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Basic principles of p-adic Hodge theory

@ The aim of p-adic Hodge theory is to understand p-adic
representations V' of the Galois group Gk of a p-adic field K/Q,.

@ Understanding ¢-adic representations of Gk, for ¢ # p, is considerably
easier.

@ The main strategy of p-adic Hodge theory is the construction of rings
of periods B, equipped with an action of Gk, such that

Dg(V) := (B®g, V)

becomes an interesting invariant of the representation V.
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Basic principles
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@ A ring of periods B/Q), should satisfy the following requirements:

e it should be a domain;
o Frac(B)® = B® (in particular B®« is a field);
o If y € Bis such that y - Q, C B is stable under G, then y € B*.

e If V is a p-adic representation of Gk, we define
Dg(V) = (B &g, V)°.
@ There is a natural map
B ®gex Dp(V) = B®q, V

which is injective because B is a domain.

o Therefore dimge, (Dg(V)) < dimg, (V). We say that V' is
B-admissible if we have equality (equivalently, if the above map is an
isomorphism).
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@ The category of B-admissible representations of Gk is stable under
subquotients, sums, tensor products and duals.

@ However, it is generally not stable under extensions.

o If B has extra structure (a grading, filtration, an action of an
operator), and this extra structure is compatible with Galois action,
then Dg(V) inherits this structure.
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The ring Byr

@ Fontaine has constructed a field of periods Byr. We list some of its
properties.

@ Byr is the field of fractions of a complete discrete valuation ring BCTR
with residue field Cp,.

@ The maximal ideal of B R IS generated by an element t which is a
p-adic analogue of 2/ (depending on a choice € = (¢(") of
compatible p-power roots of 1)

@ Gg, acts on t via the cyclotomic character, i.e. g(t) = x(g)t for
g € Gg,.

@ Bygr is therefore equipped with a descending filtration Fil' = m BdR,
Fil' D Fil't1, stable by the action of G@p
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Basic principles
The rlng Byr and de Rham representatlons
: =

@ By Hensel's lemma, @ C B;“R, compatibly with the action of G@p.

o (However, B:R is not a Cp-algebra in any natural way. In fact, a
theorem of Colmez says that QQ,, is dense in Bgr in a suitable
topology.)

o We have (B4r)®* = (BJjg)°* = K, so if V is a p-adic representation
of Gk, Dgr(V) := D, (V) is a filtered K-vector space.
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de Rham representations

e We say that a representation V of Gk is de Rham if it is
Byr-admissible, that is if

Bar @k Dar(V) = Bgr ®q, V,

or which is equivalent, dimyk Dgr(V) = dimg, (V).
@ We have the de Rham comparison theorem, conjectured by Fontaine
and proved by Faltings:

Let X/K be a smooth proper variety, and V = Hét(X@, Qp), so that V is
a p-adic representation of Gi. Then V is de Rham, and there is a natural
isomorphism of filtered K-vector spaces

Dgr(V) = Hir(X/K).

o Here Hix(X/K) is de Rham cohomology equipped with the Hodge
filtration.
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The ring Byt and Hodge-Tate representations

@ The ring Byt is the graded ring associated to the filtered ring Byr

o We have Byt = @z Cp(j), since m/ /m/ T = C,(j)

@ A p-adic representation V of Gk is Hodge-Tate if it is
Byt-admissible.

o If V is Hodge-Tate, then Dyt1(V) = Dg,(V) is a graded K-vector
space.

o If V is de Rham, then Dyt (V) is the graded vector space associated
to the filtered vector space Dyr(V/). In particular, a de Rham
representation is Hodge-Tate.

o A Hodge-Tate weight of V' is an integer j such that Dyt(V)—; # 0.

Equivalently, if V is de Rham, Fil™ Dyr(V) # Fil 7+ Dgr(V).

With this convention, Q,(j) has Hodge-Tate weight ;.
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The subgroups

@ Fontaine has defined a ring of periods Beis, which is a subring of Byr
equipped with an induced filtration and Galois action.

@ The ring Beis contains the element ¢, and have B.is = B2, [1/t],
where BCrls = BJr N Beris.
o We have Bgl’; = Qp" N K =: F, and the action of ¢ on Bc”’; is the

Frobenius on F.

@ The ring Beis is equipped with a Frobenius ¢ : Beris — Beris
commuting with the action of Gg,, and inducing the usual Frobenius
on Q;J)nr C Bcris-

e Frobenius acts on t by ¢(t) = pt.
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Crystalline representations

e We say that a p-adic representation V of Gy is crystalline if it is
Beris-admissible.

e If V is a crystalline representation, then

Dcris( V) = DB

cris

(V) = (Bcris ®Qp V)GK

is an F-vector space equipped with a filtration and a semi-linear
Frobenius.

e If V is crystalline, then K ®F Dqis(V) = Dyr(V), as filtered K-vector
spaces. Hence a crystalline representation is also de Rham.

@ To summarize, we have

crystalline = de Rham = Hodge-Tate
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@ The property of being crystalline, for a p-adic representation V/, is
analogous to the property of being unramified for an ¢-adic
representation (for ¢ # p).

@ For example, if V is the p-adic Tate module of an abelian variety
A/K, then V is crystalline if and only if V' has good reduction
(lovita).

@ One has the crystalline comparison isomorphism:

Theorem

Let k be a perfect field of characteristic p, let O = W/(k) and
F = Frac(OF). Let X/OF be a smooth, proper scheme, geometrically
irreducible. Then for every i > 0, there is a functorial isomorphism

Hix(XE, Qp) ®q, Beris = Higis(Xk/ OF) ®0, Beris,

compatibly with filtrations, Gg-action and action of Frobenius.
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The ring Bgyis and crystalllne representatlons
The subgroups H_, a

@ A classical result of crystalline cohomology states that

crls(Xk/OF) = HdR(X/OF) Thus H(’ZFIS(Xk/OF) has a natural
filtration and Hig(X/OF) has a natural action of a Frobenius.

@ The crystalline comparison isomorphism implies that
V = H..(Xg,Qp) is crystalline, and moreover that
DCFiS(V) = crls(Xk/OF) Kok F= HdR(X/F)
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The subgroups H!, H}, Hé

@ Recall that there is a natural identification of H'(K, V) with the set
of isomorphism classes of extensions of Q, by V.

@ Given an extension
0—-V-wbq,—o,

choose w € W with p(w) = 1. Then for all o € Gk,
p(ow) =op(w) =0-1=1, so p(w —ow) = 0. In other words
w—ow € V.

@ The map o0 — w — ow is a cocycle Gk — V/, whose cohomology
class depends only on the isomorphism class of the extension.
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@ Therefore, it is natural, given a property of p-adic representations, to
look at the subset of H1(K, V) consisting of those extensions of Q,
by V having that property.

@ We define subgroups

HY(K,V) C H}(K, V) C Hy(K,V) C HY(K, V)
as follows:

o The subgroup H(K, V) = ker(H}(K, V) — H}(K, Bﬁlsl ® V));
o The subgroup H} (K, V) = ker(HY(K, V) — HY(K, Beis ® V))
consisting of the extensions of Q, by V' which are crystalline;

@ The subgroup Hé(K7 V) = ker(HY(K, V) = HY(K, Bgr ® V))
consisting of the extensions of Q, by V which are de Rham.
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The dual exponential map

The exponential map

@ Let V be a de Rham representation. Then Bloch and Kato have
defined an "exponential map"

expy.v : Dar(V)/ Fil® Dar(V) — H'(K, V).

o If G/Ok is a formal Lie group of finite height (eg. G = A for A/Ok),
and V = Q, ®z, TpG, then

Dgr(V)/ Fil® Dgr(V) = tan(G(K)),
and we have a commutative diagram

eXpyk,v

Dgr(V)/ Fil® Dgr(V) —= HY(K, V)

4 64

exp

tan(G(K)) ———— G(K)

@ Here ¢ is the Kummer map and exp is the usual exponential map.
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The exponential map
The dual exponential map

@ In order to construct the Bloch-Kato exponential for an arbitrary de
Rham representation V/, one uses the fundamental exact sequence

0—+Q,— Bt Bar/Bjg —+ 0

cris
@ The second map is simply the composite of

=1
B::Pris — Bcris — BdR — BdR/B;rR

@ Tensoring the fundamental exact sequence with V' over Q, and
taking invariants under Gk, we get an exact sequence
0 — VO — DEH(V) = ((Bar/Biz) © V)% — HY(K,V) =0

cris

where H(K, V) = ker(HY(K, V) — HY(K, B @ V)).
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The dual exponential map

@ Since V is de Rham, we have
((Bar/Bjr) ® V) = D4r(V)/ Fil® Dgr(V) and therefore we deduce
an isomorphism

Dyr(V ~
eXPK,v ¢ g ( )@:1 = Ha(K, V)
Fil DdR(V) + Dcris (V)
o We write
~ Dyr(V
logy v : HA(K, V) = = ( )¢:1
Fil DdR(V) + Dcris (V)

for the inverse of this isomorphism.
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The dual exponential map

o Before going further, we describe in more detail the filtered ¢-module
DcriS(Qp(j))-

o The choice of € = (e(") determines the element t € Byg, and a basis
ej of Qp(j) for each j, such that e @ ey = ).

@ The element t_Jej € Buris ® Qp(j) is Galois invariant and determines
a canonical basis of Deris(Qp(j)), which does not depend on the
choice of e.

@ We have

Dcris((@p(j)) — {ODcris(QP(j)) =K ifk<—j

if k> —j

@ The Frobenius ¢ on Dcis(Qp(j)) acts as multiplication by p~,
because p(t/e;) = p(t™)e = pIte;.
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o In particular the element t~le; € Dyr(Qp(1)) gives an isomorphism
Dar(Qp(1)) = K; thus we obtain a perfect pairing

Dar(V)® Dar(V*(1)) 2 Dgr(V ® V(1)) = Dar(Qp(1)) = K = Q,

@ Thus we identify Dyr(V)* with Dgr(V*(1)).
@ Moreover, the cup-product

HY(K, V) ® H'(K, V*(1)) = H* (K, Qp(1)) = Q,

identifies HX(K, V)* with H(K, V*(1)).
@ Therefore, we can view

(expi,v)* - HY (K, V)* = (Dar(V)/ Fil° Dgr(V))*
as a map
expy.y : H'(K, V*(1)) — Fil® Dgr(V*(1))

This is the dual exponential map of V.
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notation

Kn = K(ppn)

Koo = UK,

Nk = Gal (K /K)

X : Tk — Z, the cyclotomic character, identifies Ik with an open
subgroup of Z

He = ker x = Gal (K/Kx).
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Iwasawa cohomology

@ Let V be a p-adic representation of Gk of dimension d, and T C V a
Zp-lattice stable by Gg.

@ The lwasawa cohomology of V is defined as
Hiw(K, V) := Qp @z, lim H'(K, T)
where the inverse limit is taken with respect to the corestriction maps
COrK,,1.K, - H (Kni1, T) = H(K,, T)
o Each H/(K,, T) is naturally a Z,[Gal (K,/K)]-module, so H, (K, V)
has a natural structure of a Q) ®z, Ak-module, where
A = Ii(_mZp[Gal(K,,/K)].
o The module H|, (K, V) is idependent of the choice of lattice T.
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Remarks on the lwasawa algebra

@ The ring Q, ® Ak identifies with the space of p-adic measures on [k,
i.e.

Qp ® Ak = Hom(C(Tk,Qp), Qp)
where C(I'k,Qp) is the Banach space of continuous Q,-valued
functions on k.

@ As such it is equipped with a structure of C(I'k, Qp)-module; if
feC(Tk,Qp) and € Qp ® Ak, then fp is the measure h — [ hf p.

o In particular, if n: 'k — Qp is a continuous character and 1 is a
measure, the product nu is a measure.

e Ak is is equipped with an action of G, given by g(u) = [g]u, where
Z = g|k.. is the image of g in 'k and [g] is the corresponding
group-like element (the Dirac measure at g).
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@ The structure of Hj, has been determined by Perrin-Riou:

Theorem (Perrin-Riou)

We have Hj, (K, V) =0 for i # 1,2; moreover:

@ The torsion submodule of HﬂN(K, V) is a Qp ®z, Ax-module isomorphic to
VHk, and HL (K, V)/VH% is a free Q, ®z, Nc-module of rank [K : Qp]d

@ Hi, (K, V)= (V*(1)")"

o In particular the H (K, V) are Q, ® Ak-modules of finite type.

@ There are natural projection maps Hj, (K, V) — H'(K,, V)
compatible with corestriction maps.
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Twisting Euler systems

@ We can also describe HﬁN(K, V) as a single cohomology group, which
can help us understand the "twisting" operation on Euler systems.

o Let Meas(['k, V) = Ak ®q, V be the space of V-valued measures on
k. It is equipped with the diagonal action of Gk

@ Then we have a natural isomorphism
HY(K, Ak ®q, V) = HL,(K, V), which we describe.

e If o — p, is a cocycle Gk — Meas(I'k, V) representing a
cohomology class ¢ € H(K,Meas([k, V)), then, for any n, the map
o er o is a cocycle Gk, — V representing a cohomology class

Cn € HY(Kn, V).
@ The collection (¢,) € H}(K,, V) is compatible under corestriction
maps and determines an element of Hl (K, V).
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o letn: Tk — @; be a continuous character. Then there is a natural

map
Hi(K, V) = Hi, (K, V(n™),

which we now describe.

@ Remark that if © € Meas(['k, V) and o € Gk, we have
o(nu) = n(oc~1) - nu, so multiplication by 7 is a Galois-equivariant
map when viewed as a map Meas(Ik, V) — Meas([k, V(n71)).

o It induces a map H} (K, V) — HL (K, V(n~1)) on cohomology.

o If x € HL,(K, V), we write x, for the image of x in HL (K, V(n™1)),
and x, , for its image in HY(K,, V(n™!))

o If n =/ we simply write x,; € HL, (Kn, V(—j)), where we identify
V(x ™) and V(—j) using the basis ¢.
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The Perrin-Riou big logarithm (or regulator) map

@ Let p be an odd prime, and F/Q, a finite unramified extension.

@ Let V be a crystalline representation of Gg, with non-negative
Hodge-Tate weights and no quotient isomorphic to the trivial
representation.

o Let Hq,(I'F) be the algebra of Qp-valued distributions on I'r (dual to
the space of locally analytic Qp-valued functions on I'f)

@ Then Perrin-Riou has constructed a "big logarithm" or "regulator"
map
Lv.f: Hy(F, V)= H(TE) ®q, Deris(V)

e The map Ly r interpolates the Bloch-Kato dual exponential and
logarithm maps for twists of V' in the cyclotomic tower.

@ The big logarithm provides a bridge between arithmetic and analysis.
It allows us to construct p-adic L-functions from Euler systems.
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Explicit formulae for the regulator

@ We will now explain how the regulator map interpolates the
Bloch-Kato logarithm and dual exponential maps.

@ We will assume for simplicity that F = Q.

e We follow Appendix B of Loeffler-Zerbes (Ilwasawa Theory and p-adic
L-functions over Z3-extensions).

o If v € H(I'k) ®q, Deris(V), and 1 : T — Q, is a character, we shall
write [ nv for v(n). It is an element of Dcyis(V/).
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Theorem

Let V' be a cristalline representation of Gg, with non-negative Hodge- Tate
weights and no quotient isomorphic to Q,. Let n be a continuous

character of T of the form yJw, where w is a finite-order character of
conductor n. Let x € HL (Qp, V). Then:

@ Ifj >0, we have
/Uﬁv(x) = jIx
.
(1-pPe)1-p )™ (exp@p,vm—l)*(l)(xn,o) ® t’fej) for n =0
7(w) LUt pn (eXpap,v(nfl)*(l)(XmO) ® t_jej) forn>1
@ Ifj <0, we have
[nevio = S50
nev\X) = ———;
r (= —1)!
(1-po)(1l—plip1)t (lOngﬁv(n—l)*(l)(Xn,o) ® tfjej) forn=0
7(w)~LprUthn (lOng’v(n—l)*(l)(Xn’o) ® t‘jej) forn>1
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Explicit formulae for the regulator

@ The second part of the theorem is due to Perrin-Riou; the first part is
a consequence of Perrin-Riou’s explicit reciprocity conjecture Rec(V),
proved independently by Benois and Colmez.

@ The explicit formulae for the regulator can be viewed as a
generalization of Coleman’s formulae for the special values at integers
of the Kubota-Leopoldt p-adic L-function in terms of polylogarithms
of cyclotomic units.

@ The formulae allow us to deduce the nonvanishing of an Euler system
from the nonvanishing of a p-adic L-function (when we know that
this p-adic L-function arises from an Euler system).

Bruno Joyal p-adic Hodge theory and Bloch-Kato theory



Coleman series
Cyclotomic units and the Kubota-Leopoldt p-adic L-function

A fundamental example

A fundamental example

@ In this section, we describe a classical result of Coleman which was
Perrin-Riou’s inspiration for the construction of the regulator map.

o Let Qp = Qp(etM).

@ Then we have

Theorem (Coleman)

Let u = (up)n>0 be an element of lim Og .. Where the inverse limit is
taken with respect to the norm maps. Then there exists a unique series
Col,(T) € Z[[T]]* such that Col, (e — 1) = u, for every n.
Moreover, if we set G,(T) = log(Col,(T)), then there exists a unique
measure \, € \ on [ such that

/r(l—i—T)X(X))\u(x): AT -2 G+ T)-1).

p<p1
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A fundamental example

@ Remark that I<|_rﬂ O@pm is equipped with a structure of A-module.

o By Kummer theory, we have a natural map
im0, — H,(Qp, Qp(1)).

@ The map v+ A, is almost an isomorphism of A-modules (its kernel
and cokernel are Z,-modules of rank 1).

@ Coleman'’s idea was that, for a suitable choice of u, one could
construct the Kubota-Leopoldt p-adic L-function.
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Cyclotomic units and the Kubota-Leopoldt p-adic L-function

A fundamental example

@ Choose v € T, and define u = (up) by

- yelM — 1
Un =y 1

@ One can check that the u,'s are norm-compabible, and moreover that
if k € N— {0}, we have

/r XY Au(x) = (x(3) = 1)(1 = pE1)¢(1 — k)

@ If v is chosen to have infinite order, then the Kubota-Leopoldt p-adic
L-function is given by the (pseudo-) measure (1 — )~ 1),.
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Constructing the regulator map: a sketch

@ We briefly describe the construction of Perrin-Riou’s big logarithm.
@ We will need a number of ingredients:

@ The theory of (p, )-modules
@ Wach modules;
@ Fontaine’s isomorphism.
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(i, I')-modules

Let F/Qp be an unramified extension.

We shall need the period rings A,:,A',_t, Br, B; and B:fgf.

Our choice of ¢ determines an element 7 € AL, and we have

Af = Of|[x]]

We set Ap = AF/[Fl]

We set Bf = Af[1/p] and B = Ar[1/p].

We define B - as the ring of power series f € F[[n]] which converge

rig,F
on the open unit disc.
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@ These rings are equipped with an Og-linear action of I', defined by
y(m) = (7 +1)X(") — 1, extended by linearity and continuity.

@ These rings are also equipped with a Frobenius ¢, acting as the usual
Frobenius on Of and on 7 by p(7) = (7 + 1)P — 1.

o We define a left inverse ¢ for ¢, characterized by the property that

(pov Zf (1+7)—1).

P =

@ One can show that there is a natural identification of (B -)¥=° with

rig,F
H(TF).
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The (p,N)-module

o If V is a p-adic representation of Gg, we define
De(V) = (B ®g, V),

where B a certain period ring with B"F = Br.

@ Dp(V) is a Be-module equipped with commuting actions of ' and ¢,
i.e. itis a (¢, )-module.

@ One can recover V from Dg(V) by

V = (B®g, DF(V))*=2.
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The Wach module

@ Let V be a crystalline representation of Gg, and T C V be a stable
lattice.

@ Then Wach and Berger have shown that there exists a unique
Af-submodule Ng(T) C Dg(T) such that:
Q@ Ng(T) is Af-free of rank dim V/;
@ T¢ preserves Ne(T) and acts trivially on Ne(T)/mNg(T);
© There exists b € Z such that p(7?Ng(T)) C 7 Np(T), and
7P NE(T)/p* (7P Ne(T)) is killed by a power of ¢()/.
o We set Ng(V) = Bt ®at N(T); it is independent of T.

@ By a theorem of Berger, one can also recover Dqis(V') from Ng(V) as

Dcris(V) = (B ®B+ NF(V))GF.

rig,F
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The Fontaine isomorphism

@ Fontaine has showed that we can recover the lwasawa cohomology of
V from its (¢, )-module.

@ More precisely, he has has proved that there exists a canonical

isomorphism
De(T)¥= = HE(F, T).

@ Moreover, if V' has non-negative Hodge-Tate weights and no trivial
quotient, then a result of Berger implies that

De(T)¥=! = Np(T)¥=,
and therefore we have

Ne(T)Y=Y = HE(F, T).
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Let us now specialize to F = Q,, and let x € HL (Q,, V).

By Fontaine's isomorphism, we can view

¥=1 v=1
l®xe (Bﬁ-rg,@p “g, N(V)> c < rig.0, 11/1] Oy, Dcrls(v))

Then Ly(x) is the unique element of H(I') ®q, Deris(V) such that

Ly(x)(1+m) = (1 - ¢)x.

| refer you to the paper of David and Sarah for a beautiful account of
the construction, and for the proof of the explicit formulae.

Thank you!
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