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Introduction

Motivations

Swimming is seen as a control
problem.

Given two points in space, can
the swimmer go from one point
to the other?

The motion of the swimmer is due
to fluid-structure interactions.
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Introduction

The fluid

L
Reynolds number: Re = pUL

Re<<1| |Re>>1;

Stokes Navier — Stokes Euler

Bacteria 107° 1073 107% [10°°
Spermatozoon || 1073 102 1072 [ 1073
Fish 50 100 0.5 |[5.10*
Pigeon 25 103 51071 | 10°
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Introduction

The deformations |

All the deformations are not interesting in order to swim.

Theorem (Scallop theorem,

Given a time periodic deformation described by one physical geometric parameter,
the net motion of the swimmer over one period is null.
No net motion

=
W in Stokes fluid

Taylor's experiences
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Introduction

The deformations |l

~—

TN
] | Net motion
N
=
Purcell's swimmer in Stokes fluid
Helical deformation Taylor's experiences
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Introduction

State of art

@ Swimmer description and modelling:

o G. Taylor's experiences, 1951
o Low Reynolds swimmers modelling, E. M. Purcell, 1977, and S. Childress, 1981
o Foundations of Low Reynolds swimming, A. Shapere and F. Wilczek, 1989

o Controllability results:

o In perfect fluid, T. Chambrion and A. Munnier, 2010

e In Stokes fluid, for a n-sphere swimmer, F. Alouges, A. DeSimone and
A. Lefebvre, 2009

o In Stokes fluid, for a ciliated organism, J. San Martin, T. Takahashi and
M. Tucsnak, 2007
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Modelling

© Modelling
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Modelling

Domains

Let Bf(t) be the domain occupied by the swimmer, £(t) its boundary and

Ff(t) = R®\ BT(t) the fluid domain.

Fi(t)
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Modelling

The fluid

Stokes equations:
~Au’ +Vpl = 0 inFi(2)
divut = 0 in Fi(t)
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Modelling

The fluid

Stokes equations:
~Au’ +Vpl = 0 inFi(2)
divut = 0 in Fi(t)

Velocity continuity:
ul = v, on X1(t),

with vy is the swimmer velocity.
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Modelling

The fluid

Stokes equations:
~Au’ +Vpl = 0 inFi(2)
divut = 0 in Fi(t)

Velocity continuity:
ul = v, on X1(t),

with vy is the swimmer velocity.

Set o(u’, p') = (Vu' + (Vu')") — pl1; € R3*3, the Cauchy-stress tensor, the
force exerted by the fluid on a part dI of £f(t) is on'dr.
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Modelling

The swimmer

Deformations

The swimmer is located by:
@ its mass center h € R? and
e its orientation R € O™ (3).
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Modelling

The swimmer

Velocity of deformation

The velocity of a point x = XT(y, t) = RX(y, t) + h of BT(t) is:
vs = h+ Rw x (x' —h) + Rw(x',t),

with:

@ w the non-rigid deformation velocity of the swimmer,
w(xt, t) =X (X(.,t) 1 (RT(x" — h(1))), t) .
@ w the angular velocity of the swimmer in a referential attached to him,
R =R&,

where, @, a 3 x 3-skew symmetric matrix, is such that ©x = w X x.
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Modelling

The swimmer

Deformations constraints

The deformation X(t) shall be:
e a Cl-diffeomorphism of R3
and shall keep constant:

@ the mass 1

S e a)]

@ the mass center position

0= / p(x, t)xdx
B(t)

@ the angular momentum

0= /B(t) p(x, t)x x X (X(., £) " (x), t) dx
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Modelling

The swimmer

Equations of motion

Newton's principle leads to:

mh = /
Zf(t)

dJw _/
i e

nT dr

) x o(uf,
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Modelling

The swimmer

Equations of motion

Newton's principle leads to:

0 = / o(uf, phntdr
() (PFD)

0 = / (x —h) x o(uf, phnT dr
Ti(1)
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Modelling

The coupled problem |

0 = Vpl—Auf, in FT(t)
0 = divuf, in FT(t)
lim uf(x) =0

|x|— o0

ul =h+ Rw x (x—h)+ Rw, on Xi(t)

0 = / o(uf, pntdr
>i(t)

0 = (x —h) x o(uf, phnTdr
Ti(t)
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Modelling

The coupled problem Il

Let us make the change of variables u(x) = RTuf(Rx + h), p(x) = pf(Rx + h),

0 = Vp—Au, in F(t)
0 = divu, in F(t)
(S)
lim u(x)=0
|x| =00
u=Rh+wxx+w, on(t) (BO)
0 = / o(u, p)ndl
(t) (CM)
0 = x x o(u, p)ndl
¥(t)
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Low Reynolds specificities

© Low Reynolds number specificities
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Low Reynolds specificities

Drag and Momentum

Given (u, p) and (v, g) two solutions of the homogeneous Stokes problem.
By Green formula,

/za(u,p)mvdl' = Q/FD(u) : D(v) dx,
with D(u) = 3 (Vu + (Vu)T).
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Low Reynolds specificities

Drag and Momentum

Given (u, p) and (v, g) two solutions of the homogeneous Stokes problem.
By Green formula,

/za(u,p)n~vdl':2/D(u):D(v)dx,

F
with D(u) = 3 (Vu + (Vu)T).

Let us then define (u;, p;) € W§(F)3 x L2(F), the solutions of the homogeneous
Stokes problem with boundary condition:

L e if i € {1,2,3},
" Ixxei_3 ific{4,5,6}

Then,

/)‘:a(u,P)"dr _» (/F D(u) : D(“")dx> i—1,.6

/ x X o(u, p)ndl
b
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Low Reynolds specificities

An ODE system |

Assume now that X is given by:
n
X(t,x) = Do(x) + > _si(t)Di(x).
i=1

Then the geometry of the problem can be only described by the parameter
s = (s1,--- ,sn) and the set of deformations ® = (Dy, (D1, ..., D,)). Thus,
X(t,-) can be recast as Xp(s) = Do + > :_, s;D;.

The boundary condition (BC) is then:
. n

u=R"h+wxx+ Zé;D,- o Xo(s)™', on Xp(s).
i=1

Let us write (v;, g;) the solution of the homogeneous Stokes problem with the
boundary condition v; = D; o Xo(s) ™! on Lo (s).

J. Lohéac (IRCCyN) Control of 3D micro-swimmers 26/08/2015 19 / 30



Low Reynolds specificities

An ODE system I

Let us define the matrices:

Mao(s) = 2 (/F D) D(uj)dx> € Mo(R)

ij=1,...,6

and  Nof(s) = 2 (/F D): D(vj)dx> € Moa(B).

Using the linearity of the homogeneous Stokes problem with respect to the
boundary condition, (CM) is:

s ) (") = wa(e)s.
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Low Reynolds specificities

An ODE system IlI

And hence, the full coupled system (S)-(BC)-(CM) can be written as:

h=Re (1a)
R = R& (1b)
§=A (1c)
(ﬁ) — Ma(s) ' No(s)A (1d)

This fits the form of geometric control problems, with control variable A € R” and
state variable (h, R,s) € R® x O*(3) x R",

(ha R,S) = Z f;'(R,S))\,- .
i=1
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Controllability

© Controllability
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Controllability

A controllability result, Chow Theorem

On a manifold M, we consider the dynamical system:

z= Z fi(z)u;, 2)

We associate to this system the Lie algebra Lie{fi, ..., f,} which is the smallest
algebra stable for the Lie bracket:
[f,g] : M — TM
z — D,g-f(z) —D,f g(z).

Theorem (Chow)

If for every zg € M we have dim Lie, {fi,...,fn} = dim T, M,
then the system is controllable.

Corollary

|

For any trajectory z : [0, T| — M and any & > 0, there exists a control u such
that the solution z of (2) with z(0) = z(0) satisfies:

sup |z(t) —z(t)| < e.
te[0,T]
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Controllability

Self-propelling conditions

For Xo(s) = Do + Y s;D;, the conditions:
/Ddx=0 and /DxD’dx:O (D,D" € {Dy,...,Dy}),
B B

ensure the self-propelling conditions.
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Controllability

Self-propelling conditions

For Xo(s) = Do + Y s;D;, the conditions:
/Ddx=0 and /DxD’dx:O (D,D" € {Dy,...,Dy}),
B B

ensure the self-propelling conditions.

We define C(n) the set of ® = (Do, (D1, ..., D,)) € D§(R?) x CJ(R3)" satisfying
those conditions.
And for © € C(n), given, we set S(®D) the connected component of

n
seR", Dy+ ZsiD,- € D(l)(R3)} containing 0.

i=1
Finally, we define:

&(n) = {(D.s), D eC(n), se S(D)}.

&(n) is a connected and analytic sub-manifold of C3(R3) x C3(R3)" x R".
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Controllability

Analyticity of Mg and Ny

The maps

S(n) — Ms(R)
(D,s) — Mxyp(s)

S(n) — Msn(R)

nd(D's) = No(s)

are analytic.
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Controllability

Stokes solution in exterior domains |

We use spherical coordinates,

€,
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Controllability

Stokes solution in exterior domains |l

Solutions of the homogeneous Stokes system take the form (c.f. Lamb, 1993):

oo

u= Z (rot(X—(nt1)rer) + Veo_(nt1)
n=0

n—-2 5 n+1
Ton@n =1y Ve T o 1)77(”“”6’) ’

P = Z T—(n+1) 5
n=0

with T_(n41), X—(nt1) and ¢_(n41) rigid spherical harmonics,

(r,0,0) = r " " 4 ¥, m(cos 6, ¢) .

We have:

/ o(u,p)ndl = —4xV(rPn_5) and /xxa(u,p)n dr = —87V(r*y_2).
b b
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Controllability

Lie algebra evaluated at a particular point

The dimension of the Lie Algebra at the point (h, R,s) is independent of h and R.
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Controllability

Lie algebra evaluated at a particular point

The dimension of the Lie Algebra at the point (h, R,s) is independent of h and R.

Let us chose the deformations © = (Id, (Dy, ..., Ds)),

Di(r,0, phi) = r™*R Y3 1(cos b, p)e, ,
Dy(r,0, phi) = r=*3 Y3 1(cos b, p)e, ,
Ds(r, 0, phi) = r=*R Y3 5(cos b, p)e, ,
Dy(r,0, phi) = r >R Yy »(cos b, p)e, .

and compute the evaluation of the Lie algebra at point s =0 € R* R = ks and
h=0.
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Controllability

Lie algebra evaluated at a particular point

The dimension of the Lie Algebra at the point (h, R,s) is independent of h and R.

Let us chose the deformations © = (Id, (Dy, ..., Ds)),

Di(r,0, phi) = r™*R Y3 1(cos b, p)e, ,
Dy(r,0, phi) = r=*3 Y3 1(cos b, p)e, ,
Ds(r, 0, phi) = r=*R Y3 5(cos b, p)e, ,
Dy(r,0, phi) = r >R Yy »(cos b, p)e, .

and compute the evaluation of the Lie algebra at point s =0 € R* R = ks and
h=0.

Using maxima, we obtain that the Lie algebra evaluated at this point is of
dimension 10 =3 + 3 + 4.
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Controllability

Result

Using analyticity together with Chow theorem,

Theorem

Set Dy € D§(R®) such that [, Dodx = 0 and set an absolutely continuous
function t € [0, T] — (h(t), R(t)) € R? x S0(3).
Then for every ¢ > 0, there exists Dy € D§(R3?) such that:

Q [|Do — Dollarsys < €i

@ for almost every (Dy, (D1, ..., Ds)) € C(4), there exists a function:
t €0, T] = s(t) € R* such that the solution (h, R) of the dynamical system
satisfies:

30 (IR() = RO)lluage) + [R(2) — h(e) o) < .

RENEILS

It is also possible approximatively follow a prescribed non rigid deformation,
t € [0, T] = X(t,-) € D}(R3).
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Conclusion

Conclusion

@ What is the minimal number of controls?
@ Swimming in a bounded domain? (work in progress with T. Takahashi)
@ Collective swimming?

@ Controllability in the presence of inertia?
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Conclusion

Conclusion

@ What is the minimal number of controls?
@ Swimming in a bounded domain? (work in progress with T. Takahashi)
@ Collective swimming?

@ Controllability in the presence of inertia?

Thank you for your attention.
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