
Obstacle Problems for the p-Laplacian via
Tug-of-War games

Partial differential equations, optimal design and numerics
Centro de Ciencias de Benasque Pedro Pascual

Juan J. Manfredi
University of Pittsburgh

September 2, 2015



Description of the problem

This is joint work with my colleague Marta Lewicka.
The cartoons in the next slides are drawn by our
colleague Kiumars Kaveh.

Ω ⊂ RN open, bounded set with Lipschitz boundary

Ψ : Rn → R bounded Lipschitz function (the obstacle)

F : ∂Ω→ R bounded Lipschtiz function (boundary data)
compatibility condition : F (x) ≥ Ψ(x) for x ∈ ∂Ω.


−∆pu ≥ 0 in Ω,

u ≥ Ψ in Ω,
−∆pu = 0 in {x ∈ Ω; u(x) > Ψ(x)},

u = F on ∂Ω.

(1)



Notions of weak solutions I

For the p-Laplace operator:

−∆pu = −div
(
|∇u|p−2∇u

)
we can consider FOUR notions of supersolution:

1. Weak (or Sobolev) supersolutions: These are functions
v ∈W 1,p

loc(Ω) such that:
ˆ

Ω
〈|∇v |p−2∇v ,∇φ〉 dx ≥ 0

for all test functions φ ∈ C∞0 (Ω) that are non-negative in Ω.

2. Potential theoretic supersolutions or p-superhamonic
functions: A lower-semicontinuous function v : Ω→ R ∪ {∞} is
p-superharmonic if is not identically ∞ on any connected
component of Ω and it satisfies the comparison principle with
respect to p-harmonic functions; that is: if D b Ω, and w ∈ C (D̄)
is p-harmonic in D satisfying w ≤ v on ∂D, then we must have:
w ≤ v on D.



Notions of weak solutions II

3. Viscosity supersolutions: A lower-semicontinuous function
v : Ω→ R ∪ {∞} is a viscosity p-supersolution if it is not
identically ∞ on any connected component of Ω, and if whenever
φ ∈ C∞0 (Ω) is such that φ(x) ≤ v(x) for all x ∈ Ω with equality at
one point φ(x0) = v(x0) (φ touches v from below at x0), and
∇φ(x0) 6= 0, then we have:

−∆pφ(x0) ≥ 0. (2)

. weak supersolutions ⇒ potential theoretic and viscosity
supersolutions (easy)
. bounded p-superharmonic functions are weak supersolutions (not
easy even for p = 2), Lindqvist (1986)
. viscosity supersolutions ⇔ p-superharmonic
Juutinen,Lindqvist,M (1999).
Therefore, these three notions of supersolution agree on the class
of bounded functions.



Notions of weak solutions III

4. Supersolutions in the sense of means
(M,Parvianinen,Rossi, 2010): Choose α and β as follows:

α =
p − 2

N + p
, β =

2 + N

N + p
.

A continuous function v : Ω→ R ∪ {∞} is a supersolution in the
sense of means if whenever φ ∈ C∞0 (Ω) is such that φ(x) ≤ v(x)
for all x ∈ Ω, with equality at one point φ(x0) = v(x0) (φ touches
v from below at x0), then we have:

0 ≤ −φ(x0)+
α

2
sup

Bε(x0)
φ+

α

2
inf

Bε(x0)
φ+ β

 
Bε(x0)

φ+o(ε2) as ε→ 0+.

(3)
By 0 ≤ h(ε) + o(ε2) as ε→ 0+ we mean that:

lim
ε→0+

[h(ε)]−

ε2
= 0.



p-harmonious functions

Let 0 < ε0 � 1. Define

Γ = {x ∈ RN \ Ω; dist(x ,Ω) < ε0}, X = Ω ∪ Γ.

Let now 0 < ε ≤ ε0 be a fixed scale.
ε-p-harmonious functions: A bounded function u : X → R is
ε-p-harmonious with boundary values given by a (Borel) function
F : Γ̄→ R if:

uε(x) =


α

2
sup
Bε(x)

uε +
α

2
inf

Bε(x)
uε + β

 
Bε(x)

uε for x ∈ Ω

F (x) for x ∈ Γ.

(4)



p-harmonious functions II

M-Parvianen-Rossi (2012) proved that u = limε→0 uε is a solution
to the Dirichlet problem:{

−∆pu = 0 in Ω,
u = F on ∂Ω.

(5)

The proof consist of two parts:
(1) show that the family {uε} is equicontinuous in a certain sense
so that we can extract limits that are continuous functions (here
where the probability is used in the form of Tug-of-War games),
and
(2) prove that any such limit is a weak solution in the means (and
therefore viscosity and weak) of the Dirichlet problem (5).This
follows from general stability theory of viscosity solutions.



Obstacle problems in the linear case

Consider a second order differential operator

L(v(x)) =
1

2
trace(σ(x)σ′(x)D2v),

where the matrix function σ is Lipschitz continuous. Consider the
obstacle problem in Rn

min (−Lv , v − g) = 0, (6)

where g are appropriately regular. To solve this problem
probabilistically we first solve the stochastic differential equation

dXt = σ(Xt) dWt (7)

starting from x at time t=0. Denoting by {Xx
t , t ≥ 0} its solution,

we write the value function

v(x) = sup
τ∈T

E [g(Xx
τ )] , (8)

where T denotes the set of all stopping times valued in [0,∞].



Obstacle problems in the non-linear case

We are looking for a probabilistic approach to the obstacle problem
whtn second order linear differential operator L is replaced by the
p-Laplace operator

−∆pu = −div
(
|∇u|p−2∇u

)
.

Since our operator is non-linear, we don’t have a suitable variant of
the linear stochastic differential equation that we could use to write
a formula similar to (8). Instead we will use tug-of-war games with
noise as our basic stochastic process. Tug-of-war games run on
discrete time, so we will show that the solutions to the obstacle
problem for the p-Laplacian for p ∈ [2,∞), can be interpreted as
limits of values of a specific obstacle tug-of-war game with noise,
when the step-size ε determining the allowed length of move of a
token, at each step of the game, converges to 0.



ε-approximate obstacle problem

We fix ε fixed in this section and write u instead of uε

Theorem (Existence and uniqueness)

There exists a unique bounded Borel function u : X → R which
satisifes:

u(x) =


max

{
Ψ(x),

α

2
sup
Bε(x)

u +
α

2
inf

Bε(x)
u + β

 
Bε(x)

u

}
for x ∈ Ω

F (x) for x ∈ Γ.

This formula is similar to the Wald-Bellman equation of optimal
stopping.



Playing tug-of-war games

Our board is a domain Ω, which we assume bounded and Lipschitz
for simplicity. We fix a step-size ε > 0 small. Start with a token at
a point x0 ∈ Ω. Two players take turns to move (following a
specific rule) token to another point x1 ∈ Ω at most at distance ε
from x0. We keep applying the rules and go from x1 to x2, from x2

to x3,... such that
xn ∈ B(xn−1, ε).

We need to specify the game rules and a stopping criterium.

The game will stop once the token reaches the boundary strip Γ
(or is within ε from the boundary of Ω).
On the boundary the rules will be determined by two positive
numbers α and β,

α + β = 1

and two players I and II.



Playing tug-of-war games, II

With probability α the players flip an unbiased coin and whoever
wins makes a move; that is, each player gets to move the taken
with probability α/2.
With probability β the token is moved at random by a distance at
most ε.
Finally, we have a pay off-function

F : Γ→ R,

which we assume Lipschitz and bounded.
When the token reaches the boundary at xτ ∈ Γ, player II pays
player I the amount F (xτ ) euros.
A smart player I would steer the token towards the maximum
values of F , while a smart player II will steer the token towards the
minimum values of F .



Tug of War Games with Noise

Figure: Player I and Player II compete in a Tug-of-War with random noise



Tug of War Games with Noise
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Figure: Player I, Player II and random noise with their probabilities



The measure spaces (X∞,x0,F x0
n ) and (X∞,x0,F x0).

Fix any x0 ∈ X and consider the space of infinite sequences ω
(recording positions of token during the game), starting at x0:

X∞,x0 = {ω = (x0, x1, x2 . . .); xn ∈ X for all n ≥ 1}.

For each n ≥ 1, let Fx0
n be the σ-algebra of subsets of X∞,x0 ,

containing sets of the form:

A1 × . . .× An := {ω ∈ X∞,x0 ; xi ∈ Ai for i : 1 . . . n},

for all n-tuples of Borel sets A1, . . . ,An ⊂ X .
Let Fx0 be now defined as the smallest σ-algebra of subsets of
X∞,x0 , contaning

⋃∞
n=1Fx0

n . Clearly, the increasing sequence
{Fx0

n }n≥1 is a filtration of Fx0 , and the coordinate projections
xn(ω) = xn are Fx0 measurable (random variables) on X∞,x0 .



Stopping times

Define the exit time from the set Ω:

τ0(ω) = min{n ≥ 0; xn ∈ Γ}

τ0 : X∞,x0 → N ∪ {+∞} is Fx0 measurable and, in fact, it is a
stopping time with respect to the filtration {Fx0

n }, that is:

∀n ≥ 0 {ω ∈ X∞,x0 ; τ0(ω) ≤ n} ∈ Fx0
n .

Let now τ : X∞,x0 → N ∪ {+∞} be any stopping time such that
τ ≤ τ0. For n ≥ 1 we define the Borel sets:

Aτn = {(x0, x1, . . . , xn) : ∃ ω = (x0, x1, . . . , xn, xn+1, . . .), τ(ω) ≤ n}.

Note that (x0, . . . , xn) ∈ Aτn whenever xn ∈ Γ.



Strategies

For every n ≥ 1, let σnI , σ
n
II : X n+1 → X be Borel measurable

functions with the property that:

σnI (x0, x1, . . . , xn), σnII (x0, x1, . . . , xn) ∈ Bε(xn) ∩ X .

We call σI = {σnI }n≥1 and σII = {σnII}n≥1 the strategies of Players
I and II, respectively.



The probability measure Px0
τ,σI ,σII

Given τ, σI , σII as above, we define now a family of probabilistic
(Borel) measures on X , parametrised by the finite histories
(x0, . . . , xn):

γn[x0, x1, . . . , xn] =


α

2
δσn

I (x0,x1,...,xn) +
α

2
δσn

II (x0,x1,...,xn) + β
LNbBε(xn)

|Bε(xn)|
when (x0, . . . , xn) 6∈ Aτn

δxn otherwise

where δy denotes the Dirac delta at a given y ∈ X . Note that
since τ ≤ τ0, then γn[x0, x1, . . . , xn] = δxn whenever xn ∈ Γ



The probability measure Px0
τ,σI ,σII

, II

For every n ≥ 1 we now define the probability measure Pn,x0
τ,σI ,σII on

(X∞,x0 ,Fx0
n ) by setting:

Pn,x0
τ,σI ,σII

(A1×. . .×An) =

ˆ
A1

. . .

ˆ
An

1 dγn−1[x0, x1, . . . , xn−1] . . . dγ0[x0]

for every n-tuple of Borel sets A1, . . . ,An ⊂ X . Here, A1 is
interpreted as the set of possible successors x1 of the initial
position x0, which we integrate dγ0[x0], while xn ∈ An is a possible
successor of xn−1 which we integrate dγn−1[x0, x1, . . . , xn−1], etc.
For every n ≥ 1 and every Borel set A ⊂ X , the function:

X n+1 3 (x0, x1, . . . , xn) 7→ γn[x0, x1, . . . , xn](A) ∈ R

is Borel measurable.



From Kolmogorov’s construction it follows that

Px0
τ,σI ,σII

= lim
n→∞

Pn,x0
τ,σI ,σII

on (X∞,x0 ,Fn) so that:

A1×. . .×An ∈ Fx0
n Px0

τ,σI ,σII
(A1×. . .×An) = Pn,x0

τ,σI ,σII
(A1×. . .×An).

Lemma

Let v : X → R be a bounded Borel function. For any n ≥ 1, the
conditional expectation Ex0

τ,σI ,σII
{v ◦ xn | Fx0

n−1} of the random
variable v ◦ xn is a Fx0

n−1 measurable function on X∞,x0 (and hence
it depends only on the initial n positions in the history
ω = (x0, x1, . . . , xn−1), given by:

Ex0
τ,σI ,σII

{v ◦ xn | Fx0
n−1}(x0, . . . , xn−1) =

ˆ
X
v dγn−1[x0, . . . , xn−1].



The game stops almost surely and the game has a value

Lemma

Assume that β > 0. Then each game stops almost surely, i.e.:

Px0
τ,σI ,σII

(
{τ <∞}

)
= 1.

Theorem

Define:
G : X → R G = χΓF + χΩΨ,

Define the two value functions:

uI (x0) = sup
τ,σI

inf
σII

Ex0
τ,σI ,σII

[G ◦ xτ ], uII (x0) = inf
σII

sup
τ,σI

Ex0
τ,σI ,σII

[G ◦ xτ ],

where sup and inf are taken over all strategies σI , σII and stopping
times τ ≤ τ0. Then:

uI = u = uII in Ω,

where u is a bounded, Borel function satisfying (??).



The heart of the matter: Strategies ⇒ Estimates

To see that uII ≤ u in Ω fix η > 0 and consider an arbitrary
strategy σI and an arbitrary stopping time τ ≤ τ0. Choose a
strategy σ0,II for Player II, such that

u(σn0,II (xn)) ≤ inf
Bε(xn)

u +
η

2n+1

Then, the sequence of random variables{
u ◦ xn +

η

2n

}
n≥0

is a supermartingale with respect to the filtration {Fx0
n }. It

follows that:

uII (x0) ≤ sup
τ,σI

Ex0
τ,σI ,σ0,II

[G ◦ xτ +
η

2τ
] ≤ sup

τ,σI

Ex0
τ,σI ,σ0,II

[u ◦ xτ +
η

2τ
]

≤ sup
τ,σI

Ex0
τ,σI ,σ0,II

[u ◦ x0 +
η

20
] = u(x0) + η.



Main Result

Theorem

Let p ∈ [2,∞). Let F : ∂Ω→ R, Ψ : Ω̄→ R be two Lipschitz
continuous functions, satisfying Ψ ≤ F on ∂Ω.

Let uε : Ω ∪ Γ→ R be the unique ε-p-superharmonious function
with boundary values F and obstacle Ψ.

Then uε converge as ε→ 0, uniformly in Ω̄, to a continuous
function u which is the unique viscosity solution to the obstacle
problem for the p-Laplacian with boundary values F and obstacle
Ψ.



The key is to prove the uniform convergence of uε, as ε→ 0, in Ω̄.
This follows form aversion of the Ascoli-Arzelá theorem, valid for
equibounded (possibly discontinous) functions with “uniformly
vanishing oscillation”:

Lemma (M-Parviainen-Rossi, 2012)

Let uε : Ω̄→ R be a set of functions such that:
(i) ∃C > 0 ∀ε > 0 ‖uε‖L∞(Ω̄) ≤ C ,

(ii) ∀η > 0 ∃r0, ε0 > 0 ∀ε < ε0 ∀x0, y0 ∈ Ω̄ |x0 − y0| <
r0 =⇒ |uε(x0)− uε(y0)| < η
Then, a subsequence of uε converges uniformly in Ω̄, to a
continuous function u.

Lemma (KEY LEMMA)

Let uε : X → R be the ε-p-superharmonious in our main theorem.
Then, for every η > 0 there exist r0, ε0 > 0 such that
∀ε < ε0,∀y0 ∈ ∂Ω, ∀x0 ∈ Ω̄ we have

|x0 − y0| < r0 =⇒ |uε(x0)− uε(y0)| < η.



Strategies ⇒ Estimates, II

Let δ > 0 and z0 ∈ RN \ Ω satisfy: Bδ(z0) ∩ Ω̄ = {y0}. Define
strategy σ0,II for Player II:

σn0,II (x0, . . . xn) = σn0,II (xn) =

{
xn + (ε− ε3) z0−xn

|z0−xn| if xn ∈ Ω

xn if xn ∈ Γ.

Let σI be an arbitrary strategy for Player I and let τ ≤ τ0 be any
admissible stopping time. We then have

Ex0
τ,σI ,σ0,II

[|xτ − y0|] ≤ |x0 − y0|+ 2δ + Cδε
2Ex0

τ,σI ,σ0,II
[τ ].

Lemma

Ex0
τ,σI ,σ0,II

[|xτ − y0|] ≤ Cδ + Cδ(|x0 − x0|+ ε)

for all ε sufficiently small

.



The double obstacle problem (Codenotti-Lewicka-M)

Let Ω ⊂ RN and F : ∂Ω→ R as before, and bounded and
Lipschitz functions Ψ1,Ψ2 : RN → R such that Ψ1 ≤ Ψ2 in Ω̄ and
Ψ1 ≤ F ≤ Ψ2 on ∂Ω. Consider the following double-obstacle
problem: 

−∆pu ≥ 0 in {x ∈ Ω; u(x) < Ψ2(x)}
−∆pu ≤ 0 in {x ∈ Ω; u(x) > Ψ1(x)}
Ψ1 ≤ u ≤ Ψ2 in Ω

u = F on ∂Ω.

(9)

Note that under the third condition in (9), the first two conditions
are jointly equivalent to:

max
{
u −Ψ2,min

{
−∆pu, u −Ψ1

}}
= 0.



Double Obstacle Problem

Theorem

Let Ψ1,Ψ2 : RN → R and F : Γ→ R be bounded Borel functions
such that Ψ1 ≤ Ψ2 in X and Ψ1 ≤ F ≤ Ψ2 in Γ. Then, for every
ε < ε̄0, there exists a unique Borel function u : X → R which
satisfies:

u(x) =max

{
Ψ1(x),min

{
Ψ2(x),

α

2
sup
Bε(x)

u +
α

2
inf

Bε(x)
u + β

 
Bε(x)

u
}}

for x ∈ Ω and
u(x) = F (x)

for x ∈ Γ.



Double Obstacle Problem

Theorem

Let p ∈ [2,∞) and define:

α =
p − 2

p + N
, β =

2 + N

p + N
.

Let F ,Ψ1,Ψ2 : RN → R be bounded Lipschitz continuous
functions such that:

Ψ1 ≤ Ψ2 in Ω̄ and Ψ1 ≤ F ≤ Ψ2 in RN \ Ω.

Let uε be the unique solution from the previous theorem. Then
{uε} converge, as ε→ 0, uniformly in Ω̄, to a continuous function
u : Ω̄→ R which is a viscosity solution to the double-obstacle
problem (9).
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