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Basic principles of p-adic Hodge theory

The aim of p-adic Hodge theory is to understand p-adic
representations V of the Galois group GK of a p-adic field K/Qp.
Understanding `-adic representations of GK , for ` 6= p, is considerably
easier.
The main strategy of p-adic Hodge theory is the construction of rings
of periods B, equipped with an action of GK , such that

DB(V ) := (B ⊗Qp V )GK

becomes an interesting invariant of the representation V .
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A ring of periods B/Qp should satisfy the following requirements:
it should be a domain;
Frac(B)GK = BGK (in particular BGK is a field);
If y ∈ B is such that y ·Qp ⊆ B is stable under GK , then y ∈ B×.

If V is a p-adic representation of GK , we define

DB(V ) := (B ⊗Qp V )GK .

There is a natural map

B ⊗BGK DB(V )→ B ⊗Qp V

which is injective because B is a domain.
Therefore dimBGK (DB(V )) ≤ dimQp (V ). We say that V is
B-admissible if we have equality (equivalently, if the above map is an
isomorphism).
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The category of B-admissible representations of GK is stable under
subquotients, sums, tensor products and duals.
However, it is generally not stable under extensions.
If B has extra structure (a grading, filtration, an action of an
operator), and this extra structure is compatible with Galois action,
then DB(V ) inherits this structure.
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The ring BdR

Fontaine has constructed a field of periods BdR. We list some of its
properties.
BdR is the field of fractions of a complete discrete valuation ring B+

dR
with residue field Cp.
The maximal ideal of B+

dR is generated by an element t which is a
p-adic analogue of 2πi (depending on a choice ε = (ε(n)) of
compatible p-power roots of 1)
GQp acts on t via the cyclotomic character, i.e. g(t) = χ(g)t for
g ∈ GQp .
BdR is therefore equipped with a descending filtration Fili = miB+

dR,
Fili ⊇ Fili+1, stable by the action of GQp
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By Hensel’s lemma, Qp ⊆ B+
dR, compatibly with the action of GQp .

(However, B+
dR is not a Cp-algebra in any natural way. In fact, a

theorem of Colmez says that Qp is dense in BdR in a suitable
topology.)
We have (BdR)GK = (B+

dR)GK = K , so if V is a p-adic representation
of GK , DdR(V ) := DBdR(V ) is a filtered K -vector space.
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de Rham representations

We say that a representation V of GK is de Rham if it is
BdR-admissible, that is if

BdR ⊗K DdR(V ) ∼−→ BdR ⊗Qp V ,

or which is equivalent, dimK DdR(V ) = dimQp (V ).
We have the de Rham comparison theorem, conjectured by Fontaine
and proved by Faltings:

Theorem
Let X/K be a smooth proper variety, and V = H i

ét(XQp
,Qp), so that V is

a p-adic representation of GK . Then V is de Rham, and there is a natural
isomorphism of filtered K-vector spaces

DdR(V ) ∼= H i
dR(X/K ).

Here H i
dR(X/K ) is de Rham cohomology equipped with the Hodge

filtration.
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The ring BHT and Hodge-Tate representations

The ring BHT is the graded ring associated to the filtered ring BdR

We have BHT =
⊕

j∈ZCp(j), since mj/mj+1 = Cp(j)
A p-adic representation V of GK is Hodge-Tate if it is
BHT-admissible.
If V is Hodge-Tate, then DHT(V ) = DBHT(V ) is a graded K -vector
space.
If V is de Rham, then DHT(V ) is the graded vector space associated
to the filtered vector space DdR(V ). In particular, a de Rham
representation is Hodge-Tate.
A Hodge-Tate weight of V is an integer j such that DHT(V )−j 6= 0.
Equivalently, if V is de Rham, Fil−j DdR(V ) 6= Fil−j+1 DdR(V ).
With this convention, Qp(j) has Hodge-Tate weight j .
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The ring Bcris and crystalline representations

Fontaine has defined a ring of periods Bcris, which is a subring of BdR
equipped with an induced filtration and Galois action.
The ring Bcris contains the element t, and have Bcris = B+

cris[1/t],
where B+

cris = B+
dR ∩ Bcris.

We have BGK
cris = Qunr

p ∩ K =: F , and the action of ϕ on BGK
cris is the

Frobenius on F .
The ring Bcris is equipped with a Frobenius ϕ : Bcris → Bcris
commuting with the action of GQp , and inducing the usual Frobenius
on Qunr

p ⊆ Bcris.
Frobenius acts on t by ϕ(t) = pt.
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Crystalline representations

We say that a p-adic representation V of GK is crystalline if it is
Bcris-admissible.
If V is a crystalline representation, then

Dcris(V ) := DBcris(V ) = (Bcris ⊗Qp V )GK

is an F -vector space equipped with a filtration and a semi-linear
Frobenius.
If V is crystalline, then K ⊗F Dcris(V ) = DdR(V ), as filtered K -vector
spaces. Hence a crystalline representation is also de Rham.
To summarize, we have

crystalline⇒ de Rham⇒ Hodge-Tate
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The property of being crystalline, for a p-adic representation V , is
analogous to the property of being unramified for an `-adic
representation (for ` 6= p).
For example, if V is the p-adic Tate module of an abelian variety
A/K , then V is crystalline if and only if V has good reduction
(Iovita).
One has the crystalline comparison isomorphism:

Theorem
Let k be a perfect field of characteristic p, let OF = W (k) and
F = Frac(OF ). Let X/OF be a smooth, proper scheme, geometrically
irreducible. Then for every i ≥ 0, there is a functorial isomorphism

H i
et(XF ,Qp)⊗Qp Bcris ∼= H i

cris(Xk/OF )⊗OF Bcris,

compatibly with filtrations, GF -action and action of Frobenius.
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A classical result of crystalline cohomology states that
H i

cris(Xk/OF ) ∼= H i
dR(X/OF ). Thus H i

cris(Xk/OF ) has a natural
filtration and H i

dR(X/OF ) has a natural action of a Frobenius.
The crystalline comparison isomorphism implies that
V = H i

et(XF ,Qp) is crystalline, and moreover that
Dcris(V ) ∼= H i

cris(Xk/OF )⊗OF F ∼= H i
dR(X/F ).
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The subgroups H1
e , H1

f , H1
g

Recall that there is a natural identification of H1(K ,V ) with the set
of isomorphism classes of extensions of Qp by V .
Given an extension

0→ V →W p−→ Qp → 0,

choose w ∈W with p(w) = 1. Then for all σ ∈ GK ,
p(σw) = σp(w) = σ · 1 = 1, so p(w − σw) = 0. In other words
w − σw ∈ V .
The map σ 7→ w − σw is a cocycle GK → V , whose cohomology
class depends only on the isomorphism class of the extension.

Bruno Joyal p-adic Hodge theory and Bloch-Kato theory



Review of some p-adic Hodge theory
The Bloch-Kato exponential, logarithm, and dual exponential maps

Perrin-Riou’s big logarithm
A fundamental example

Constructing the big logarithm: a sketch

Basic principles
The ring BdR and de Rham representations
The ring Bcris and crystalline representations
The subgroups H1

e , H1
f , H1

g

Therefore, it is natural, given a property of p-adic representations, to
look at the subset of H1(K ,V ) consisting of those extensions of Qp
by V having that property.
We define subgroups

H1
e (K ,V ) ⊆ H1

f (K ,V ) ⊆ H1
g (K ,V ) ⊆ H1(K ,V )

as follows:
The subgroup H1

e (K ,V ) = ker(H1(K ,V )→ H1(K ,Bϕ=1
cris ⊗ V ));

The subgroup H1
f (K ,V ) = ker(H1(K ,V )→ H1(K ,Bcris ⊗ V ))

consisting of the extensions of Qp by V which are crystalline;
The subgroup H1

g (K ,V ) = ker(H1(K ,V )→ H1(K ,BdR ⊗ V ))
consisting of the extensions of Qp by V which are de Rham.

Bruno Joyal p-adic Hodge theory and Bloch-Kato theory
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The exponential map

Let V be a de Rham representation. Then Bloch and Kato have
defined an "exponential map"

expK ,V : DdR(V )/Fil0 DdR(V )→ H1(K ,V ).

If G/OK is a formal Lie group of finite height (eg. G = Â for A/OK ),
and V = Qp ⊗Zp TpG , then

DdR(V )/Fil0 DdR(V ) ∼= tan(G(K )),

and we have a commutative diagram

DdR(V )/Fil0 DdR(V ) H1(K ,V )

tan(G(K )) G(K )

expK ,V

∼=
exp

δG

Here δG is the Kummer map and exp is the usual exponential map.
Bruno Joyal p-adic Hodge theory and Bloch-Kato theory
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In order to construct the Bloch-Kato exponential for an arbitrary de
Rham representation V , one uses the fundamental exact sequence

0→ Qp → Bϕ=1
cris → BdR/B+

dR → 0

The second map is simply the composite of

Bϕ=1
cris ↪→ Bcris ↪→ BdR → BdR/B+

dR

Tensoring the fundamental exact sequence with V over Qp and
taking invariants under GK , we get an exact sequence

0→ V GK → Dϕ=1
cris (V )→ ((BdR/B+

dR)⊗ V )GK → H1
e (K ,V )→ 0

where H1
e (K ,V ) = ker(H1(K ,V )→ H1(K ,Bϕ=1

cris ⊗ V )).
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Since V is de Rham, we have
((BdR/B+

dR)⊗ V )GK = DdR(V )/Fil0 DdR(V ) and therefore we deduce
an isomorphism

expK ,V : DdR(V )
Fil0 DdR(V ) + Dϕ=1

cris (V )
∼−→ H1

e (K ,V )

We write

logK ,V : H1
e (K ,V ) ∼−→ DdR(V )

Fil0 DdR(V ) + Dϕ=1
cris (V )

for the inverse of this isomorphism.

Bruno Joyal p-adic Hodge theory and Bloch-Kato theory
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The dual exponential map

Before going further, we describe in more detail the filtered ϕ-module
Dcris(Qp(j)).
The choice of ε = (ε(n)) determines the element t ∈ BdR, and a basis
ej of Qp(j) for each j , such that ej ⊗ ej′ = ej+j′ .
The element t−jej ∈ Bcris ⊗Qp(j) is Galois invariant and determines
a canonical basis of Dcris(Qp(j)), which does not depend on the
choice of ε.
We have

Filk Dcris(Qp(j)) =
{
Dcris(Qp(j)) = K if k ≤ −j
0 if k > −j

The Frobenius ϕ on Dcris(Qp(j)) acts as multiplication by p−j ,
because ϕ(t−jej) = ϕ(t−j)ej = p−jt−jej .
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In particular the element t−1e1 ∈ DdR(Qp(1)) gives an isomorphism
DdR(Qp(1)) ∼−→ K ; thus we obtain a perfect pairing

DdR(V )⊗DdR(V ∗(1)) ∼= DdR(V ⊗V ∗(1))→ DdR(Qp(1)) ∼= K Tr−→ Qp

Thus we identify DdR(V )∗ with DdR(V ∗(1)).
Moreover, the cup-product

H1(K ,V )⊗ H1(K ,V ∗(1))→ H2(K ,Qp(1)) = Qp

identifies H1(K ,V )∗ with H1(K ,V ∗(1)).
Therefore, we can view

(expK ,V )∗ : H1(K ,V )∗ → (DdR(V )/Fil0 DdR(V ))∗

as a map

exp∗K ,V : H1(K ,V ∗(1))→ Fil0 DdR(V ∗(1))

This is the dual exponential map of V .
Bruno Joyal p-adic Hodge theory and Bloch-Kato theory
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Some notation

Kn = K (µpn )
K∞ = ∪Kn

ΓK = Gal (K∞/K )
χ : ΓK → Z×p the cyclotomic character, identifies ΓK with an open
subgroup of Z×p
HF = kerχ = Gal (K/K∞).
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Iwasawa cohomology

Let V be a p-adic representation of GK of dimension d , and T ⊆ V a
Zp-lattice stable by GK .
The Iwasawa cohomology of V is defined as

H i
Iw(K ,V ) := Qp ⊗Zp lim←−H i (Kn,T )

where the inverse limit is taken with respect to the corestriction maps
corKn+1,Kn : H i (Kn+1,T )→ H i (Kn,T )
Each H i (Kn,T ) is naturally a Zp[Gal (Kn/K )]-module, so H i

Iw(K ,V )
has a natural structure of a Qp ⊗Zp ΛK -module, where
ΛK = lim←−Zp[Gal (Kn/K )].
The module H i

Iw(K ,V ) is idependent of the choice of lattice T .
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Remarks on the Iwasawa algebra

The ring Qp ⊗ ΛK identifies with the space of p-adic measures on ΓK ,
i.e.

Qp ⊗ ΛK = Hom(C(ΓK ,Qp),Qp)

where C(ΓK ,Qp) is the Banach space of continuous Qp-valued
functions on ΓK .
As such it is equipped with a structure of C(ΓK ,Qp)-module; if
f ∈ C(ΓK ,Qp) and µ ∈ Qp ⊗ΛK , then f µ is the measure h 7→

∫
hf µ.

In particular, if η : ΓK → Q×p is a continuous character and µ is a
measure, the product ηµ is a measure.
ΛK is is equipped with an action of GK , given by g(µ) = [g ]µ, where
g = g |K∞ is the image of g in ΓK and [g ] is the corresponding
group-like element (the Dirac measure at g).
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The structure of H i
Iw has been determined by Perrin-Riou:

Theorem (Perrin-Riou)
We have H i

Iw(K ,V ) = 0 for i 6= 1, 2; moreover:
1 The torsion submodule of H1

Iw(K ,V ) is a Qp ⊗Zp ΛK -module isomorphic to
V HK , and H1

Iw(K ,V )/V HK is a free Qp ⊗Zp ΛK -module of rank [K : Qp]d
2 H2

Iw(K ,V ) = (V ∗(1)HK )∗

In particular the H i
Iw(K ,V ) are Qp ⊗ ΛK -modules of finite type.

There are natural projection maps H i
Iw(K ,V )→ H i (Kn,V )

compatible with corestriction maps.

Bruno Joyal p-adic Hodge theory and Bloch-Kato theory



Review of some p-adic Hodge theory
The Bloch-Kato exponential, logarithm, and dual exponential maps

Perrin-Riou’s big logarithm
A fundamental example

Constructing the big logarithm: a sketch

Iwasawa cohomology
The Perrin-Riou big logarithm (or regulator) map
Explicit formulae for the regulator

Twisting Euler systems

We can also describe H1
Iw(K ,V ) as a single cohomology group, which

can help us understand the "twisting" operation on Euler systems.
Let Meas(ΓK ,V ) = ΛK ⊗Qp V be the space of V -valued measures on
ΓK . It is equipped with the diagonal action of GK

Then we have a natural isomorphism
H1(K ,ΛK ⊗Qp V ) ∼−→ H1

Iw(K ,V ), which we describe.
If σ 7→ µσ is a cocycle GK → Meas(ΓK ,V ) representing a
cohomology class ζ ∈ H1(K ,Meas(ΓK ,V )), then, for any n, the map
σ 7→

∫
ΓKn

µσ is a cocycle GKn → V representing a cohomology class
ζn ∈ H1(Kn,V ).
The collection (ζn) ∈ H1(Kn,V ) is compatible under corestriction
maps and determines an element of H1

Iw(K ,V ).
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Let η : ΓK → Q×p be a continuous character. Then there is a natural
map

H1
Iw(K ,V )→ H1

Iw(K ,V (η−1)),

which we now describe.
Remark that if µ ∈ Meas(ΓK ,V ) and σ ∈ GK , we have
σ(ηµ) = η(σ−1) · ηµ, so multiplication by η is a Galois-equivariant
map when viewed as a map Meas(ΓK ,V )→ Meas(ΓK ,V (η−1)).
It induces a map H1

Iw(K ,V )→ H1
Iw(K ,V (η−1)) on cohomology.

If x ∈ H1
Iw(K ,V ), we write xη for the image of x in H1

Iw(K ,V (η−1)),
and xη,n for its image in H1(Kn,V (η−1))
If η = χj we simply write xn,j ∈ H1

Iw(Kn,V (−j)), where we identify
V (χ−j) and V (−j) using the basis ε.
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The Perrin-Riou big logarithm (or regulator) map

Let p be an odd prime, and F/Qp a finite unramified extension.
Let V be a crystalline representation of GF , with non-negative
Hodge-Tate weights and no quotient isomorphic to the trivial
representation.
Let HQp (ΓF ) be the algebra of Qp-valued distributions on ΓF (dual to
the space of locally analytic Qp-valued functions on ΓF )
Then Perrin-Riou has constructed a "big logarithm" or "regulator"
map

LV ,F : H1
Iw(F ,V )→ H(ΓF )⊗Qp Dcris(V )

The map LV ,F interpolates the Bloch-Kato dual exponential and
logarithm maps for twists of V in the cyclotomic tower.
The big logarithm provides a bridge between arithmetic and analysis.
It allows us to construct p-adic L-functions from Euler systems.
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Explicit formulae for the regulator

We will now explain how the regulator map interpolates the
Bloch-Kato logarithm and dual exponential maps.
We will assume for simplicity that F = Q.
We follow Appendix B of Loeffler-Zerbes (Iwasawa Theory and p-adic
L-functions over Z2

p-extensions).
If ν ∈ H(ΓK )⊗Qp Dcris(V ), and η : ΓK → Q×p is a character, we shall
write

∫
Γ ην for ν(η). It is an element of Dcris(V ).
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Theorem
Let V be a cristalline representation of GQp with non-negative Hodge-Tate
weights and no quotient isomorphic to Qp. Let η be a continuous
character of Γ of the form χjω, where ω is a finite-order character of
conductor n. Let x ∈ H1

Iw(Qp,V ). Then:
If j ≥ 0, we have ∫

Γ
ηLV (x) = j!×(1− pjϕ)(1− p−1−jϕ−1)−1
(
exp∗

Qp ,V (η−1)∗(1)(xη,0)⊗ t−jej

)
for n = 0

τ(ω)−1pn(j+1)ϕn
(
exp∗

Qp ,V (η−1)∗(1)(xη,0)⊗ t−jej

)
for n ≥ 1

If j < 0, we have ∫
Γ
ηLV (x) = (−1)−j−1

(−j − 1)!×(1− pjϕ)(1− p−1−jϕ−1)−1
(
logQp ,V (η−1)∗(1)(xη,0)⊗ t−jej

)
for n = 0

τ(ω)−1pn(j+1)ϕn
(
logQp ,V (η−1)∗(1)(xη,0)⊗ t−jej

)
for n ≥ 1
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The second part of the theorem is due to Perrin-Riou; the first part is
a consequence of Perrin-Riou’s explicit reciprocity conjecture Rec(V ),
proved independently by Benois and Colmez.
The explicit formulae for the regulator can be viewed as a
generalization of Coleman’s formulae for the special values at integers
of the Kubota-Leopoldt p-adic L-function in terms of polylogarithms
of cyclotomic units.
The formulae allow us to deduce the nonvanishing of an Euler system
from the nonvanishing of a p-adic L-function (when we know that
this p-adic L-function arises from an Euler system).
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A fundamental example

In this section, we describe a classical result of Coleman which was
Perrin-Riou’s inspiration for the construction of the regulator map.
Let Qp,n = Qp(ε(n)).
Then we have

Theorem (Coleman)
Let u = (un)n≥0 be an element of lim←−O

×
Qp,n

, where the inverse limit is
taken with respect to the norm maps. Then there exists a unique series
Colu(T ) ∈ Zp[[T ]]× such that Colu(ε(n) − 1) = un for every n.
Moreover, if we set Gu(T ) = log(Colu(T )), then there exists a unique
measure λu ∈ Λ on Γ such that∫

Γ
(1 + T )χ(x)λu(x) = Gu(T )− 1

p
∑
ζp=1

Gu(ζ(1 + T )− 1).

Bruno Joyal p-adic Hodge theory and Bloch-Kato theory



Review of some p-adic Hodge theory
The Bloch-Kato exponential, logarithm, and dual exponential maps

Perrin-Riou’s big logarithm
A fundamental example

Constructing the big logarithm: a sketch

Coleman series
Cyclotomic units and the Kubota-Leopoldt p-adic L-function

Remark that lim←−O
×
Qp,n

is equipped with a structure of Λ-module.
By Kummer theory, we have a natural map
lim←−O

×
Qp,n
→ H1

Iw(Qp,Qp(1)).
The map u 7→ λu is almost an isomorphism of Λ-modules (its kernel
and cokernel are Zp-modules of rank 1).
Coleman’s idea was that, for a suitable choice of u, one could
construct the Kubota-Leopoldt p-adic L-function.
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Choose γ ∈ Γ, and define u = (un) by

un = γε(n) − 1
ε(n) − 1

.

One can check that the un’s are norm-compabible, and moreover that
if k ∈ N− {0}, we have∫

Γ
χ(x)kλu(x) = (χ(γ)k − 1)(1− pk−1)ζ(1− k)

If γ is chosen to have infinite order, then the Kubota-Leopoldt p-adic
L-function is given by the (pseudo-) measure (1− γ)−1λu.
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Constructing the regulator map: a sketch

We briefly describe the construction of Perrin-Riou’s big logarithm.
We will need a number of ingredients:

1 The theory of (ϕ, Γ)-modules
2 Wach modules;
3 Fontaine’s isomorphism.

Bruno Joyal p-adic Hodge theory and Bloch-Kato theory



Review of some p-adic Hodge theory
The Bloch-Kato exponential, logarithm, and dual exponential maps

Perrin-Riou’s big logarithm
A fundamental example

Constructing the big logarithm: a sketch

(ϕ, Γ)-modules

Let F/Qp be an unramified extension.
We shall need the period rings AF ,A+

F ,BF ,B+
F and B+

rig,F .
Our choice of ε determines an element π ∈ A+

F , and we have
A+

F = OF [[π]]

We set AF = ̂AF [π−1]
We set B+

F = A+
F [1/p] and BF = AF [1/p].

We define B+
rig,F as the ring of power series f ∈ F [[π]] which converge

on the open unit disc.
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These rings are equipped with an OF -linear action of Γ, defined by
γ(π) = (π + 1)χ(γ) − 1, extended by linearity and continuity.
These rings are also equipped with a Frobenius ϕ, acting as the usual
Frobenius on OF and on π by ϕ(π) = (π + 1)p − 1.
We define a left inverse ψ for ϕ, characterized by the property that

(ϕ ◦ ψ)(f (π)) = 1
p
∑
ζp=1

f (ζ(1 + π)− 1).

One can show that there is a natural identification of (B+
rig,F )ψ=0 with

H(ΓF ).
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The (ϕ, Γ)-module

If V is a p-adic representation of GF , we define

DF (V ) = (B ⊗Qp V )HF ,

where B a certain period ring with BHF = BF .
DF (V ) is a BF -module equipped with commuting actions of Γ and ϕ,
i.e. it is a (ϕ, Γ)-module.
One can recover V from DF (V ) by

V = (B ⊗BF DF (V ))ϕ=1.
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The Wach module

Let V be a crystalline representation of GF , and T ⊆ V be a stable
lattice.
Then Wach and Berger have shown that there exists a unique
A+

F -submodule NF (T ) ⊆ DF (T ) such that:
1 NF (T ) is A+

F -free of rank dimV ;
2 ΓF preserves NF (T ) and acts trivially on NF (T )/πNF (T );
3 There exists b ∈ Z such that ϕ(πbNF (T )) ⊆ πbNF (T ), and
πbNF (T )/ϕ∗(πbNF (T )) is killed by a power of ϕ(π)/π.

We set NF (V ) = B+
F ⊗A+

F
N(T ); it is independent of T .

By a theorem of Berger, one can also recover Dcris(V ) from NF (V ) as

Dcris(V ) = (B+
rig,F ⊗B+

F
NF (V ))GF .
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The Fontaine isomorphism

Fontaine has showed that we can recover the Iwasawa cohomology of
V from its (ϕ, Γ)-module.
More precisely, he has has proved that there exists a canonical
isomorphism

DF (T )ψ=1 ∼−→ H1
Iw(F ,T ).

Moreover, if V has non-negative Hodge-Tate weights and no trivial
quotient, then a result of Berger implies that

DF (T )ψ=1 = NF (T )ψ=1,

and therefore we have

NF (T )ψ=1 ∼−→ H1
Iw(F ,T ).
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Let us now specialize to F = Qp, and let x ∈ H1
Iw(Qp,V ).

By Fontaine’s isomorphism, we can view

1⊗ x ∈
(
B+

rig,Qp
⊗B+

Qp
N(V )

)ψ=1
⊆
(
B+

rig,Qp
[1/t]⊗B+

Qp
Dcris(V )

)ψ=1

Then LV (x) is the unique element of H(Γ)⊗Qp Dcris(V ) such that

LV (x)(1 + π) = (1− ϕ)x .

I refer you to the paper of David and Sarah for a beautiful account of
the construction, and for the proof of the explicit formulae.
Thank you!
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