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Eigenvalue problem

We want to mix two materials (electric, thermal,...) given by their diffusion
constants a, f with 0 < a<f in order to minimize the first eigenvalue of the operator

u € H(Q) — —div((ax, + B(1 — x,))Vu)

with Q € RY, N > 2, under the restriction |w| < k, with 0 < k < |Q], i.e., we
consider

— 2
(A) min min Jo (axe + B — xu))IVul dx.

lwl<k ueH}(Q) f lu|?dx
Q

Remark: If k = |Q], the solution is the trivial one w = (.



In order to give some physical interpretation of the problem, we recall:
If u 1s the solution of
fatu — div ((a)(w + B(1 — )(w))Vu) =0 in R*xQ

) u =0 on Rtx0Q
\ Uit=0 = Ug

Then
”U,(t)“LZ(Q) < ||u0||L2(Q)€_}th, vt = 0.

Thus our problem can be used to obtain the optimal distribution of two materials in
heat conduction in order to obtain the most insulated one



Compliance problem

Q c RY,N > 2, bounded, open,
L>a>0 0<k<|Q, fEH Q)

max f (axe + B(L = xu)) Vi |Pdx

lw|<K

{—diV((CZ)(w + 18(1 _ Xa)))vua)) = f in ()
u,, = 0 on 9(.

Remark: If x = |Q|, the solution is the trivial one w = .



Remark: This problem has been specially studied if N = 2,f =1
(F. Murat - L. Tartar 1985, J. Goodman - R.V. Kohn - L. Reyna 1986)

Assuming () simply connected, it consists in mixing two isotropic elastic
materials 1n the cross-section of a beam in order to minimize the torsion.

It also applies to the optimal arrangement of two viscous fluids moving
parallel to the axis of a pipe (Poiseuille flow) in order to maximize the flux



Using

f (a)(a) + 18(1 _Xa)))lvua)lzdx

Q

:_<f (a)(w'l',B(l_)(w))lvuwlzdx_z<fruw>>
Q

= — min (j (a)(w+,8(1—)(w))|Vu|2dx—2<f,u>>.
Q

ueH}(Q)

The problem can be stated as

min <f (a)(w + B(1 —)(w))IVuIde —2<fu >)
o)

ueH}(Q)
lw|<K

F. Murat (1972): This type of problems has not solution in general. Thus, 1t it
is usual to work with a relaxation.



F. Murat, L. Tartar (1985). A relaxation 1s given by replacing
ayx, + (1 — x,) by the armonic mean value of ¢ and  with proportions

6 and 1—60, with 8 € L*(Q;]0,1]), 1.e.
min ( f- afVul” dx —2 < f,u >>
ueHl(Q) Jog BO+a(l—0) ’
¢9EL°°(Q;[0,1]),fQ Odx<k
. |Vu|?
=h uerlr}(l}r(ln) (jﬂ 1+ngx—2<f,u>>
0€L®(;[0,1]),f, Odx<k
( Vg |2
max f dx
or | #ere@ioaN.f, axscla 1+ 0
. ( Vug .
\—dlv(1 +CH) = fin{), ug = 0on
f—« 1 .
c=—1 :Ef



Another formulation (F. Murat, L. Tartar (1985)).
Recall: If uy 1s the solution of

div—_ _ fing =0 on 90
1V1+Cg—f1n ) ug = 0 on 0.
_ Vug . . . 2
Then, g5 = —— is the solution of GEreru(g)N Jo, 1+ cB)|o|*dx.
—divo=f in ()
| . Vu|?
Thus min min f dx —2 < f,u >
feL™ (Q;[0,1]),f, Odx<e “EHI () \Jq 1+ct
= — max rerli(g)N j (1 + c)|o|?dx
(o) . oE
oL (Q;[0,1]),f, pdxsc_Go N 0
=— min_ max j (1+ cO)|o|?dx
aEL()T gere (;[0,1]),f, odx<ic /0

—diveo=f in ()



Remark:

The functional o — max j (1 + cB)|o|*dx
6eL*([0,1]),f, Odx<k JQ

is strictly convex. So the problem

“z‘i(g)zv max j (1 + cO)|o|*dx
oEL .
_divo=f in QGEL (Q,[O,l]),fg Odx<k 7Q

has a unique solution 4, 1.e. although the solution (@, ﬁ) of

' J [Vul” d 2 < >
uergér(lg) o 1+c6 x fru

6?EL°O(Q;[O,1]),fQ Odx<k

: A vu . :
can be not unique, 6 = — > 1s unique.




Taking the minimum in 6 1n
2
min min (J [Vul dx—2<f,u>>,
U€EH, (Q)HELW(Q;[O,l]),fQ Odx<k \Q 1+co

we deduce the existence of u > 0 such that u 1s a solution of

ueH}(Q)

min (J F(|[VuDdx -2 < f,u >>
o)

with F € W% (0, ) given by

(s if0<s<u
-yt ifu<s<
2F(s) = 4 2Us — U ifus<s<@+c)u

g2
+ u? if (14 c)u<s.

\1 + ¢

Besides 8 = 1if |o| < u, 8 = 0if |o| > u. Thus (6, u) is unique in {|o| # u}



16

14

12

10




We have then proved that u is a solution of the nonlinear problem

—div F(vul) Vu | =2fin{}
|Vul

u = 0 on 0.

The main difficulty is that the problem has not good ellipticity properties to
get u twice derivable.

We will prove that
Vu  F'(|Vul)

= = \Y
1+ c6O 2|Vul| “

0

1s derivable.



We have then proved that u is a solution of the nonlinear problem

—div F(vul) Vu | =2fin{}
|Vul

u = 0 on 0.

The main difficulty is that the problem has not good ellipticity properties to
get u twice derivable.

We will prove that
Vu  F'(|Vul)
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1+ c6O 2|Vul| “

0
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Theorem (JCD): Assume Q) € C11
fFeEW1P(Q), 2<p<o = 6elP(QN
fELP(Q), N<p =6 €LV

6 € H(QV, P(6) = 0onoQ

0,06, — 8,66, € I*(Q), 1<i,j< y [he main

fewtlt(@QnL*(Q) = {

P denotes the orthogonal projection on the tangent space.

Kowhl, Stara, Wittum, 1991: Local estimates for u in W,.>% (Q)

loc



Proposition:
If f € WH1(Q) N L?(Q), and there exists an unrelaxed solution (8 = y,,), then
curl(6) = 0.

If Q is simply connected, Q € C*1, then 8 = Vw, with w the unique solution of
{—AW =f inQ
w = 0 on 0}
Moreover, if w 1s smooth, then dw must be composed by surface levels of the

. . du
corresponding function u and S, = constant on these surface levels.

Proof. It is essentially a consequence of
0;06; — 0;06; € L*(Q), 1<i,j<N

Remark: The above conclusions appear in F. Murat, L. Tartar 1985, but assuming
the solution smooth.



Theorem (F. Murat, L. Tartar): Q € R? smooth, simply connected. We assume
that the problem

max j (@ + B(L = xu))|Vuy |Pdx
Q

lw|<k

—div((a)(w + B(1 — )(w))Vuw) =1inQ
u, = 0 on d(}
has a solution and that the interfaces are smooth. Then () is a circle.

Theorem (JCD): The previous results allow us to eliminate the assumption that
the interfaces are smooth. The result holds in RY, N > 2, assuming ) smooth,
simply connected, with connected boundary.



Sketch of the proof: If there exists a solution (w, 1), then
(axy + B(1 = xu))Vu = Vw

{—Aw=1 in Q
w = 0 on 0().

with w solution of

Moreover, 3u > 0 such that
{Vw| <u} cw c{|Vw| < u}.
Using
—A|Vw|?= — 2|D?w|? in Q
we can use Hopf’s Lemma to find x, € (1, with
IVw|(x0) = i, VIVw|(x,) # 0.
Then {|Vw| = u} is an analytic manifold in a neighborhood of x,,.

By the optimality conditions, it agrees with {w = g}, for some q > 0.

Thanks to the analyticity, 3 a connected component E of {w = g}, where
{|IVw| = u}. We prove it is an analytic variety manifold without boundary.



By Jordan-Brower’s Theorem E = dC, C < Q, C an open set with analytic
boundary.

Then, w satisfies

—Aw=1 inC
ow
w=gq, Fre +u on dC.

Here we follow Murat-Tartar’s proof:
By Serrin’s Theorem C 1s a ball and w 1s radial in C. By analyticity, w 1is in fact
radial in ().

Then, () 1s a ball.



Return to the eigenvalue problem

— 2
) min min o (@He HFA Zx)IVuldx

lwl<k ueH}(Q) f |u|2dx
Q

Remark: For A € L (Q)V, elliptic,

AVu - Vu dx
A1 (A) = min fQ

u€H;(Q) fQ lu|?dx

1
can be characterized as = max J AVu - Vu dx
A (A)  —diviavw)=f J,
u€H (Q)
”f”LZ(Q)Sl

min <J AVu-Vudx—Zj fudx).
u€eH} (Q) Q Q

”f”LZ(Q)Sl



Thus, we have the relaxed formulation

. . |Vul? f—a
(A) min min j dx — 2 f fudx c =
Ifll 2=t ueHi(@) \J, 1+ cO 0 a

J, 0dx <k

The regularity results for the compliance problem can then be applied.

Theorem: Assume Q € C11, then

e HHV n L)Y, 0,00 —0;00; € L*(Q), 1<4i,j<N.

a:1+c9



Theorem: Assume there exists an unrelaxed solution y,, for (A, ). Then,

o= (a)(w + B(1 —)(w))Vu e WP (Q), Vp €[1,0), curle =0
Moreover, if there exist two opensets 0 € U € Q, O € C?,suchthat y, =rin 0, y, =
1 —7rin U\O. Then, O is a sphere.

Proof.
—Au =Au in0
[t is a consequence of 0
q {u = constant on 00, a—: = constant on 00.

and Serrin’s theorem.

It would be only possible if the
interior blue zones were circles




T 1 w1

N—1
Counterexample: ) = (_Z’Z) X (—5,5) , a =1, = 2. For € > 0 small enough the

solutions 6 of

|Vu|?
: fﬂ 146 dx 1 00
min :u € Hy(Q),0 € L*(Q,[0,1]), | 6dx <1Q] —¢
Jo, lul?dx )

1S not a characteristic

Proof. If ()(wg,ug) were a solution then u, = cos(2x;) H}-sz Cos(xj).
3 a smooth connected component O, of O\w,,

X
1+2 —_1—c8 . ¢, NDO
l=22



Remark: The properties of {2 we use are that Q 1s simply connected and that the positive
eigenfunction corresponding to the first eigenvalue of

{—Au=7\u n
u = 0on 0

attains his maximum in a unique point x, and D?u(x,) is regular and non-scalar.
0 0

Using symmetry arguments this can be proved for example if (Q is an ellipsis, which is not a
circle.

Theorem: (A. Alvino, P.L. Lions, G. Trombetti, 1987). If € is a ball in R" there exists a
solution for the (unrelaxed) eigenvalue problem. Moreover it is radial.

The exact form of the solution for a ball 1s a problem which has been considered by several
authors

C. Conca, A. Laurain, R. Mahadevan, A. Mohammadi, L. Sanz, M. Yousetnezhad.,...

It seems to be an open problem.



Theorem (JCD): Assume ) € C11, simply connected, with connected boundary. If the
eigenvalue problem has an optimal solution then (Q 1s a ball.

Sketch of the proof: Assume (w,u) a solution. We know
(axe + B — xu))Vu =Vw

{—AW:Au in Q)
w = 0 on 0().

with w solution of

Moreover, 3u > 0 such that
{Vw| < pu} cw c {|Vw| < u}.

Using that locally u = ¥ (w), we show that Vx, € Q, such that
|B(xy,7) N w|,|B(xy,7) N (Q\w)| >0, Vr >0

3 C open of class W3P, ¥p > 1 with C c Q, such that on C, w is constant, x, € Q,
|Vw|=u, and 3y Lipschitz with u = (w) in a neighborhood of dC.



The arguments are something different of the previous ones. We do not have
analyticity and A|Vw/|? has not a determined sign.

We take C minimal in the sense A another set contained in C in these conditions.
Then, w satisfies

—Aw=AY(w) in C
ow

w = q, %=i,u on dC.

for some 1 Lipschitz.. Moreover, u = y(w) in a neighborhood of C.
By Serrin’s Theorem C = B(x,,r) and w is radial in C.

Now, we define R by
R = sup{r > 0:wisradial in B(x,,7), B(x,, 1) c Q,

u = 1(w) neighborhood of B(x,, r)}
By a unique continuation argument, we show Q = B(x,, R).




Numerical experiments.

Problem Q = (—%%) x (—%%) Q| ~ 4,935, a = 1,8 = 2
|Vu]?
) dx
min 0 1+0
Jo, lul?dx

u € H&(ﬂ),f Odx < k
Q
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a=1,0=2,k =2.435
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a=1,0=2,k =1.435




a=1,8=2k=0935




a=1,8=2k=0435




- _oiiileee
a=1,=2,k =046




Problem () = (

U € H(}(Q),f Odx < Kk
Q



a=1,8=20,k =3935




a=18=20k=2935




a=18=20k=1935




a=1,8=20,k=0935




T

a=1,8=20k=0435




Remark. Similar results can be obtained for the probems (p > 1)

max f (axo + B(L = x))|Vity [Pdx
Q

lw|<k

—div((ax, + B(1 = X)) IViy [P ?Vu,, ) = f in 0
u, = 0 on dQ)

and

(L)>K

min j (ke + B(L = 1)) Vit [Pdx

—div((ax, + B(1 = X)) IViy P ?Vu,, ) = f in 0
u, = 0onodqQ,



which admit the relaxed formulations
|Vul|P
q (1+co)P-1

min min ( dx —p < f,u >>

0eL®(Q;[0,1]),f, Odx<k UEHo (D)

O€L*(Q;[0,1]) ueH} ()
Jq 6dxzK

max min <f (1—cO)|VulPdx —p < f,u >>
Q



