \to H^1(K, B^{\varphi=1}_{cris} \otimes V));$
- The subgroup H¹_f(K, V) = ker(H¹(K, V) → H¹(K, B_{cris} ⊗ V)) consisting of the extensions of Q_p by V which are crystalline;
- The subgroup $H^1_g(K, V) = \ker(H^1(K, V) \to H^1(K, B_{dR} \otimes V))$ consisting of the extensions of \mathbb{Q}_p by V which are de Rham.

The exponential map The dual exponential map

The exponential map

• Let V be a de Rham representation. Then Bloch and Kato have defined an "exponential map"

$$\exp_{K,V}: D_{\mathsf{dR}}(V)/\operatorname{Fil}^0 D_{\mathsf{dR}}(V) o H^1(K,V).$$

If G/O_K is a formal Lie group of finite height (eg. G = Â for A/O_K), and V = Q_p ⊗_{Z_p} T_pG, then

$$D_{\mathsf{dR}}(V)/\operatorname{Fil}^0 D_{\mathsf{dR}}(V)\cong \operatorname{tan}(G(K)),$$

and we have a commutative diagram

• Here δ_G is the Kummer map and exp is the usual exponential map.

• In order to construct the Bloch-Kato exponential for an arbitrary de Rham representation V, one uses the *fundamental exact sequence*

$$0
ightarrow \mathbb{Q}_{p}
ightarrow B_{\mathsf{cris}}^{arphi=1}
ightarrow B_{\mathsf{dR}}/B_{\mathsf{dR}}^{+}
ightarrow 0$$

• The second map is simply the composite of

$$B_{ ext{cris}}^{arphi=1} \hookrightarrow B_{ ext{cris}} \hookrightarrow B_{ ext{dR}} o B_{ ext{dR}} / B_{ ext{dR}}^+$$

• Tensoring the fundamental exact sequence with V over \mathbb{Q}_p and taking invariants under G_K , we get an exact sequence

$$0 \to V^{\mathcal{G}_{\mathcal{K}}} \to D_{\mathsf{cris}}^{\varphi=1}(V) \to ((\mathcal{B}_{\mathsf{dR}}/\mathcal{B}_{\mathsf{dR}}^+) \otimes V)^{\mathcal{G}_{\mathcal{K}}} \to \mathcal{H}_{e}^{1}(\mathcal{K},V) \to 0$$

where $H^1_e(K, V) = \ker(H^1(K, V) \to H^1(K, B^{\varphi=1}_{cris} \otimes V)).$

• Since V is de Rham, we have $((B_{dR}/B_{dR}^+) \otimes V)^{G_K} = D_{dR}(V)/\operatorname{Fil}^0 D_{dR}(V)$ and therefore we deduce an isomorphism

$$\exp_{K,V}: \frac{D_{\mathsf{dR}}(V)}{\mathsf{Fil}^0 \, D_{\mathsf{dR}}(V) + D_{\mathsf{cris}}^{\varphi=1}(V)} \xrightarrow{\sim} H^1_e(K, V)$$

• We write

$$\log_{K,V}: H^1_e(K,V) \xrightarrow{\sim} \frac{D_{\mathsf{dR}}(V)}{\mathsf{Fil}^0 \, D_{\mathsf{dR}}(V) + D^{\varphi=1}_{\mathsf{cris}}(V)}$$

for the inverse of this isomorphism.

< 口 > < 同 >

A 3 b

< ∃ →

The exponential map The dual exponential map

The dual exponential map

- Before going further, we describe in more detail the filtered φ-module D_{cris}(Q_p(j)).
- The choice of $\epsilon = (\epsilon^{(n)})$ determines the element $t \in B_{dR}$, and a basis e_j of $\mathbb{Q}_p(j)$ for each j, such that $e_j \otimes e_{j'} = e_{j+j'}$.
- The element $t^{-j}e_j \in B_{cris} \otimes \mathbb{Q}_p(j)$ is Galois invariant and determines a canonical basis of $D_{cris}(\mathbb{Q}_p(j))$, which does not depend on the choice of ϵ .
- We have

$$\operatorname{Fil}^{k} D_{\operatorname{cris}}(\mathbb{Q}_{p}(j)) = \begin{cases} D_{\operatorname{cris}}(\mathbb{Q}_{p}(j)) = K & \text{if } k \leq -j \\ 0 & \text{if } k > -j \end{cases}$$

• The Frobenius φ on $D_{cris}(\mathbb{Q}_p(j))$ acts as multiplication by p^{-j} , because $\varphi(t^{-j}e_j) = \varphi(t^{-j})e_j = p^{-j}t^{-j}e_j$.

< 口 > < 同 >

• In particular the element $t^{-1}e_1 \in D_{dR}(\mathbb{Q}_p(1))$ gives an isomorphism $D_{dR}(\mathbb{Q}_p(1)) \xrightarrow{\sim} K$; thus we obtain a perfect pairing

 $D_{\mathsf{dR}}(V) \otimes D_{\mathsf{dR}}(V^*(1)) \cong D_{\mathsf{dR}}(V \otimes V^*(1)) \to D_{\mathsf{dR}}(\mathbb{Q}_p(1)) \cong K \xrightarrow{\operatorname{Tr}} \mathbb{Q}_p$

- Thus we identify $D_{dR}(V)^*$ with $D_{dR}(V^*(1))$.
- Moreover, the cup-product

 $H^1(K,V)\otimes H^1(K,V^*(1)) o H^2(K,\mathbb{Q}_p(1)) = \mathbb{Q}_p$

identifies $H^1(K, V)^*$ with $H^1(K, V^*(1))$.

• Therefore, we can view

$$(\exp_{K,V})^* : H^1(K,V)^* \to (D_{\mathsf{dR}}(V)/\operatorname{Fil}^0 D_{\mathsf{dR}}(V))^*$$

as a map

$$\exp^*_{\mathcal{K},\mathcal{V}}: H^1(\mathcal{K},\mathcal{V}^*(1)) o \operatorname{Fil}^0 D_{\operatorname{dR}}(\mathcal{V}^*(1))$$

This is the dual exponential map of V.

3

Iwasawa cohomology The Perrin-Riou big logarithm (or regulator) map Explicit formulae for the regulator

Some notation

- $K_n = K(\mu_{p^n})$
- $K_{\infty} = \cup K_n$
- $\Gamma_K = \operatorname{Gal}(K_\infty/K)$
- $\chi: \Gamma_K \to \mathbb{Z}_p^{\times}$ the cyclotomic character, identifies Γ_K with an open subgroup of \mathbb{Z}_p^{\times}
- $H_F = \ker \chi = \operatorname{Gal}(\overline{K}/K_\infty).$

3 N

Iwasawa cohomology The Perrin-Riou big logarithm (or regulator) map Explicit formulae for the regulator

Iwasawa cohomology

- Let V be a p-adic representation of G_K of dimension d, and $T \subseteq V$ a \mathbb{Z}_p -lattice stable by G_K .
- The Iwasawa cohomology of V is defined as

$$H^{i}_{\mathsf{lw}}(K,V) := \mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}} \varprojlim H^{i}(K_{n},T)$$

where the inverse limit is taken with respect to the corestriction maps $\operatorname{cor}_{K_{n+1},K_n} : H^i(K_{n+1},T) \to H^i(K_n,T)$

- Each $H^{i}(K_{n}, T)$ is naturally a $\mathbb{Z}_{p}[\operatorname{Gal}(K_{n}/K)]$ -module, so $H^{i}_{\mathsf{Iw}}(K, V)$ has a natural structure of a $\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}} \Lambda_{K}$ -module, where $\Lambda_{K} = \varprojlim \mathbb{Z}_{p}[\operatorname{Gal}(K_{n}/K)].$
- The module $H^i_{Iw}(K, V)$ is idependent of the choice of lattice T.

A 3 b

Iwasawa cohomology The Perrin-Riou big logarithm (or regulator) map Explicit formulae for the regulator

Remarks on the Iwasawa algebra

The ring Q_p ⊗ Λ_K identifies with the space of p-adic measures on Γ_K, i.e.

$$\mathbb{Q}_{p} \otimes \Lambda_{K} = \operatorname{Hom}(C(\Gamma_{K}, \mathbb{Q}_{p}), \mathbb{Q}_{p})$$

where $C(\Gamma_{\mathcal{K}}, \mathbb{Q}_p)$ is the Banach space of continuous \mathbb{Q}_p -valued functions on $\Gamma_{\mathcal{K}}$.

- As such it is equipped with a structure of $C(\Gamma_K, \mathbb{Q}_p)$ -module; if $f \in C(\Gamma_K, \mathbb{Q}_p)$ and $\mu \in \mathbb{Q}_p \otimes \Lambda_K$, then $f\mu$ is the measure $h \mapsto \int hf \mu$.
- In particular, if $\eta: \Gamma_K \to \mathbb{Q}_p^{\times}$ is a continuous character and μ is a measure, the product $\eta\mu$ is a measure.
- $\Lambda_{\mathcal{K}}$ is is equipped with an action of $G_{\mathcal{K}}$, given by $g(\mu) = [\overline{g}]\mu$, where $\overline{g} = g|_{\mathcal{K}_{\infty}}$ is the image of g in $\Gamma_{\mathcal{K}}$ and $[\overline{g}]$ is the corresponding group-like element (the Dirac measure at \overline{g}).

・ロト ・同ト ・ヨト ・ヨト

Iwasawa cohomology The Perrin-Riou big logarithm (or regulator) map Explicit formulae for the regulator

• The structure of H_{lw}^i has been determined by Perrin-Riou:

Theorem (Perrin-Riou)

We have $H^i_{lw}(K, V) = 0$ for $i \neq 1, 2$; moreover:

• The torsion submodule of $H^1_{lw}(K, V)$ is a $\mathbb{Q}_p \otimes_{\mathbb{Z}_p} \Lambda_K$ -module isomorphic to V^{H_K} , and $H^1_{lw}(K, V)/V^{H_K}$ is a free $\mathbb{Q}_p \otimes_{\mathbb{Z}_p} \Lambda_K$ -module of rank $[K : \mathbb{Q}_p]d$

2
$$H^2_{\mathsf{Iw}}(K, V) = (V^*(1)^{H_K})^*$$

- In particular the $H^i_{lw}(K, V)$ are $\mathbb{Q}_p \otimes \Lambda_K$ -modules of finite type.
- There are natural projection maps Hⁱ_{lw}(K, V) → Hⁱ(K_n, V) compatible with corestriction maps.

・ロト ・同ト ・ヨト ・ヨト

Iwasawa cohomology The Perrin-Riou big logarithm (or regulator) map Explicit formulae for the regulator

Twisting Euler systems

- We can also describe $H^1_{lw}(K, V)$ as a single cohomology group, which can help us understand the "twisting" operation on Euler systems.
- Let $Meas(\Gamma_K, V) = \Lambda_K \otimes_{\mathbb{Q}_p} V$ be the space of V-valued measures on Γ_K . It is equipped with the diagonal action of G_K
- Then we have a natural isomorphism $H^1(K, \Lambda_K \otimes_{\mathbb{Q}_p} V) \xrightarrow{\sim} H^1_{\mathsf{lw}}(K, V)$, which we describe.
- If σ → μ_σ is a cocycle G_K → Meas(Γ_K, V) representing a cohomology class ζ ∈ H¹(K, Meas(Γ_K, V)), then, for any n, the map σ → ∫_{ΓKn} μ_σ is a cocycle G_{Kn} → V representing a cohomology class ζ_n ∈ H¹(K_n, V).
- The collection (ζ_n) ∈ H¹(K_n, V) is compatible under corestriction maps and determines an element of H¹_{lw}(K, V).

• Let $\eta: \Gamma_K \to \mathbb{Q}_p^{\times}$ be a continuous character. Then there is a natural map

$$H^1_{\mathsf{Iw}}(K, V) \to H^1_{\mathsf{Iw}}(K, V(\eta^{-1})),$$

which we now describe.

- Remark that if μ ∈ Meas(Γ_K, V) and σ ∈ G_K, we have σ(ημ) = η(σ⁻¹) · ημ, so multiplication by η is a Galois-equivariant map when viewed as a map Meas(Γ_K, V) → Meas(Γ_K, V(η⁻¹)).
- It induces a map $H^1_{\mathsf{lw}}(K,V) o H^1_{\mathsf{lw}}(K,V(\eta^{-1}))$ on cohomology.
- If $x \in H^1_{\mathsf{Iw}}(K, V)$, we write x_η for the image of x in $H^1_{\mathsf{Iw}}(K, V(\eta^{-1}))$, and $x_{\eta,n}$ for its image in $H^1(K_n, V(\eta^{-1}))$
- If $\eta = \chi^j$ we simply write $x_{n,j} \in H^1_{lw}(K_n, V(-j))$, where we identify $V(\chi^{-j})$ and V(-j) using the basis ϵ .

・ロト ・同ト ・ヨト ・ヨト

э

The Perrin-Riou big logarithm (or regulator) map

- Let p be an odd prime, and F/\mathbb{Q}_p a finite unramified extension.
- Let V be a crystalline representation of G_F , with non-negative Hodge-Tate weights and no quotient isomorphic to the trivial representation.
- Let H_{Q_p}(Γ_F) be the algebra of Q_p-valued distributions on Γ_F (dual to the space of locally analytic Q_p-valued functions on Γ_F)
- Then Perrin-Riou has constructed a "big logarithm" or "regulator" map

$$\mathcal{L}_{V,F}: H^1_{\mathsf{lw}}(F,V) o \mathcal{H}(\Gamma_F) \otimes_{\mathbb{Q}_p} D_{\mathsf{cris}}(V)$$

- The map $\mathcal{L}_{V,F}$ interpolates the Bloch-Kato dual exponential and logarithm maps for twists of V in the cyclotomic tower.
- The big logarithm provides a bridge between arithmetic and analysis. It allows us to construct *p*-adic *L*-functions from Euler systems.

・ロト ・同ト ・ヨト ・ヨト

Iwasawa cohomology The Perrin-Riou big logarithm (or regulator) map Explicit formulae for the regulator

Explicit formulae for the regulator

- We will now explain how the regulator map interpolates the Bloch-Kato logarithm and dual exponential maps.
- We will assume for simplicity that $F = \mathbb{Q}$.
- We follow Appendix B of Loeffler-Zerbes (*Iwasawa Theory and p-adic L-functions over* Z²_p-extensions).
- If $\nu \in \mathcal{H}(\Gamma_{\mathcal{K}}) \otimes_{\mathbb{Q}_{p}} D_{cris}(V)$, and $\eta : \Gamma_{\mathcal{K}} \to \mathbb{Q}_{p}^{\times}$ is a character, we shall write $\int_{\Gamma} \eta \nu$ for $\nu(\eta)$. It is an element of $D_{cris}(V)$.

3 N

Iwasawa cohomology The Perrin-Riou big logarithm (or regulator) map Explicit formulae for the regulator

Theorem

Let V be a cristalline representation of $G_{\mathbb{Q}_p}$ with non-negative Hodge-Tate weights and no quotient isomorphic to \mathbb{Q}_p . Let η be a continuous character of Γ of the form $\chi^j \omega$, where ω is a finite-order character of conductor n. Let $x \in H^1_{lw}(\mathbb{Q}_p, V)$. Then:

• If $j \ge 0$, we have

$$\int_{\Gamma} \eta \mathcal{L}_{V}(x) = j! \times$$

$$\begin{cases} (1-p^{j}\varphi)(1-p^{-1-j}\varphi^{-1})^{-1} \left(\exp^{*}_{\mathbb{Q}_{p},V(\eta^{-1})^{*}(1)}(x_{\eta,0}) \otimes t^{-j}e_{j} \right) & \text{for } n = 0 \\ \tau(\omega)^{-1}p^{n(j+1)}\varphi^{n} \left(\exp^{*}_{\mathbb{Q}_{p},V(\eta^{-1})^{*}(1)}(x_{\eta,0}) \otimes t^{-j}e_{j} \right) & \text{for } n \ge 1 \end{cases}$$

• If j < 0, we have

$$\int_{\Gamma} \eta \mathcal{L}_{V}(x) = \frac{(-1)^{-j-1}}{(-j-1)!} \times$$

$$\begin{cases} (1-p^{j}\varphi)(1-p^{-1-j}\varphi^{-1})^{-1} \left(\log_{\mathbb{Q}_{p},V(\eta^{-1})^{*}(1)}(x_{\eta,0}) \otimes t^{-j}e_{j} \right) & \text{for } n=0 \\ \tau(\omega)^{-1}p^{n(j+1)}\varphi^{n} \left(\log_{\mathbb{Q}_{p},V(\eta^{-1})^{*}(1)}(x_{\eta,0}) \otimes t^{-j}e_{j} \right) & \text{for } n \geq 1 \end{cases}$$

- The second part of the theorem is due to Perrin-Riou; the first part is a consequence of Perrin-Riou's explicit reciprocity conjecture Rec(V), proved independently by Benois and Colmez.
- The explicit formulae for the regulator can be viewed as a generalization of Coleman's formulae for the special values at integers of the Kubota-Leopoldt *p*-adic *L*-function in terms of polylogarithms of cyclotomic units.
- The formulae allow us to deduce the nonvanishing of an Euler system from the nonvanishing of a *p*-adic *L*-function (when we know that this *p*-adic *L*-function arises from an Euler system).

 $\begin{array}{l} \mbox{Coleman series} \\ \mbox{Cyclotomic units and the Kubota-Leopoldt p-adic L-function} \end{array}$

A fundamental example

- In this section, we describe a classical result of Coleman which was Perrin-Riou's inspiration for the construction of the regulator map.
- Let $\mathbb{Q}_{p,n} = \mathbb{Q}_p(\epsilon^{(n)}).$
- Then we have

Theorem (Coleman)

Let $u = (u_n)_{n \ge 0}$ be an element of $\varprojlim \mathcal{O}_{\mathbb{Q}_{p,n}}^{\times}$, where the inverse limit is taken with respect to the norm maps. Then there exists a unique series $\operatorname{Col}_u(T) \in \mathbb{Z}_p[[T]]^{\times}$ such that $\operatorname{Col}_u(\epsilon^{(n)} - 1) = u_n$ for every n. Moreover, if we set $G_u(T) = \log(\operatorname{Col}_u(T))$, then there exists a unique measure $\lambda_u \in \Lambda$ on Γ such that

$$\int_{\Gamma} (1+T)^{\chi(x)} \lambda_u(x) = G_u(T) - \frac{1}{p} \sum_{\zeta^{p=1}} G_u(\zeta(1+T) - 1).$$

< 口 > < 同 >

★ ∃ ► < ∃ ►</p>

- Remark that $\lim_{n \to \infty} \mathcal{O}_{\mathbb{Q}_{n,n}}^{\times}$ is equipped with a structure of Λ -module.
- By Kummer theory, we have a natural map $\varprojlim \mathcal{O}_{\mathbb{Q}_{p,n}}^{\times} \to H^1_{\mathsf{lw}}(\mathbb{Q}_p, \mathbb{Q}_p(1)).$
- The map u → λ_u is almost an isomorphism of Λ-modules (its kernel and cokernel are Z_p-modules of rank 1).
- Coleman's idea was that, for a suitable choice of *u*, one could construct the Kubota-Leopoldt *p*-adic *L*-function.

Coleman series Cyclotomic units and the Kubota-Leopoldt *p*-adic *L*-function

• Choose $\gamma \in \Gamma$, and define $u = (u_n)$ by

$$u_n=\frac{\gamma\epsilon^{(n)}-1}{\epsilon^{(n)}-1}.$$

One can check that the u_n's are norm-compabible, and moreover that if k ∈ N − {0}, we have

$$\int_{\Gamma} \chi(x)^k \lambda_u(x) = (\chi(\gamma)^k - 1)(1 - p^{k-1})\zeta(1 - k)$$

• If γ is chosen to have infinite order, then the Kubota-Leopoldt *p*-adic *L*-function is given by the (pseudo-) measure $(1 - \gamma)^{-1}\lambda_u$.

・ロト ・同ト ・ヨト ・ヨト

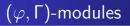
Constructing the regulator map: a sketch

- We briefly describe the construction of Perrin-Riou's big logarithm.
- We will need a number of ingredients:
 - **1** The theory of (φ, Γ) -modules
 - Wach modules;
 - Isomorphism.

< 日 ▶

4 E b

< ∃ →



- Let F/\mathbb{Q}_p be an unramified extension.
- We shall need the period rings A_F, A_F^+, B_F, B_F^+ and $B_{rig,F}^+$.
- Our choice of ϵ determines an element $\pi \in A_F^+$, and we have $A_F^+ = \mathcal{O}_F[[\pi]]$
- We set $A_F = A_F[\pi^{-1}]$
- We set $B_F^+ = A_F^+[1/p]$ and $B_F = A_F[1/p]$.
- We define B⁺_{rig,F} as the ring of power series f ∈ F[[π]] which converge on the open unit disc.

- These rings are equipped with an \mathcal{O}_F -linear action of Γ , defined by $\gamma(\pi) = (\pi + 1)^{\chi(\gamma)} 1$, extended by linearity and continuity.
- These rings are also equipped with a Frobenius φ , acting as the usual Frobenius on \mathcal{O}_F and on π by $\varphi(\pi) = (\pi + 1)^p 1$.
- \bullet We define a left inverse ψ for $\varphi,$ characterized by the property that

$$(\varphi\circ\psi)(f(\pi))=rac{1}{p}\sum_{\zeta^p=1}f(\zeta(1+\pi)-1).$$

• One can show that there is a natural identification of $(B^+_{rig,F})^{\psi=0}$ with $\mathcal{H}(\Gamma_F)$.

The (φ, Γ) -module

• If V is a p-adic representation of G_F , we define

$$D_F(V) = (B \otimes_{\mathbb{Q}_p} V)^{H_F},$$

where *B* a certain period ring with $B^{H_F} = B_F$.

- D_F(V) is a B_F-module equipped with commuting actions of Γ and φ, i.e. it is a (φ, Γ)-module.
- One can recover V from $D_F(V)$ by

$$V = (B \otimes_{B_F} D_F(V))^{\varphi=1}.$$

< ∃ →

The Wach module

- Let V be a crystalline representation of G_F , and $T \subseteq V$ be a stable lattice.
- Then Wach and Berger have shown that there exists a unique A_F^+ -submodule $N_F(T) \subseteq D_F(T)$ such that:
 - $N_F(T)$ is A_F^+ -free of rank dim V;
 - **2** Γ_F preserves $N_F(T)$ and acts trivially on $N_F(T)/\pi N_F(T)$;
 - So There exists $b \in \mathbb{Z}$ such that $\varphi(\pi^b N_F(T)) \subseteq \pi^b N_F(T)$, and $\pi^b N_F(T)/\varphi^*(\pi^b N_F(T))$ is killed by a power of $\varphi(\pi)/\pi$.
- We set $N_F(V) = B_F^+ \otimes_{A_F^+} N(T)$; it is independent of T.
- By a theorem of Berger, one can also recover $D_{cris}(V)$ from $N_F(V)$ as

$$D_{\mathsf{cris}}(V) = (B^+_{\mathsf{rig},F} \otimes_{B^+_F} N_F(V))^{G_F}.$$

The Fontaine isomorphism

- Fontaine has showed that we can recover the Iwasawa cohomology of V from its (φ, Γ)-module.
- More precisely, he has has proved that there exists a canonical isomorphism

$$D_F(T)^{\psi=1} \xrightarrow{\sim} H^1_{\mathsf{lw}}(F,T).$$

• Moreover, if V has non-negative Hodge-Tate weights and no trivial quotient, then a result of Berger implies that

$$D_F(T)^{\psi=1} = N_F(T)^{\psi=1},$$

and therefore we have

$$N_F(T)^{\psi=1} \xrightarrow{\sim} H^1_{\mathsf{lw}}(F,T).$$

- Let us now specialize to $F = \mathbb{Q}_p$, and let $x \in H^1_{\mathsf{lw}}(\mathbb{Q}_p, V)$.
- By Fontaine's isomorphism, we can view

$$1 \otimes x \in \left(B^+_{\mathsf{rig},\mathbb{Q}_p} \otimes_{B^+_{\mathbb{Q}_p}} \mathsf{N}(V)\right)^{\psi=1} \subseteq \left(B^+_{\mathsf{rig},\mathbb{Q}_p}[1/t] \otimes_{B^+_{\mathbb{Q}_p}} D_{\mathsf{cris}}(V)\right)^{\psi=1}$$

• Then $\mathcal{L}_V(x)$ is the unique element of $\mathcal{H}(\Gamma) \otimes_{\mathbb{Q}_p} D_{cris}(V)$ such that

$$\mathcal{L}_V(x)(1+\pi) = (1-\varphi)x.$$

- I refer you to the paper of David and Sarah for a beautiful account of the construction, and for the proof of the explicit formulae.
- Thank you!

< ∃⇒

э

References

L. Berger

An introduction to the theory of p-adic representations. Notes from a lecture in Padova, 2001 Available at http://perso.ens-lyon.fr/laurent.berger/articles/article05.pdf

L. Berger

Bloch and Kato's exponential map: three explicit formulas Documenta Mathematica 2003, Kazuya Kato's fiftieth birthday., Extra Vol., 99–129.

P. Colmez

Théorie d'Iwasawa des Représentations de de Rham d'un Corps Local *Annals of Mathematics*, Second Series, Vol. 148, No. 2 (Sep., 1998), pp. 485-571.

References (continued)

D. Loeffler, S. L. Zerbes

Iwasawa theory and *p*-adic *L*-functions over \mathbb{Z}_p^2 -extensions Int. J. Number Theory, 10 (2014), no. 8, 2045–2095

B. Perrin-Riou

La fonction *L p*-adique de Kubota-Leopoldt

Arithmetic Geometry: Conference on Arithmetic Geometry with an Emphasis on Iwasawa Theory, March 15-18, 1993, Arizona State University