Obstacle Problems for the p-Laplacian via Tug-of-War games

Partial differential equations, optimal design and numerics Centro de Ciencias de Benasque Pedro Pascual

> Juan J. Manfredi University of Pittsburgh

> September 2, 2015

This is joint work with my colleague Marta Lewicka. The cartoons in the next slides are drawn by our colleague Kiumars Kaveh.

- $\Omega \subset \mathbb{R}^N$ open, bounded set with Lipschitz boundary
- $\Psi : \mathbb{R}^n \to \mathbb{R}$ bounded Lipschitz function (the obstacle)
- F: ∂Ω → ℝ bounded Lipschtiz function (boundary data) compatibility condition : F(x) ≥ Ψ(x) for x ∈ ∂Ω.

$$\begin{cases}
-\Delta_{\rho}u \geq 0 & \text{in }\Omega, \\
u \geq \Psi & \text{in }\Omega, \\
-\Delta_{\rho}u = 0 & \text{in }\{x \in \Omega; \ u(x) > \Psi(x)\}, \\
u = F & \text{on }\partial\Omega.
\end{cases}$$
(1)

Notions of weak solutions I

For the *p*-Laplace operator:

$$-\Delta_p u = -\operatorname{div}(|\nabla u|^{p-2}\nabla u)$$

we can consider FOUR notions of supersolution:

1. Weak (or Sobolev) supersolutions: These are functions $v \in W^{1,p}_{loc(\Omega)}$ such that:

$$\int_{\Omega} \langle |
abla v|^{
ho-2}
abla v,
abla \phi
angle \, \, \mathrm{d} x \geq 0$$

for all test functions $\phi \in C_0^{\infty}(\Omega)$ that are non-negative in Ω .

2. Potential theoretic supersolutions or *p*-superhamonic functions: A lower-semicontinuous function $v : \Omega \to \mathbb{R} \cup \{\infty\}$ is *p*-superharmonic if is not identically ∞ on any connected component of Ω and it satisfies the comparison principle with respect to *p*-harmonic functions; that is: if $D \Subset \Omega$, and $w \in C(\overline{D})$ is *p*-harmonic in *D* satisfying $w \le v$ on ∂D , then we must have: $w \le v$ on *D*.

Notions of weak solutions II

3. Viscosity supersolutions: A lower-semicontinuous function $v : \Omega \to \mathbb{R} \cup \{\infty\}$ is a viscosity *p*-supersolution if it is not identically ∞ on any connected component of Ω , and if whenever $\phi \in C_0^{\infty}(\Omega)$ is such that $\phi(x) \leq v(x)$ for all $x \in \Omega$ with equality at one point $\phi(x_0) = v(x_0)$ (ϕ touches *v* from below at x_0), and $\nabla \phi(x_0) \neq 0$, then we have:

$$-\Delta_{\rho}\phi(x_0) \ge 0. \tag{2}$$

 \triangleright weak supersolutions \Rightarrow potential theoretic and viscosity supersolutions (easy)

 \triangleright bounded *p*-superharmonic functions are weak supersolutions (not easy even for p = 2), Lindqvist (1986)

 \triangleright viscosity supersolutions \Leftrightarrow *p*-superharmonic Juutinen,Lindqvist,M (1999).

Therefore, these three notions of supersolution agree on the class of bounded functions.

Notions of weak solutions III

4. Supersolutions in the sense of means (M,Parvianinen,Rossi, 2010): Choose α and β as follows:

$$\alpha = \frac{p-2}{N+p}, \qquad \beta = \frac{2+N}{N+p}$$

A continuous function $v : \Omega \to \mathbb{R} \cup \{\infty\}$ is a supersolution in the sense of means if whenever $\phi \in C_0^{\infty}(\Omega)$ is such that $\phi(x) \le v(x)$ for all $x \in \Omega$, with equality at one point $\phi(x_0) = v(x_0)$ (ϕ touches v from below at x_0), then we have:

$$0 \leq -\phi(x_0) + \frac{\alpha}{2} \sup_{B_{\epsilon}(x_0)} \phi + \frac{\alpha}{2} \inf_{B_{\epsilon}(x_0)} \phi + \beta \oint_{B_{\epsilon}(x_0)} \phi + o(\epsilon^2) \quad \text{as } \epsilon \to 0^+.$$
(3)

By $0 \leq h(\epsilon) + o(\epsilon^2)$ as $\epsilon \to 0^+$ we mean that:

$$\lim_{\epsilon \to 0^+} \frac{[h(\epsilon)]^-}{\epsilon^2} = 0.$$

Let $0 < \epsilon_0 \ll 1$. Define

$$\Gamma = \{ x \in \mathbb{R}^N \setminus \Omega; \text{ dist}(x, \Omega) < \epsilon_0 \}, \qquad X = \Omega \cup \Gamma.$$

Let now $0 < \epsilon \leq \epsilon_0$ be a fixed scale.

 ϵ -*p*-harmonious functions: A bounded function $u: X \to \mathbb{R}$ is ϵ -*p*-harmonious with boundary values given by a (Borel) function $F: \overline{\Gamma} \to \mathbb{R}$ if:

$$u_{\epsilon}(x) = \begin{cases} \frac{\alpha}{2} \sup_{B_{\epsilon}(x)} u_{\epsilon} + \frac{\alpha}{2} \inf_{B_{\epsilon}(x)} u_{\epsilon} + \beta \oint_{B_{\epsilon}(x)} u_{\epsilon} & \text{for } x \in \Omega \\ F(x) & \text{for } x \in \Gamma. \end{cases}$$
(4)

M-Parvianen-Rossi (2012) proved that $u = \lim_{\epsilon \to 0} u_{\epsilon}$ is a solution to the Dirichlet problem:

$$\begin{cases}
-\Delta_{p}u = 0 & \text{in } \Omega, \\
u = F & \text{on } \partial\Omega.
\end{cases}$$
(5)

The proof consist of two parts:

(1) show that the family $\{u_{\epsilon}\}$ is equicontinuous in a certain sense so that we can extract limits that are continuous functions (here where the probability is used in the form of Tug-of-War games), and

(2) prove that any such limit is a weak solution in the means (and therefore viscosity and weak) of the Dirichlet problem (5). This follows from general stability theory of viscosity solutions.

Obstacle problems in the linear case

Consider a second order differential operator

$$\mathfrak{L}(\mathbf{v}(\mathbf{x})) = \frac{1}{2}\operatorname{trace}(\sigma(\mathbf{x})\sigma'(\mathbf{x})D^2\mathbf{v}),$$

where the matrix function σ is Lipschitz continuous. Consider the obstacle problem in \mathbb{R}^n

$$\min\left(-\mathfrak{L}v, v-g\right) = 0, \tag{6}$$

where g are appropriately regular. To solve this problem probabilistically we first solve the stochastic differential equation

$$d\mathbf{X}_t = \sigma(\mathbf{X}_t) \, d\mathbf{W}_t \tag{7}$$

starting from x at time t=0. Denoting by $\{\mathbf{X}_t^x, t \ge 0\}$ its solution, we write the value function

$$v(x) = \sup_{\tau \in \mathfrak{T}} \mathbb{E}\left[g(\mathbf{X}_{\tau}^{x})\right],\tag{8}$$

where \mathfrak{T} denotes the set of all stopping times valued in $[0,\infty]$.

We are looking for a probabilistic approach to the obstacle problem whtn second order linear differential operator \mathfrak{L} is replaced by the *p*-Laplace operator

$$-\Delta_{p}u = -\operatorname{div}(|\nabla u|^{p-2}\nabla u).$$

Since our operator is non-linear, we don't have a suitable variant of the linear stochastic differential equation that we could use to write a formula similar to (8). Instead we will use tug-of-war games with noise as our basic stochastic process. Tug-of-war games run on discrete time, so we will show that the solutions to the obstacle problem for the *p*-Laplacian for $p \in [2, \infty)$, can be interpreted as limits of values of a specific obstacle tug-of-war game with noise, when the step-size ϵ determining the allowed length of move of a token, at each step of the game, converges to 0.

We fix ϵ fixed in this section and write u instead of u_ϵ

Theorem (Existence and uniqueness)

There exists a unique bounded Borel function $u : X \to \mathbb{R}$ which satisifes:

$$u(x) = \begin{cases} \max \left\{ \Psi(x), \frac{\alpha}{2} \sup_{B_{\epsilon}(x)} u + \frac{\alpha}{2} \inf_{B_{\epsilon}(x)} u + \beta \oint_{B_{\epsilon}(x)} u \right\} & \text{for } x \in \Omega \\ F(x) & \text{for } x \in \Gamma. \end{cases}$$

This formula is similar to the Wald-Bellman equation of optimal stopping.

Playing tug-of-war games

Our board is a domain Ω , which we assume bounded and Lipschitz for simplicity. We fix a step-size $\epsilon > 0$ small. Start with a token at a point $x_0 \in \Omega$. Two players take turns to move (following a specific rule) token to another point $x_1 \in \Omega$ at most at distance ϵ from x_0 . We keep applying the rules and go from x_1 to x_2 , from x_2 to $x_3,...$ such that

 $x_n \in B(x_{n-1}, \epsilon).$

We need to specify the game rules and a stopping criterium.

The game will stop once the token reaches the boundary strip Γ (or is within ϵ from the boundary of Ω). On the boundary the rules will be determined by two positive numbers α and β ,

$$\alpha + \beta = 1$$

and two players I and II.

With probability α the players flip an unbiased coin and whoever wins makes a move; that is, each player gets to move the taken with probability $\alpha/2$.

With probability β the token is moved at random by a distance at most $\epsilon.$

Finally, we have a pay off-function

 $F: \Gamma \to \mathbb{R},$

which we assume Lipschitz and bounded.

When the token reaches the boundary at $x_{\tau} \in \Gamma$, player II pays player I the amount $F(x_{\tau})$ euros.

A smart player I would steer the token towards the maximum values of F, while a smart player II will steer the token towards the minimum values of F.

Tug of War Games with Noise

Figure: Player I and Player II compete in a Tug-of-War with random noise

-

Tug of War Games with Noise

Figure: Player I, Player II and random noise with their probabilities

The measure spaces $(X^{\infty,x_0},\mathcal{F}_n^{x_0})$ and $(X^{\infty,x_0},\mathcal{F}^{x_0})$.

Fix any $x_0 \in X$ and consider the space of infinite sequences ω (recording positions of token during the game), starting at x_0 :

$$X^{\infty,x_0} = \{ \omega = (x_0, x_1, x_2 \ldots); \ x_n \in X \text{ for all } n \ge 1 \}.$$

For each $n \ge 1$, let $\mathcal{F}_n^{x_0}$ be the σ -algebra of subsets of X^{∞, x_0} , containing sets of the form:

$$A_1 \times \ldots \times A_n := \{ \omega \in X^{\infty, x_0}; x_i \in A_i \text{ for } i : 1 \ldots n \},\$$

for all *n*-tuples of Borel sets $A_1, \ldots, A_n \subset X$. Let \mathcal{F}^{x_0} be now defined as the smallest σ -algebra of subsets of X^{∞,x_0} , containing $\bigcup_{n=1}^{\infty} \mathcal{F}_n^{x_0}$. Clearly, the increasing sequence $\{\mathcal{F}_n^{x_0}\}_{n\geq 1}$ is a filtration of \mathcal{F}^{x_0} , and the coordinate projections $x_n(\omega) = x_n$ are \mathcal{F}^{x_0} measurable (random variables) on X^{∞,x_0} . Define the exit time from the set Ω :

$$\tau_0(\omega) = \min\{n \ge 0; x_n \in \Gamma\}$$

 $\tau_0: X^{\infty, x_0} \to \mathbb{N} \cup \{+\infty\}$ is \mathcal{F}^{x_0} measurable and, in fact, it is a stopping time with respect to the filtration $\{\mathcal{F}_n^{x_0}\}$, that is:

$$\forall n \geq 0 \qquad \{\omega \in X^{\infty, x_0}; \ \tau_0(\omega) \leq n\} \in \mathcal{F}_n^{x_0}.$$

Let now $\tau: X^{\infty,x_0} \to \mathbb{N} \cup \{+\infty\}$ be any stopping time such that $\tau \leq \tau_0$. For $n \geq 1$ we define the Borel sets:

$$A_n^{\tau} = \{(x_0, x_1, \ldots, x_n) \colon \exists \omega = (x_0, x_1, \ldots, x_n, x_{n+1}, \ldots), \tau(\omega) \leq n\}.$$

Note that $(x_0, \ldots, x_n) \in A_n^{\tau}$ whenever $x_n \in \Gamma$.

For every $n \ge 1$, let $\sigma_I^n, \sigma_{II}^n : X^{n+1} \to X$ be Borel measurable functions with the property that:

$$\sigma_I^n(x_0, x_1, \ldots, x_n), \ \sigma_{II}^n(x_0, x_1, \ldots, x_n) \in B_{\epsilon}(x_n) \cap X.$$

We call $\sigma_I = {\sigma_I^n}_{n\geq 1}$ and $\sigma_{II} = {\sigma_{II}^n}_{n\geq 1}$ the strategies of Players I and II, respectively.

Given τ , σ_I , σ_{II} as above, we define now a family of probabilistic (Borel) measures on X, parametrised by the finite histories (x_0, \ldots, x_n) :

$$\gamma_n[x_0, x_1, \dots, x_n] = \begin{cases} \frac{\alpha}{2} \delta_{\sigma_l^n(x_0, x_1, \dots, x_n)} + \frac{\alpha}{2} \delta_{\sigma_{ll}^n(x_0, x_1, \dots, x_n)} + \beta \frac{\mathcal{L}_N \lfloor B_{\epsilon}(x_n)}{|B_{\epsilon}(x_n)|} \\ \delta_{x_n} \end{cases}$$

where δ_y denotes the Dirac delta at a given $y \in X$. Note that since $\tau \leq \tau_0$, then $\gamma_n[x_0, x_1, \dots, x_n] = \delta_{x_n}$ whenever $x_n \in \Gamma$

For every $n \ge 1$ we now define the probability measure $\mathbb{P}_{\tau,\sigma_I,\sigma_{II}}^{n,x_0}$ on $(X^{\infty,x_0}, \mathcal{F}_n^{x_0})$ by setting:

$$\mathbb{P}_{\tau,\sigma_{I},\sigma_{II}}^{n,x_{0}}(A_{1}\times\ldots\times A_{n})=\int_{A_{1}}\ldots\int_{A_{n}}1\,\mathrm{d}\gamma_{n-1}[x_{0},x_{1},\ldots,x_{n-1}]\ldots\,\mathrm{d}\gamma_{0}[x_{0}]$$

for every *n*-tuple of Borel sets $A_1, \ldots, A_n \subset X$. Here, A_1 is interpreted as the set of possible successors x_1 of the initial position x_0 , which we integrate $d\gamma_0[x_0]$, while $x_n \in A_n$ is a possible successor of x_{n-1} which we integrate $d\gamma_{n-1}[x_0, x_1, \ldots, x_{n-1}]$, etc. For every $n \ge 1$ and every Borel set $A \subset X$, the function:

$$X^{n+1} \ni (x_0, x_1, \ldots, x_n) \mapsto \gamma_n[x_0, x_1, \ldots, x_n](A) \in \mathbb{R}$$

is Borel measurable.

From Kolmogorov's construction it follows that

$$\mathbb{P}_{\tau,\sigma_{I},\sigma_{II}}^{x_{0}} = \lim_{n \to \infty} \mathbb{P}_{\tau,\sigma_{I},\sigma_{II}}^{n,x_{0}}$$

on $(X^{\infty,x_0},\mathcal{F}_n)$ so that:

 $A_1 \times \ldots \times A_n \in \mathcal{F}_n^{x_0} \qquad \mathbb{P}_{\tau,\sigma_I,\sigma_{II}}^{x_0}(A_1 \times \ldots \times A_n) = \mathbb{P}_{\tau,\sigma_I,\sigma_{II}}^{n,x_0}(A_1 \times \ldots \times A_n).$

Lemma

Let $v : X \to \mathbb{R}$ be a bounded Borel function. For any $n \ge 1$, the conditional expectation $\mathbb{E}_{\tau,\sigma_{I},\sigma_{II}}^{x_{0}} \{v \circ x_{n} \mid \mathcal{F}_{n-1}^{x_{0}}\}$ of the random variable $v \circ x_{n}$ is a $\mathcal{F}_{n-1}^{x_{0}}$ measurable function on $X^{\infty,x_{0}}$ (and hence it depends only on the initial n positions in the history $\omega = (x_{0}, x_{1}, \ldots, x_{n-1})$, given by:

$$\mathbb{E}_{\tau,\sigma_{I},\sigma_{II}}^{x_{0}}\{v \circ x_{n} \mid \mathcal{F}_{n-1}^{x_{0}}\}(x_{0},\ldots,x_{n-1}) = \int_{X} v \ d\gamma_{n-1}[x_{0},\ldots,x_{n-1}].$$

<ロ> <同> <同> < 同> < 同> < 同><<

The game stops almost surely and the game has a value

Lemma

Assume that $\beta > 0$. Then each game stops almost surely, i.e.:

$$\mathbb{P}_{\tau,\sigma_{I},\sigma_{II}}^{\mathbf{x}_{0}}(\{\tau<\infty\})=1.$$

Theorem

Define:

$$G: X \to \mathbb{R}$$
 $G = \chi_{\Gamma}F + \chi_{\Omega}\Psi,$

Define the two value functions:

$$u_{I}(x_{0}) = \sup_{\tau,\sigma_{I}} \inf_{\sigma_{II}} \mathbb{E}^{x_{0}}_{\tau,\sigma_{I},\sigma_{II}}[G \circ x_{\tau}], \quad u_{II}(x_{0}) = \inf_{\sigma_{II}} \sup_{\tau,\sigma_{I}} \mathbb{E}^{x_{0}}_{\tau,\sigma_{I},\sigma_{II}}[G \circ x_{\tau}],$$

where sup and inf are taken over all strategies σ_I , σ_{II} and stopping times $\tau \leq \tau_0$. Then:

$$u_I = u = u_{II}$$
 in Ω ,

The heart of the matter: Strategies \Rightarrow Estimates

To see that $u_{II} \leq u$ in Ω fix $\eta > 0$ and consider an arbitrary strategy σ_I and an arbitrary stopping time $\tau \leq \tau_0$. Choose a strategy $\sigma_{0,II}$ for Player II, such that

$$u(\sigma_{0,II}^n(x_n)) \leq \inf_{B_{\epsilon}(x_n)} u + \frac{\eta}{2^{n+1}}$$

Then, the sequence of random variables

$$\left\{u\circ x_n+\frac{\eta}{2^n}\right\}_{n\geq 0}$$

is a **supermartingale** with respect to the filtration $\{\mathcal{F}_n^{x_0}\}$. It follows that:

$$u_{II}(x_0) \leq \sup_{\tau,\sigma_I} \mathbb{E}_{\tau,\sigma_I,\sigma_{0,II}}^{x_0} [G \circ x_\tau + \frac{\eta}{2^\tau}] \leq \sup_{\tau,\sigma_I} \mathbb{E}_{\tau,\sigma_I,\sigma_{0,II}}^{x_0} [u \circ x_\tau + \frac{\eta}{2^\tau}]$$

$$\leq \sup_{\tau,\sigma_I} \mathbb{E}_{\tau,\sigma_I,\sigma_{0,II}}^{x_0} [u \circ x_0 + \frac{\eta}{2^0}] = u(x_0) + \eta.$$

Theorem

Let $p \in [2, \infty)$. Let $F : \partial \Omega \to \mathbb{R}$, $\Psi : \overline{\Omega} \to \mathbb{R}$ be two Lipschitz continuous functions, satisfying $\Psi \leq F$ on $\partial \Omega$.

Let $u_{\epsilon} : \Omega \cup \Gamma \to \mathbb{R}$ be the unique ϵ -p-superharmonious function with boundary values F and obstacle Ψ .

Then u_{ϵ} converge as $\epsilon \to 0$, uniformly in $\overline{\Omega}$, to a continuous function u which is the unique viscosity solution to the obstacle problem for the p-Laplacian with boundary values F and obstacle Ψ .

The key is to prove the uniform convergence of u_{ϵ} , as $\epsilon \to 0$, in $\overline{\Omega}$. This follows form aversion of the Ascoli-Arzelá theorem, valid for equibounded (possibly discontinous) functions with "uniformly vanishing oscillation":

Lemma (M-Parviainen-Rossi, 2012)

Let $u_{\epsilon}: \overline{\Omega} \to \mathbb{R}$ be a set of functions such that: (i) $\exists C > 0 \quad \forall \epsilon > 0 \qquad ||u_{\epsilon}||_{L^{\infty}(\overline{\Omega})} \leq C$, (ii) $\forall \eta > 0 \quad \exists r_0, \epsilon_0 > 0 \quad \forall \epsilon < \epsilon_0 \quad \forall x_0, y_0 \in \overline{\Omega} \qquad |x_0 - y_0| < r_0 \implies |u_{\epsilon}(x_0) - u_{\epsilon}(y_0)| < \eta$ Then, a subsequence of u_{ϵ} converges uniformly in $\overline{\Omega}$, to a continuous function u.

Lemma (KEY LEMMA)

Let $u_{\epsilon}: X \to \mathbb{R}$ be the ϵ -p-superharmonious in our main theorem. Then, for every $\eta > 0$ there exist $r_0, \epsilon_0 > 0$ such that $\forall \epsilon < \epsilon_0, \forall y_0 \in \partial \Omega, \forall x_0 \in \overline{\Omega}$ we have

$$|x_0 - y_0| < r_0 \implies |u_\epsilon(x_0) - u_\epsilon(y_0)| < \eta.$$

Strategies \Rightarrow Estimates, II

Let $\delta > 0$ and $z_0 \in \mathbb{R}^N \setminus \Omega$ satisfy: $B_{\delta}(z_0) \cap \overline{\Omega} = \{y_0\}$. Define strategy $\sigma_{0,II}$ for Player II:

$$\sigma_{0,II}^n(x_0,\ldots x_n) = \sigma_{0,II}^n(x_n) = \begin{cases} x_n + (\epsilon - \epsilon^3) \frac{z_0 - x_n}{|z_0 - x_n|} & \text{if } x_n \in \Omega \\ x_n & \text{if } x_n \in \Gamma. \end{cases}$$

Let σ_I be an arbitrary strategy for Player I and let $\tau \leq \tau_0$ be any admissible stopping time. We then have

$$\mathbb{E}_{\tau,\sigma_{I},\sigma_{0,II}}^{x_{0}}[|x_{\tau}-y_{0}|] \leq |x_{0}-y_{0}|+2\delta + C_{\delta}\epsilon^{2}\mathbb{E}_{\tau,\sigma_{I},\sigma_{0,II}}^{x_{0}}[\tau].$$

Lemma

$$\mathbb{E}_{\tau,\sigma_{I},\sigma_{0,II}}^{x_{0}}[|x_{\tau}-y_{0}|] \leq C\delta + C_{\delta}(|x_{0}-x_{0}|+\epsilon)$$

for all ϵ sufficiently small

The double obstacle problem (Codenotti-Lewicka-M)

Let $\Omega \subset \mathbb{R}^N$ and $F : \partial \Omega \to \mathbb{R}$ as before, and bounded and Lipschitz functions $\Psi_1, \Psi_2 : \mathbb{R}^N \to \mathbb{R}$ such that $\Psi_1 \leq \Psi_2$ in $\overline{\Omega}$ and $\Psi_1 \leq F \leq \Psi_2$ on $\partial \Omega$. Consider the following double-obstacle problem:

$$\begin{cases}
-\Delta_{p}u \geq 0 & \text{in } \{x \in \Omega; \ u(x) < \Psi_{2}(x)\} \\
-\Delta_{p}u \leq 0 & \text{in } \{x \in \Omega; \ u(x) > \Psi_{1}(x)\} \\
\Psi_{1} \leq u \leq \Psi_{2} & \text{in } \Omega \\
u = F & \text{on } \partial\Omega.
\end{cases}$$
(9)

Note that under the third condition in (9), the first two conditions are jointly equivalent to:

$$\max\left\{u-\Psi_2,\min\left\{-\Delta_p u,u-\Psi_1\right\}\right\}=0.$$

ロト (日) (日) (日) (日) (日) (日)

Theorem

Let $\Psi_1, \Psi_2 : \mathbb{R}^N \to \mathbb{R}$ and $F : \Gamma \to \mathbb{R}$ be bounded Borel functions such that $\Psi_1 \leq \Psi_2$ in X and $\Psi_1 \leq F \leq \Psi_2$ in Γ . Then, for every $\epsilon < \overline{\epsilon}_0$, there exists a unique Borel function $u : X \to \mathbb{R}$ which satisfies:

$$u(x) = \max\left\{\Psi_1(x), \min\left\{\Psi_2(x), \frac{\alpha}{2}\sup_{B_{\epsilon}(x)}u + \frac{\alpha}{2}\inf_{B_{\epsilon}(x)}u + \beta \oint_{B_{\epsilon}(x)}u\right\}\right\}$$

for $x \in \Omega$ and
$$u(x) = F(x)$$

for $x \in \Gamma$.

Double Obstacle Problem

Theorem

Let $p \in [2,\infty)$ and define:

$$\alpha = \frac{p-2}{p+N}, \qquad \beta = \frac{2+N}{p+N}.$$

Let $F, \Psi_1, \Psi_2 : \mathbb{R}^N \to \mathbb{R}$ be bounded Lipschitz continuous functions such that:

 $\Psi_1 \leq \Psi_2$ in $\overline{\Omega}$ and $\Psi_1 \leq F \leq \Psi_2$ in $\mathbb{R}^N \setminus \Omega$.

Let u_{ϵ} be the unique solution from the previous theorem. Then $\{u_{\epsilon}\}$ converge, as $\epsilon \to 0$, uniformly in $\overline{\Omega}$, to a continuous function $u : \overline{\Omega} \to \mathbb{R}$ which is a viscosity solution to the double-obstacle problem (9).

Thank you very much manfredi@pitt.edu