Young's law for Nonlocal Fractional Perimeters

Maria Stella Gelli

Dept. Math., University of Pisa

in collaboration with M. Novaga

PDEs, optimal design and numerics, Benasque, August 28 2015

Capillarity and wetting phenomena

Capillarity is the ability of a liquid to flow in narrow spaces, even in opposition to external forces like gravity. *Wetting* is the ability of a liquid to maintain contact with a solid surface.

-connected and essentially due to intermolecular forces between the liquid and surrounding solid surfaces.

Given Ω open set in \mathbb{R}^n (the container), $E \subset \Omega$ (regione occupied by) the liquid the equilibrium state of E in Ω is determined by the Gauss' free energy

$$\int_{\partial E \cap \Omega} \varphi(x, \nu_E(x)) \, d\mathcal{H}^{n-1} + \int_{\partial E \cap \partial \Omega} \sigma(x) \, d\mathcal{H}^{n-1} + \int_E g(x) \, dx$$

+ condition |E| = m for $m \in (0, |\Omega|)$.

 $\varphi(x,\nu(x))$ (anisotropic) surface tension density at point x of the surface with normal ν , $\sigma(x)$ adhesion coefficient at point x of $\partial\Omega$

Variational formulation

 \hookrightarrow weak formulation on sets of finite perimeter + direct methods \Rightarrow existence of *E* minimizer such that its 'essential' boundary is a hypersurface in a 'weak geometric measure sense'.

Main goal: establish the suitable PDE satisfied by the equilibrium state of the liquid and the contact equation at the boundary of the (possible) adhesion set (Young's law)

\hookrightarrow Regularity issue for the free boundary of the contact set

 \hookrightarrow Further regularity hypotheses on $\partial\Omega$ and some compatibility condition between the anisotropic surface tension density $\varphi(x,\nu)$ and the adhesion coefficent σ

<u>Rem.</u> For $\varphi(x, \nu) = |\nu|$, $g = 0 = \sigma$ one recovers the relative isoperimetric inequality in Ω , hence the regularity cannot improve that of minimal surfaces.

Trasversality conditions and contact equations

Theorem (Maggi-De Philippis 2015) If $\partial \Omega$ is $C^{1,1}$, φ is regular elliptic, $g \in L^{\infty}(\Omega)$, $\sigma \in Lip(\Omega)$ and

$$-arphi(x,-
u_\Omega(x))<\sigma(x)$$

Then *E* is an open set with $\partial E \cap \partial \Omega$ a set of finite perimeter in $\partial \Omega$. Moreover \exists a set Σ with $\mathcal{H}^{n-2}(\Sigma) = 0$ and $\overline{\partial E \cap \Omega} \setminus \Sigma$ is a $C^{1,1/2}$ hypersurface with boundary and it holds

$$\begin{aligned} \operatorname{div}(\nabla\varphi(x,\nu_E(x))) + \nabla\varphi(x,\nu_E(x)) \cdot \nu_{\Omega}(x) &= -g(x) + constant \\ \nabla\varphi(x,\nu_E(x)) \cdot \nu_{\Omega}(x) &= \sigma(x) \quad \text{for any } x \text{ in } \overline{\partial E \cap \Omega} \cap \partial\Omega \setminus \Sigma \end{aligned}$$

For $\varphi(x,\nu) = |\nu|$ and n = 3 the contact equations rewrites as

$$H(x) = -g(x) + constant \qquad \text{for any } x \text{ in } \overline{\partial E \cap \Omega} \cap \Omega$$
$$\nu_E(x) \cdot \nu_{\Omega}(x) = \sigma(x) \qquad \text{for any } x \text{ in } \overline{\partial E \cap \Omega} \cap \partial\Omega$$

Nonlocal fractional perimeters

Capillarity surfaces are determined by the balance between adhesive and cohesive forces, depending in turn by the intermolecular interactions.

Main idea: substitute the *local* nature of these interactions admitting in the model *long-range* interactions among particles producing surface tension effects both in the cohesive and adhesive term.

$\hookrightarrow \mathsf{Nonlocal} \ \mathsf{fractional} \ \mathsf{perimeters}$

For $s\in(0,1)$ and Ω regular bounded open set let

$$P_s(E,\Omega) := \int_{E\cap\Omega} \int_{\Omega\setminus E} \frac{1}{|x-y|^{n+s}} \, dy \, dx$$

$$+\int_{E\cap\Omega}\int_{\Omega^c\setminus E}\frac{1}{|x-y|^{n+s}}\,dy\,dx+\int_{E\setminus\Omega}\int_{\Omega\setminus E}\frac{1}{|x-y|^{n+s}}\,dy\,dx$$

Main features

• different scaling law:

For any $\lambda > 0$, E, Ω it holds $P_s(\lambda E, \lambda \Omega) = \lambda^{n-s} P_s(E, \Omega)$

• weaker than the euclidean perimeter if Ω regular $\exists C = C(n, s, \Omega) > 0$ such that $P_s(E, \Omega) \leq CPer(E, \Omega) + C$

 \bullet finiteness on sets F whose boundary has Hausdorff dimension n-s>n-1

- compact embedding in $L^1(\Omega)$, continuous in $L^{n/n-1}(\Omega)$ $\forall (E_k)$ with $P_s(E_k, \Omega) \leq C \exists E_{k_h}, E$ with $||E_{k_h} - E||_{L^1(\Omega)} \to 0$.

 $\Gamma-\lim_{s\to 1-}(1-s)P_s(E,\Omega)=w_{n-1}\operatorname{Per}(E,\Omega), \quad w_{n-1}=\mathcal{H}^{n-1}(\mathcal{S}^{n-1})$

Nonlocal free energies

Let
$$\sigma \in C^0(\overline{\Omega})$$
; for $E \subset \Omega$ we define
$$\mathcal{F}_s^{\sigma}(E) := \int_E \int_{\Omega \setminus E} \frac{1}{|x - y|^{n + s}} \, dy \, dx + \int_E \int_{\Omega^c} \frac{\sigma(x)}{|x - y|^{n + s}} \, dy \, dx$$

Goal: Analyze these new nonlocal surface and wetting energies in capillarity problems.

- study the asymptotics as $s \to 1-$ of $\mathcal{F}_s^{\sigma}(E)$;
- study existence of minimizers for $\mathcal{F}_s^{\sigma}(E) + \int_E g_s$ with |E| = m;
- establish suitable regularity properties of minimizers;
- deduce non local contact equations and relative contact angles;
- compare the information derived by the local and non-local model.

F-convergence analysis

Theorem(G.-Novaga)

Assume Ω regular and $\sigma \in C^0(\overline{\Omega})$, then $(1-s)\mathcal{F}_s^{\sigma} \to \mathcal{F}^{\sigma}$ as $s \to 1-$ with respect to the L^1 convergence in Ω , where \mathcal{F}^{σ} is defined by

$$\mathcal{F}^{\sigma}(E) = w_{n-1} \Big(\operatorname{Per}(E, \Omega) + \int_{\partial^* E \cap \partial \Omega} (-1) \vee \sigma \wedge 1 \, d\mathcal{H}^{n-1} \\ + \int_{\{\sigma < -1\} \cap \partial \Omega} (1+\sigma) \, d\mathcal{H}^{n-1} \Big)$$

Approximation of local capillarity problems Theorem(G.-Novaga)

Let $m \in (0, |\Omega|)$ and $g \in L^{\infty}(\Omega)$. Assume that

 $-1 \leq \sigma(x) \leq 1$ for any $x \in \Omega$,

then the energies

$$(1-s)\mathcal{F}_s^{\sigma}+\int_E g(x)$$

defined for sets $E \subseteq \Omega$ with |E| = m, Γ -converge as $s \to 1-$, with respect to the L^1 convergence in Ω , to

$$w_{n-1}\left(\operatorname{Per}(E,\Omega)+\int_{\partial^*E\cap\partial\Omega}\sigma\,d\mathcal{H}^{n-1}\right)+\int_E g(x)\,dx$$

defined for sets $E \subseteq \Omega$ with |E| = m.

Relaxation of Gauss' free energy

Proposition(G.-Novaga)

Assume Ω regular and $\sigma \in C^0(\overline{\Omega})$. For $E \subset \Omega$ define F^{σ} as

$$F^{\sigma}(E) = w_{n-1} \Big(\operatorname{Per}(E, \Omega) + \int_{\partial^* E \cap \partial \Omega} \sigma \, d\mathcal{H}^{n-1} \Big).$$

Then its lower semicontinuous envelope with respect to the L^1 convergence in Ω is

$$\mathcal{F}^{\sigma}(E) = w_{n-1} \Big(\mathsf{Per}(E, \Omega) + \int_{\partial^* E \cap \partial \Omega} (-1) \vee \sigma \wedge 1 \, d\mathcal{H}^{n-1} \\ + \int_{\{\sigma < -1\} \cap \partial \Omega} (1+\sigma) \, d\mathcal{H}^{n-1} \Big)$$

Asymptotics of P_s with an additional constraint

If $\sigma \equiv 1$ we recover the analogous of Ambrosio-De Philippis-Martinazzi result with the additional condition that admissible sets must lie in Ω :

Proposition Define $\tilde{P}_s(E, \Omega)$ for any measurable set $E \subset \mathbb{R}^n$ as

$$ilde{P}_{s}(E,\Omega) = egin{cases} P_{s}(E,\Omega) & \textit{if } E \subseteq \Omega \ +\infty & \textit{otherwise.} \end{cases}$$

Then $(1-s)\tilde{P_s}(E,\Omega)$ Γ -converge as $s \to 1-$ with respect to the L^1_{loc} convergence in \mathbb{R}^n to

$$w_{n-1}$$
Per $(E) = w_{n-1} \Big($ Per $(E, \Omega) + \mathcal{H}^{n-1}(\partial^* E \cap \partial \Omega) \Big).$

Rem. For sets touching the boundary the recovery sequence is obtained in the Ambr.-De Phil.-Mart.'s setting by sets having boundary transversal to $\partial\Omega$.

Existence and compactness of s-minimizers

Proposition

Let $m \in (0, |\Omega|)$ and $g_s \in L^{\infty}(\Omega)$ then there exists at least a minimizer E_s of $\mathcal{F}_s^{\sigma}(E) + \int_E g_s dx$ among sets $E \subseteq \Omega$ with |E| = m.

 Ω regular $\Rightarrow P_s(\Omega, \mathbb{R}^n) < +\infty \Rightarrow l.s.c.$ of $\mathcal{F}_s^{\sigma}(E)$. The Sobolev fractional embedding allows to conclude.

Proposition

For $s \in (0, 1)$ let E_s be as above with $g_s = g/(1 - s)$. Then there exists a set E limit point of E_s in L^1 . Moreover E is a minimizer for $\mathcal{F}^{\sigma}(E) + \int_E g dx$ among sets $E \subseteq \Omega$ with |E| = m.

We can prove a priori estimates on $(1 - s)\mathcal{F}_s^{\sigma}(E)$ and deduce the validity of the Frechet-Kolmogorov compactness criterion. The last part follows by the Γ -convergence.