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The total variation flow

Q c R" bounded domain, T > 0, Q7 := Q2 x (0,T)

Ou . (Du .
——dw(m)_o in Q7 (1

Boundary condition on the parabolic boundary:

~

U=u, ON Opyllr

where

Bpar2r = (2 x {0}) 0 (92 x (0,T))

and

u,: 2 - R



Existence results (non-complete list)

Since 2000 available for different notions of solutions (strong,
weak, entropy, ...)

Mazon, Andreau, Casselles, Ballester, Diaz, Moll, Bellettini &
Novaga, Bonforte & Figalli

Dealing with the initial value problem, i.e.
u(x,0) =u,(x)on Q2 and u=00n9Q2x(0,T).
Different notions in order to prove existence for initial data
u, € L*() or L'(Q)

In any case all notions of weak solutions rely on the Anzellotti
pairing (a somewhat heavy tool from the theory of functions of
bounded variation)

Recently: Bogelein & D. & Marcellini: Flows related to
functionals from image reconstruction (cf. TV - L?)



Heuristics: An idea of Lichnevsky & Teman

Multiply by v — u where v: Q7 — R coincides with u on the lateral
boundary 02 x (0, T) and integrate over Q7.

D
osz ut(v—u)dxdt+/] U (Dv - Du)dxdt = T+ 11
Qr Qr |DM|

We have:
1= fo vi(v = u) dxds + 3[v(0) = uo| 72 = 3| (v = u)(T) |-

By convexity of £ — [¢]:

| § ff (|Dv| - |Dul) dxdt
Qr



Variational formulation

Definition: A map «: Q2 — R is called variational solution to the
total variation flow if

[[Qr |Du| dxdt < /[Qr |Dv| dxdr + [[Qr ve(v — u) dxdt (2)

+31v(0) — w72 = 51 (v = u)(D) 72

holds true for any v:Qy — R with v = u on 992 x (0,T). Formally,
(2) and (1) are equivalent. ]

Note: (2) can easily be formulated in the context of functions of
bounded variation.



Function spaces

The natural space: functions with bounded variation
BV(Q) = {ue L'(Q) : [ Dul(Q) < 0o},
where the total variation is defined by
1Du(Q) = sup{[gudidex: GeC (R, |Gl < 1}.
Maps with values in BV(£2)
v:(0,T) - BV(Q)

Problem: BV(£2) is not separable.



Facts for BV((2)

» BV(Q) is the dual of a separable Banach space X,, i.e.
BV(Q) =X}
» Elements of X, can be written as

g-divG with ge C)(Q2) and G € CJ(Q2,R").



Time dependent function spaces

» v:(0,7) - BV(Q) is weak* measurable, iff
(0,T)>t+~ (v(t),p) is measurable for any ¢ € X,

Here (-, -) denotes the natural pairing on BV(Q2) x X,,.
» Natural spaces for the total variation flow:

L2,(0,T;BV(2)) with 1 <p < oo,

i.e. weak* measurable mappings v: (0,7) — BV(2) with

T
fo V() gy < oo.



Boundary values for BV((2)

» Trace operator To:BV(Q) — L!'(99) is not continuous with
respect to weak™ convergence; for example take €; € Q
with

xo; T xa-
» Idea: Consider a larger reference domain * with Q2 € Q*.

» Given u, € BV(Q) the Dirichlet boundary condition u = u
on 022 is defined by requiring for u e BV(Q*) that

u=u, a.e.onQ*\Q
» The affine space of all these functions is denoted by

BV, () = u, + BVo(Q).



Data

Initial datum:

v

u, € L2(2%) nBV(Q)

Obstacle function:

v

P e L*(Q7) nL,.(0,T;BV,,(Q)), (0)exists

v

Compatibility:

u, >(0) a.e.onQ*

v

Extension of u,:
There exists g € L!. (0, T;BV,, (22)) with 9,g € L*(Q5)

2(0) =u, a.e.on N and g > ¢ a.e.on Q.



Variational solutions

Definition: A map
ue L(0,T;L2(Q")) n LY. (0,T;BV,, ()

with u > ¢ a.e. on Qr is called variational solution to the
obstacle problem for the total variation flow if

[ Ipul@yars [T ipui @+ [ oo u)dsas

=31 =) ()72 + 51v(0) ~ o 72

holds true for a.e. 7 € [0,7] and any v e L! . (0, T; BV, (€2)) with
o € L2(Q3) and v(0) e L2(%), v> ¢ a.e. in Q.



Remarks

» Why L>-L” instead of C’-L>? Solutions will be in general
not in this better functions space. The question whether or
not solutions are in C°-L? is connected to uniqueness.

» Why 7€ [0,7] a.e. ? This is also connected to the missing
C°-L? regularity. If this held true (and if ©» was more
regular), one could formulate the variational inequality on
Qr and conclude (by a localization argument) that the
variational inequality holds for all 7 € [0, T].



Further remarks

» Why the extension property? This condition ensures
that the class of admissible testing functions is non-empty.

» Testing the variational inequality with g leads to
energy-estimates for solutions.

» As a consequence one also obtains that « attains the initial
datum in the usual L2-sense, i.e.

tim & [ u(r) = |2 e = 0



Existence of variational solutions

Theorem (Bogelein, Duzaar, Scheven).

Let 2 € Q* be a bounded Lipschitz domain and u,, v, g as
before. Then there exists a variational solution to the obstacle
problem for the total variation flow in the sense of the Definition
from before, which attains the initial datum u, in the usual
L*(92*)-sense.



History (existence)

A non-complete list:

» Stationary case p = 1:
De Giorgi, De Giorgi-Colombini-Piccinini,
Carriero-Dal Maso-Leaci-Pascali

» Parabolic p-Laplacian:
Lions, Brezis, Alt-Luckhaus, Kinnunen, Lindqvist,
Bdgelein-D-Mingione, Scheven

» porous medium equation:
Alt-Luckhaus, Bdgelein-Lukkari-Scheven



Related problems

Our method of proof is stable enough to treat
» initial data in L?(Q*),

» the Cauchy-Dirichlet problem for the total variation flow
with time dependent boundary values, i.e.

Ou Du
— —div[—)=0 inQ
o1 1V(|Du|) n
u(0) = u, on Q,
u= on 90 x (0, 7).

The initial datum u,: Q2 - R and the lateral boundary values
$:0Q x (0,T) - R are given.



Idea of proof

Building block: An existence result for regular obstacles:
b e WhI(Q7), 0w € L(Q7), 0Dy € L'(Q),
{ Y =u,0n (Q° Q) x(0,7).
Time discretization method: Subdivide (0, T]:

¢ T
(0,T] :L_Jl( (j = 1)h,jh] hi= 7.

Let
¥ =¥ (jh), g =g(h) je{0,1,....¢}.



Minimizing movements |

» Start with u,.

» Suppose that u;_; € L*(2*) nBV,,(2),j > 1 has already be
constructed.

» Minimize
F[v) = 1Dv)(2) + 5 [ v =[x
in the class of functions
vel2(")nBV, (Q), v>1;ae. onQ.

Note: g; is admissible.
» Denote the minimizer by u;.



Minimizing movements Il

» Define u: (-h,T] - R by
u™ (x,1) = uj(x) forre ((j—1)h,jh], xe 2, je{0,1,...,0}.

» Goal: Prove energy estimates for u(®) independent of &
which ensure (after passing to a subsequence) the
convergence

u™ — u weakly* in L= (0, T;BV(Q*)).

» This is the step where the regularity assumptions on v
enter.



Energy estimates |

Compare the energy of u; with the energy of uj_; —;_1 + ¢;:

2
@)+ 5 [ =[x

* 2
< ||DMj_1 H(Q ) + A* |DQ[)] - DQ[)j_1|dx + ﬁ L* |’¢J - %‘—1‘ dx

<UDl @)+ ffL o]+ S dva



Energy estimates Il

For m € N with mh < T sum up the previous inequalities from
j=1toj=m:

1D (2°) 2 [ lw; — 11| dx < E(mh)

where
E() = 1Duo| (@) + [ [000]+ 3o dar

Note:

1 Z 2 1
EJZI.[Q* ‘uj—uj_1| deEI[;h

MWy =u®(t=h) 2
ul™ (1) —u\"(t h)|dxdt

=[A_uM](r)



Energy estimates Il

sup | Du [A_u™(0)| dxdr < 3E(T)

1€[0,T]

After passing to a subsequence, this gives convergence
» u™ — wweak * in L2 (0, T;BV(Q)).
» A_u — gu weakly in L2(Q3).

for some u € L2%(0,T; BV, (2*)) with Q,u € L*(Q3).



Minimality of u(")

The minimality of u;, j € {1,..., ¢}, implies a minimality property
of ™. More precisely: «” minimizes the functional

FO[V] = f IDv(1) (" )dt+— ff [v(e) = u™ (¢ = h)| dxde
in the class of mappings

veL*(Q)nL).(0,T;BV,, (29)) v>y® ae. on Q!

1™ is defined similarly to u®.



Exploiting Minimality |

Re-writing the minimality condition F) [, ] < FM[y] gives:

[ 1D @y 62y
< [T iovol@r)a
1 [[Q ; [4y = u®F = (v = u®)(u® —u® (-~ )] ducs
Now choose the comparison function in the form
u® +s(v—u®),  se(0,1],

Re-arranging terms and dividing by s > 0 leads to



Exploiting Minimality 11

[ 1D @62y
T
< [yl dr
b [ [l = P = (=)l ~ (<))
Here send s | 0:
[ 1D @y 62y
T . NORE O
< ) ooy a [ (=) T




Passing to the limit

Perform a partial integration in the second term of the right
hand side:

NIRRT
< [Tt ydes [ (v-u®) U g

- 2_1h ff ‘v - u(h)‘zdxdt + f/ ‘v - u0|2dxdt
*x[T—h,T] *x[~h,0]

Here, v has been extended by v(z) = v(0) for ¢ < 0.

In the preceding inequality we can finally pass to the limit 4 | 0
to conclude that the variational inequality holds true.



Proof for irregular obstacles

The main result follows by a two-step approximation scheme.

» Firstly, a mollification with respect to time allows the
reduction to obstacle functions with 9,1 € L>(Q*).

» Secondly (much more involved) a mollification with respect
to space allows the reduction to regular obstacles. Here
the regularity assumption that €2 is a bounded Lipschitz
domain enters. It is used to construct a mollification M. [v]
of ¢ such that it coincides with M.[«,] in Q* \ Q and that

T _ T o
[ M| @)dr— [ Dyl @ dr ase Lo,

Here we use techniques developed by Carriero &
Dal Maso & Leaci & Pascali.



Thin obstacles

Theorem (Bogelein, Duzaar, Scheven).

Let Q € Q* be a bounded Lipschitz domain, u, € L> n W1 ().
For the obstacle v: 2} — R suppose that

¥ — u, is upper semicontinuous on Qr, spt(y — u,) € Q7.

Then there exists u € L (0, T;L*(2*)) nL!.(0,T;BV,, (%))
solving the relaxed obstacle problem, i.e.

/OT||Du||(Q*)dt+[OT[[Q(zp—m)era]dt
< fOTHDvH(Q*)dtJrf/QT O (v — u) dxd

=31 =) (7) 72 + 51v(0) ~ o 72



Thin obstacles

holds true

» fora.e. 7¢[0,T]

» every ve L. (0,T;BV,, (Q)) with 9,v e L*(23),
v(0) € L>(Q*) and v > ¢ on Qr, satisfying that

v —u, is lower semicontinuous on Q.



The upper approximate limit

u*: Q" — R denotes the upper approximate limit of u € BV(2*):

> AN B,(x,
u(x,) = inf{)\ e R :limsup [{u> A} 0 By(x) = 0}.
0l0 1B (%)

We have

» u*(x,) = Lebesgue value of u at x, in points where u is
approximatively continuous;

» u™(x,) = larger jump value in approximate jump points.



De Giorgi measure

» Fore >0 let
o-(E) =inf {| x| (R") + 1|B| : B open, E c B}

» and then

o(E) :=limo.(E) = supo.(E).

el0 e>0

» o Borel measure (not o-finite)
o(E) =2H""'(E) whenever E is a Borel set contained in a
countable union of regular (n—1)-dimensional surfaces. In
general o(E) # 2H"(E)
» One always has the bounds:

v

Ci(n)H""Y(E) <o (E) < Co(n)H" ' (E).



Remark

The solution may violate the obstacle constraint u > . This is
penalized in the variational inequality by the integral on the
left-hand side containing the De Giorgi measure. As a
consequence of the variational solution and ¢ ~ #"~! the
exceptional set {u* < ¢} is small in the sense that there holds

H-dim(EnR" ' x{r})<n-1 forae.te[0,T].



Thank you for your attention!



