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Introduction

Setting

Let T > 0, Q be a bounded domain in RN (N € N*) of class C? and w
be an nonempty open subset of Q2. Consider the system

Oryr = div(diVys) + 911 - Vyr + g1z - Vy2 + anys + anye + Luu in Qr,

Orye = div(doVy2) + 921 - Vi + Goa - Vy2 + @21 )1 + a@)e in Qr,

y=0 onXr,

y(.,o):yO in Q,
(1)
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Introduction

Setting

Let T > 0, Q be a bounded domain in RN (N € N*) of class C? and w
be an nonempty open subset of Q2. Consider the system

Oryr = div(diVys) + 911 - Vyr + g1z - Vy2 + anys + anye + Luu in Qr,

Orye = div(doVy2) + 921 - Vi + Goa - Vy2 + @21 )1 + a@)e in Qr,

y=0 onXr,

y(.,o):yO in Q,
(1)

where y° € [2(Q;R?), u € L3(Qr), gj € L=(Qr;RN), a; € L=(Qr) for
alli,j e {1,2}, Qr = Q x (0, T), T := (0, T) x 92 and

N
3" dlei; = dol¢f? in Qr, vE € RN,

i.j=1

d,U S W;O(QT),
d’ = o' in Qr,
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Introduction

Cascade condition

THEOREM (M. Gonzalez-Burgos, L. De Teresa, 2010)
Let us suppose that

g21 =0in g7

and
(321 > goin gy or aq < —3dpin qT),

for a constant ay > 0 and qr :==w x (0, T).
Then System (1) is null controllable at time T.
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Condition on the dimension

THEOREM (S. Guerrero, 2007)
Let N =1, dy, db, ai1, g11, @, goo be constant and suppose that

o1 -V +ay=Piof in Qx(0,T),
where 0 € C2(Q) with || > C inwy C w and
Py :=mg-V + my,
for mg, m; € R. Moreover, assume that
mp # 0.

Then System (1) is null controllable at time T.
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Introduction

Boundary condition

THEOREM (A. Benabdallah, M. Cristofol, P. Gaitan, L. De Teresa,
2014)

Assume that aj € C*(Qr), gj € C3(Qr)N, d; € c3(Qr)* for all
i,j€{1,2} and

Jv # @ an open subset of dw N 0L,
dxp € v s.t. 921(1'7 Xo) o I/(Xo) #0 forallt e [O, T],

where v is the exterior normal unit vector to 052.
Then System (1) is null controllable at time T.
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Introduction

Necessary and sufficient condition

THEOREM 1 (M. D., P. Lissy, 2015 )

Let us assume that d;, g; and aj; are constant in space and time for
alli,je{1,2}.
Then System (1) is null controllable at time T if and only if

go1 #0 or a»; #0.
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Introduction

Necessary and sufficient condition

THEOREM 1 (M. D., P. Lissy, 2015 )

Let us assume that d;, g; and aj; are constant in space and time for
alli,je{1,2}.
Then System (1) is null controllable at time T if and only if

go1 #0 or a»; #0.

@ The term g»¢ can be different from zero in the control domain
© Theorem 1 is true for all N € N*
© We have no geometric restriction

© Concerning the controllability of a system with m equations
controlled by m — 1 forces, the last condition becomes:

ﬂl'o S {1,...7m— 1} S.t. Omi, 75 0 or Ami, 75 0.
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Additional result

THEOREM 2 (M. D., P. Lissy, 2015 )

Let us assume that Q2 := (0, L) with L > 0.

Then System (1) is null controllable at time T if for an open subset
(a, b) x O C gr one of the following conditions is verified:

(i) di, gj, aj € C'((a,b),C?(0)) fori,j=1,2 and

gy =0and @1 #0 in(a,b) x O,
1/ax € L~(0) in (a, b).

(i) di, gj, aj € C3((a,b),C’(0)) fori=1,2 and

|det(H(t, x))| > C for every (t, x) € (a,b) x O, where

—apq + OxGoq o1 0 0 0 0

—Oxapy + 9xxgoq —apq + 20x9gpq 0 921 0 0

Ho= —Btas1 + Otx o1 1921 —ap1 + Ox0p1 0 921 W
—Oxxdzy + Oxxx921 —20xapq + 39xx 021 Y —apq + 39x9goq 0 921

—agy + Ox0pp 920 — Ix0p —1 —% v ¥
—9xago + Ixx9oo —apgp + 29xgop — Oxxdp 0 9op — 20x0dy —1 )
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Remarks

Even though the last condition seems complicated, it can be
simplified in some cases :
@ System (1) is null controllable at time T if there exists an open
subset (a, b) x O C gy such that

{ngK;ER* in (a,b) x O,

a1 =0 in ( b) X O
8Xa22 75 8xxg22 in ( b) x O.

@ If the coefficients depend only on the time variable, the condition
becomes :

{ J(a,b) C(0,T)s.t.
921(t)0raz1 (t) # ap1(1)0:921(t) in (a, b).
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Introduction

A related result

Consider the following system

021 = Ox2Zy + 1,U in (0,7) x (0, T),
0tZo = OxxZo + P(X)0x2Z1 + q(X)z1 in (0,7) x (0, T),
z(0,:) = z(m,-)=0 on (0, T),
z(-,0)=2° in (0, ),

where 20 € [?((0,7);R?), u € L2((0,7) x (0, T)), p € W' (0,7),
ge L>~(0,7)and w:= (a,b) C (0, ).

THEOREM (M. D., 2015)

Suppose that p € W1, (0, ) N W2 (w), g € L>(0,7) N W] (w) and

(Supp(p) U Supp(q)) Nw # 2.

Then the above system is null controllable at time T.
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Presentation of the used method : Algebraic resolvability

The notion of the algebraic resolvability can be found in:

[1] Gromov, M. Partial differential relations Springer-Verlag, 1986, 9.

And was used for the first time the control theory in:

[2] Coron, J.-M. & Lissy, P. Local null controllability of the
three-dimensional Navier-Stokes system with a distributed control
having two vanishing components Invent. Math., 2014, 198, 833-880.
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Presentation of the used method : Algebraic resolvability
0®000

Example 1: Inversion of a differential operator

Let f € C(]0, 1]). Consider the problem

Find (w1, W) € C([0,1]; R?) s. t. :
ayWy — @ 0x Wy + az0xxWy + byWo — boOyxWo + D3Oy Wo = f,

(2)

with ay, az, as, b17 b2; b3 eR.
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Presentation of the used method : Algebraic resolvability
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Example 1: Inversion of a differential operator

Let f € C(]0, 1]). Consider the problem

{ Find (wy, w) € C°([0,1]; R?) s. t. : 2

ayWy — @ 0x Wy + az0xxWy + byWo — boOyxWo + D3Oy Wo = f,

with ay, az, as, b17 b2; b3 eR.
Problem (2) can be rewritten as follows :

where the operator L is given by

L := (a4 — @a0x + a30xx, by — b20x + b30xx) .
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Presentation of the used method : Algebraic resolvability
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Example 1: Inversion of a differential operator

If there exists a differential operator M := Z,'-‘io m; 0% with
mo, ..., My € R, M € N such that

LoM=I,

then (wq, we) := Mf is a solution to problem (2). The last equality is
equivalent to
M*o L =1d,
with
* _ a + 328x + aSaxx
L) = < by + b20x + b30xx )
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Example 1: Inversion of a differential operator

Consider the operator defined for all ¢ € C°([0, 1]) by

Ly a + a0x + agOxx @
E; 0= b1 + b0y + b30xx o= C ax‘P
axﬁT ’ a10x + @20xx + @30xxx axxSO
8)([:; by Ox + b20xx + b30xxx axxxSD
where
a a a 0
by b by O

0 a a as
0 b1 b b3
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Example 1: Inversion of a differential operator

Let us suppose that C is invertible, denote by

Ci1 Ci2 C13 Cis
c1.— Coq1 Cop Co3 C24
C31 C32 C33 Cz4
Ca1 Ca2 C43 Cag

Then we have

Ly %)
_ L3 Oxp
C 1 2 _ X ,
oLt | ¥ Oxtp
3,(55 8xxx50

where the first line is given by

C11Lie + C12L50 + C130xLip + C1a0x L5 = .
Thus the problem is solved if we define M* for all
(11,2) € C5°([0,1];R?) by

M* ( Z; ) 1= C11Y1 + Crah2 + C130xP1 + C1aOxia.
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Example 2 : An application to the controllability of parabolic systems

Kalman condition

Consider the system of n linear parabolic equations controlled by m

controls
Oty = Ay + Ay + Bl,u in Qr,
y=0 on ¥y, (3)
y(-,0) = y° in Q,

where y0 € [2(Q;R"), u € L?(Qr;R™), Ac L(R") and B € L(R™,R").
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Example 2 : An application to the controllability of parabolic systems

Kalman condition

Consider the system of n linear parabolic equations controlled by m

controls
Oty = Ay + Ay + Bl,u in Qr,
y=0 on ¥y, (3)
y(-,0) = y° in Q,

where y0 € [2(Q;R"), u € L?(Qr;R™), Ac L(R") and B € L(R™,R").

THEOREM (Ammar Khodja F., Benabdallah A., Dupaix C.,

Gonzalez-Burgos M., 2009)

System (3) is null controllable on the time interval (0, T), i.e. for all
initial condition y° € L2(Q;R™) there exists a control u € L2(Qr; R™)
such that the solution y to system (3) is equal to zero at time T, if and
only if

Rank[A|B] = n,

where [A|B] := (B|AB...| A" B).
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Presentation of the used method : Algebraic resolvability
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Example 2 : An application to the controllability of parabolic systems

Let us prove the positive result using the algebraic resolvability :
Analytic Problem:
Find (z, v) with Supp(v) C w x (e, T — ¢) such that

Oz=0Az+Az+1,v in Qr,
z=0 on X,

z(,0)=y% z(-,T)=0 inQ.

Algebraic Problem:
For f := 1,v, find (Z, V) such that

Supp(Z,V) Cw x (&, T —¢)
and
8z=NAZ+AZ+Bv+f in Q.

Conclusion:
The couple (y, u) := (z — Z, —V) is solution to system (3) in
W(0, T)" x L?(Qr; R™) satisfying y(T) = 0 in Q.
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Presentation of the used method : Algebraic resolvability
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Example 2 : An application to the controllability of parabolic systems

Resolution of the analytic problem

THEOREM

For all initial condition y° € L2(Q; R"), there exists a control
v € L2(Qr;R") such that the solution to

Oz=NAz+Az+1,v  in Qr,
z=0 on X,
z(,0)=y% z(,T)=0 inQ,

is null at time T. Moreover, we have Supp(v) C w x (e, T —¢) and

< CUHTH/T

HV”W:*‘(QT;Rn) )||y0||L2(Q;R”)'

This theorem can be proved using:
@ Method by fictitious control
@ Carleman inequalities
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Example 2 : An application to the controllability of parabolic systems

Resolution of the algebraic problem

For f := 1,v, let us find (Z, V) with Supp(Z,V) Cw x (&, T —¢) s.t.:
L(zZ,v)=f in Qr,

where
L(Z,V):= 0Z— NZ— AZ - BV.

It suffice to find a differential operator M defined on Cg°(Qr,R") s.t.
LoM=I.
The last equality is equivalent to
Mo L*=1d,

where L* is given for all ¢ € C*>(Qr,R") by

N —Oip — Ap — A*
il
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Example 2 : An application to the controllability of parabolic systems

Let S := (Sy, ..., Sn) given for all (x4, x2) € C*°(Q; R™™) by

S1(x1, X2) == —Xa,

82(X1 R Xz) = (81‘ + A)Xg — B"‘X17

Sk(x1,%2) = (9t + B)Sk—1(x1, X2) — B*(A*)2xs, V ke {3,...n}.
Then, we obtain
B*y
SoLlp=
B*(A*)”*Hp

Since the rank of K := (B|AB|...|A"'B) is equal to n, there exists
L € Mp nm(R) such that LK* = I,. The operator

M :=8"LF

is of order 2 in space and 1 in time and is a solution of our problem.
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Proof of Theorem 1

Let us recall system (1) and Theorem 1. Consider the system of two
parabolic equations controlled by one force

Oy =div(DVy)+ G-Vy + Ay + e1l,u  in Qr,
y=0 onXr, (1)
y('70):y0 in Q,

where y° € [2(Q; R?), D := (dy, db) € L(RZN, R2N)
G = (gj) € L(R?N,R?), A:= (a;) € L(R?).

THEOREM 1 (M. D., P. Lissy, 2015)

Let us assume that d;, g;j and a; ; are constant in space and time
foralli,j e {1,2}.
Then System (1) is null controllable at time T if and only if

g21 #0 or a1 #0.
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Proof of Theorem 1

Strategy

Analytic problem:
Find (z, v) with Supp(v) Cw x (¢, T —¢) s.t. :

z=0 on X,

0z =div(DVz)+ G-Vz+ Az+ N(1,v) in Qr,
z(0,-)=y° z(T,)=0 in Q,

where the operator A is well chosen.

Difficulties: e the control is in the range of the operator NV,
¢ v has to be regular enough.

Algebraic problem:

Find (z, V) with Supp(Z,V) Cw x (¢, T —¢) s.t. :

oz = div(DVZ) + G-VZ + Az + BV + N'fin Qr,

Conclusion:
The couple (y, u) := (z — Z, —Vv) will be a solution to system (1) and
will satisfy y(T) =01in Q

Indirect controllability of linear parabolic systems 01/09/15
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Proof of Theorem 1

Resolution of the algebraic problem

The algebraic problem can be rewritten as :
For f := 1., find (Z, V) with Supp(Z,V) C w x (g, T — ¢) such that

L(Z,V) = NT,
where
L(Z,V):= 02— div(DVZ)— G-VZ— Az — BV.

This problem is solved if we can find a differential operator M such
that

LoM=WN.
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Proof of Theorem 1

The last equality is equivalent to

M* OE* :N*7
where L* is given for all ¢ € C2°(Qr)? by
Lip —Oupr — div(chVeor) + 30 {gj1 - Vo — anepy}
LYo = K%‘P = —0po — div(di Vo) + Z/?:1 {g,-g -V — ajgcpj}
Lsp ©1
We remark that
< (921 -V —a21) Ly ) — N
£1*<p+(8,+div(d1V)—g11 'V+a11)£§g0 !

where
N* = go1 - V + apy.

Thus the algebraic problem is solved by taking

— ( (G21 -V — a21)¢3 )
' Y1+ (0 +div(di V) —g11 -V +ai ) )
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Proof of Theorem 1

Resolution of the analytic problem: sketch of the proof

The system
Oz =div(DVz) + G- Vz+ Az+ N(1,Vv) in Qr,
z=0 on X,
z(0,) =y z(T,)=0 in Q,

is null controllable if for all 1/° € L2(Q; R?) the solution of the adjoint
system

=0 on X1,
QZ}(Ta) :1/}0 in Q.

satisfies the following inequality of observability

{ —9pp = div(D*V)) — G* - Vo) + A% in Qr,

;
/|¢(0,X)|2dX< Cobs/ /,fJ'OIJ\/*zZJ(t‘,x)|2 dxdt,
Q 0 w

where pg can be chosen to be exponentially decreasing at times t =0
andt=T.
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Proof of Theorem 1

This inequality is obtain by applying the differential operator
VVN* =VV(—ag1 + go1 - V)

to adjoint system. More precisely we study the solution
¢ := 9;0N*¢ of the system

—019jj = Dﬁ@j — G- Vo +A¢; inQr,

le] O(VVN ™

c’Tﬁ = on X on 2,

¢(T,-) = VVNy° in Q.
Remark : We need that VVN* commutes with the other operators of
the system, what is possible with some constant coefficients.
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Proof of Theorem 1

Following the ideas of Barbu developed in [1], the control is chosen
as the solution of the problem

minimize Jx(V) : / 1\V|2dth + 5/ |z(T)|Pax,
2 2 Ja
v e L2(Qr, p’”z

(4)

We obtain the regularity of the control with the help of the below
Carleman inequality

3 T
> [ oviudit < Or [ [ A ult 0P at
k=1 Qr 0 w

where py are some appropriate weight functions.
[1] Barbu, V. Exact controllability of the superlinear heat equation Appl. Math. Optim.,
2000, 42, 73-89
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Comments

@ We remark that each condition implies in particular that
|g21] > Cin (a,b) x O or |az1| > Cin(a,b) x O. (5)

Our conjecture is that, Condition (5) is sufficient as soon as we
restrict to the class of coupling terms that intersect the control
region (Work in progress with P. Lissy).
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Comments

Comments

@ We remark that each condition implies in particular that
|g21] > Cin (a,b) x O or |az1| > Cin(a,b) x O. (5)

Our conjecture is that, Condition (5) is sufficient as soon as we
restrict to the class of coupling terms that intersect the control
region (Work in progress with P. Lissy).

@ Consider the system of n equations controlled by m forces

y=0 on X,
y(ao):yo il’lQ,

where y° € [2(Q;R"), G € L>(Qr; L(R™, R")),
A€ L>(Qr; L(R"), B € L>=(Qr; LR™ R") and u € L2(Qr; R™).
Which kind of general condition can we hope ?

{ oy =Ay+G-Vy+ Ay + Bl ,u inQr,

Indirect controllability of linear parabolic systems 01/09/15
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Comments

Thank you for your attention !
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