Parabolic quasiminimizers

Jens Habermann

University of Erlangen

Partial differential equations, optimal design and numerics Benasque, 23. August - 04. September 2015

Plan of the talk:

- Introduction: Parabolic quasiminimizers
- Stability and Higher Integrability
- Extensions to metric measure spaces

Papers:

- Fujishima, H., Kinnunen, Masson: Stability for parabolic quasiminimizers, Potential Analysis, 41, 983-1004, 2014.
- ► H.: Global gradient estimates for vector-valued parabolic quasiminimizers, Nonlinear Analysis TMA, 114, 43-73, 2015.
- H.: Higher integrability for for vector-valued parabolic quasiminimizers on metric spaces, Arkiv för Matematik, to appear.

Introduction: Parabolic quasiminimizers

Parabolic quasiminimizers: the model case

Let Ω be a domain in \mathbb{R}^n , $n \geq 2$, and $\Omega_T := \Omega \times (0, T)$, T > 0, and let $u \in L^p(0, T; W^{1,p}(\Omega))$ satisfy

$$-\int_{\operatorname{spt}\varphi}u\,\partial_t\,\varphi\,\mathrm{d}z+\frac{1}{\rho}\int_{\operatorname{spt}\varphi}|Du|^p\,\mathrm{d}z\leq\frac{\mathcal{Q}}{\rho}\int_{\operatorname{spt}\varphi}|Du-D\varphi|^p\,\mathrm{d}z,$$

for all
$$\varphi \in C_c^{\infty}(\Omega_T)$$
, $\mathcal{Q} \ge 1$,

4□ > 4回 > 4 = > 4 = > = 900

Parabolic quasiminimizers: the model case

Let Ω be a domain in \mathbb{R}^n , $n \geq 2$, and $\Omega_T := \Omega \times (0, T)$, T > 0, and let $u \in L^p(0, T; W^{1,p}(\Omega))$ satisfy

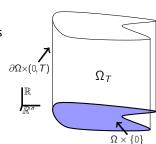
$$-\int_{\operatorname{spt} \varphi} u\,\partial_t\,\varphi\,\mathrm{d}z + \frac{1}{\rho}\int_{\operatorname{spt} \varphi} |Du|^\rho\,\mathrm{d}z \leq \frac{\mathcal{Q}}{\rho}\int_{\operatorname{spt} \varphi} |Du - D\varphi|^\rho\,\mathrm{d}z,$$

for all $\varphi \in C_c^{\infty}(\Omega_T)$, $Q \ge 1$,

under suitable initial and boundary conditions on

$$\partial_{\mathrm{par}}\Omega_{\mathcal{T}} = \underbrace{\left(\Omega_{\mathcal{T}} \times \{0\}\right)}_{\textit{initial boundary}} \cup \underbrace{\left(\partial\Omega \times \left(0,\,\mathcal{T}\right)\right)}_{\textit{lateral boundary}}.$$

We denote: $\partial_t \varphi \equiv \frac{\partial \varphi}{\partial t}$ and $D\varphi \equiv \nabla_x \varphi$.



Parabolic quasiminimizers: the model case

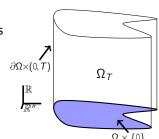
Let Ω be a domain in \mathbb{R}^n , $n \geq 2$, and $\Omega_T := \Omega \times (0, T)$, T > 0, and let $u \in L^p(0, T; W^{1,p}(\Omega))$ satisfy

$$-\int_{\operatorname{spt} \varphi} u\,\partial_t\,\varphi\,\mathrm{d}z + \frac{1}{\rho}\int_{\operatorname{spt} \varphi} |Du|^p\,\mathrm{d}z \leq \frac{\mathcal{Q}}{\rho}\int_{\operatorname{spt} \varphi} |Du - D\varphi|^p\,\mathrm{d}z,$$

for all $\varphi \in C_c^{\infty}(\Omega_T)$, $Q \ge 1$,

under suitable initial and boundary conditions on

$$\partial_{\mathrm{par}}\Omega_{\mathcal{T}} = \underbrace{\left(\Omega_{\mathcal{T}} \times \{0\}\right)}_{\textit{initial boundary}} \cup \underbrace{\left(\partial\Omega \times \left(0,\,\mathcal{T}\right)\right)}_{\textit{lateral boundary}}.$$



We denote: $\partial_t \varphi \equiv \frac{\partial \varphi}{\partial t}$ and $D\varphi \equiv \nabla_x \varphi$. u is called a parabolic Q-minimizer of the p-energy.

► Weak solutions of the parabolic **p**-Laplace equation

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = 0, \quad \text{ on } \Omega_T$$

are parabolic minimizers, i.e. $\mathcal{Q}=1$,

► Weak solutions of the parabolic **p**-Laplace equation

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = 0, \quad \text{ on } \Omega_T$$

are parabolic minimizers, i.e. Q = 1,

Weak solutions of parabolic equations of the type

$$\partial_t u - \operatorname{div} A(x, t, Du) = 0, \quad \text{on } \Omega_T$$

with polynomial growth

$$A(x,t,\xi)\cdot\xi\geq\lambda|\xi|^p,\qquad |A(x,t,\xi)|\leq L|\xi|^{p-1},$$

are parabolic quasiminimizers with $Q \equiv Q(\lambda, L, p) \geq 1$.

► Weak solutions of the parabolic **p**-Laplace equation

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = 0, \quad \text{ on } \Omega_T$$

are parabolic minimizers, i.e. Q = 1,

Weak solutions of parabolic equations of the type

$$\partial_t u - \operatorname{div} A(x, t, Du) = 0, \quad \text{on } \Omega_T$$

with polynomial growth

$$A(x,t,\xi)\cdot\xi\geq\lambda|\xi|^p,\qquad |A(x,t,\xi)|\leq L|\xi|^{p-1},$$

are parabolic quasiminimizers with $\mathcal{Q} \equiv \mathcal{Q}(\lambda, L, p) \geq 1$.

▶ Quasiminimizers ←→ Obstacle problems

► Weak solutions of the parabolic *p*-Laplace equation

$$u_t - \operatorname{div}(|Du|^{p-2}Du) = 0, \quad \text{ on } \Omega_T$$

are parabolic minimizers, i.e. Q = 1,

Weak solutions of parabolic equations of the type

$$\partial_t u - \operatorname{div} A(x, t, Du) = 0, \quad \text{on } \Omega_T$$

with polynomial growth

$$A(x,t,\xi)\cdot\xi\geq\lambda|\xi|^p,\qquad |A(x,t,\xi)|\leq L|\xi|^{p-1},$$

are parabolic quasiminimizers with $\mathcal{Q} \equiv \mathcal{Q}(\lambda, L, p) \geq 1$.

- ▶ Quasiminimizers ←→ Obstacle problems
- ➤ Other examples by Wieser ('87, Manus. Math.), Zhou ('93/'94, J. PDE)

Stability and Higher Integrability

Stability of Parabolic quasiminimizers

Problem: Take sequences $p_i \to p$ and $\mathcal{Q}_i \to \mathcal{Q}$ and consider a sequence u_i of parabolic \mathcal{Q}_i -minimizers of the p_i -energy with fixed boundary data $u_i = \eta$ on $\partial_{\mathrm{par}}\Omega_{\mathcal{T}}$, for which holds

$$u_i(x,t) \to u(x,t)$$
 a.e. on Ω_T .

Is u a parabolic $\mathcal Q$ -minimizer of the p-energy with $u=\eta$ on $\partial_{\mathrm{par}}\Omega_{\mathcal T}$?

Stability of Parabolic quasiminimizers

Problem: Take sequences $p_i \to p$ and $\mathcal{Q}_i \to \mathcal{Q}$ and consider a sequence u_i of parabolic \mathcal{Q}_i -minimizers of the p_i -energy with fixed boundary data $u_i = \eta$ on $\partial_{\mathrm{par}}\Omega_{\mathcal{T}}$, for which holds

$$u_i(x,t) o u(x,t)$$
 a.e. on Ω_T .

Is u a parabolic $\mathcal Q$ -minimizer of the p-energy with $u=\eta$ on $\partial_{\mathrm{par}}\Omega_{\mathcal T}$?

Answer: In general NO!

Counterexamples by Lindqvist, Kilpeläinen & Koskela, Kinnunen & Parviainen for the parabolic p-Laplace

Strongly related to the fact that in general

$$W^{1,p}(\Omega) \cap W^{1,p-\varepsilon}_o(\Omega) \neq W^{1,p}_o(\Omega).$$

Stability of Parabolic quasiminimizers

Problem: Take sequences $p_i \to p$ and $\mathcal{Q}_i \to \mathcal{Q}$ and consider a sequence u_i of parabolic \mathcal{Q}_i -minimizers of the p_i -energy with fixed boundary data $u_i = \eta$ on $\partial_{\mathrm{par}}\Omega_{\mathcal{T}}$, for which holds

$$u_i(x,t) o u(x,t)$$
 a.e. on Ω_T .

Is u a parabolic $\mathcal Q$ -minimizer of the p-energy with $u=\eta$ on $\partial_{\mathrm{par}}\Omega_{\mathcal T}$?

Answer: In general NO!

Counterexamples by Lindqvist, Kilpeläinen & Koskela, Kinnunen & Parviainen for the parabolic *p*-Laplace

Strongly related to the fact that in general

$$W^{1,p}(\Omega) \cap W^{1,p-\varepsilon}_o(\Omega) \neq W^{1,p}_o(\Omega).$$

Answer is YES for regular domains [Hedberg, Kilpeläinen,'99].

The stability problem

Theorem (Fujishima, H., Kinnunen, Masson, Potential Anal., '14):

Let $\Omega \subset \mathbb{R}^n$ be a domain such that $\mathbb{R}^n \setminus \Omega$ is uniformly p-thick, $p \geq 2$ and $\eta \in C^1(\Omega_T)$ be fixed.

Let $\{p_i\}_i$ and $\{Q_i\}_i$ be two sequences with $p_i \to p \ge 2$ and $Q_i \to Q \ge 1$ as $i \to \infty$.

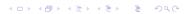
Consider a sequence $u_i \in L^{p_i}(0, T; W^{1,p_i}(\Omega))$ of parabolic Q_i -minimizers of the p_i -energy with $u_i = \eta$ on $\partial_{\mathrm{par}}\Omega_T$ and

$$u_i(x,t) \to u(x,t)$$
 almost everywhere in Ω_T .

Then

$$u \in L^p(0, T; W^{1,p}(\Omega)),$$

and u is a parabolic $\mathcal Q$ -minimizer of the p-energy with $u=\eta$ on $\partial_{\mathrm{par}}\Omega_{\mathcal T}.$



A very rough sketch of the proof

Note: If p changes, then the space $L^p(0, T; W^{1,p}(\Omega))$ changes! \longrightarrow Establish uniform energy bounds.

A very rough sketch of the proof

Note: If p changes, then the space $L^p(0, T; W^{1,p}(\Omega))$ changes! \longrightarrow Establish uniform energy bounds.

Lemma (H., Nonlin. Anal., 2014): There exists a universal $\varepsilon>0$, such that

$$\int_{\Omega_T} |Du|^{p+\varepsilon} \, \mathrm{d}z < \infty.$$

- ▶ Parab. p-Laplace, $p \ge 2$: Parviainen ('08)
- ▶ Parab. Q-min, p = 2: Masson & Parviainen ('14)

A very rough sketch of the proof

Note: If p changes, then the space $L^p(0, T; W^{1,p}(\Omega))$ changes! \longrightarrow Establish uniform energy bounds.

Lemma (H., Nonlin. Anal., 2014): There exists a universal $\varepsilon>0$, such that

$$\int_{\Omega_T} |Du|^{p+\varepsilon} \, \mathrm{d}z < \infty.$$

- ▶ Parab. p-Laplace, $p \ge 2$: Parviainen ('08)
- ▶ Parab. Q-min, p = 2: Masson & Parviainen ('14)

Remarks on the Proof:

- Global result. It uses the regularity of the boundary.
- ► Self-improving property of uniform *p*-thickness [Lewis, '88]
- ▶ Intrinsic geometry [DiBenedetto, Friedman, '85]

Some remarks on the stability proof

- ▶ Establish convergence $u_i \rightarrow u$.
 - ▶ Higher integrability → Uniform energy bound

$$\sup_{i\in\mathbb{N}}\int_{\Omega_T}|u_i|^{p+\delta}+|Du_i|^{p+\delta}\,\mathrm{d}z<\infty,$$

 Compactness argument (J. Simon, '87) provides that the limit function

$$u \in L^{p+\delta}(0, T; W^{1,p+\delta}(\Omega)),$$

and for a subsequence we get $u_i \to u$ strongly in $L^{p+\delta}(\Omega_T)$ and $Du_i \to Du$ weakly in $L^{p+\delta}(\Omega_T)$.

- **v** u attains the initial and lateral boundary data η
 - ▶ Use uniform energy bounds, uniform *p*-thickness of $\mathbb{R}^n \setminus \Omega$.
 - ▶ Self-improving property of uniform *p*-thickness [Lewis, '88].
 - Use characterization of boundary values for Sobolev functions
- ▶ u is a parabolic Q-minimizer of the p-energy
 - ▶ Delicate argument, using again the uniform energy bounds

Some remarks on the stability proof

- Simple, direct proof, using merely
 - ▶ Energy estimates for the functions u_i and their gradients Du_i ;
 - General properties and embeddings for Sobolev functions;
 - Characterizations of Sobolev functions at the boundary;
 - ▶ the self-improving property of *p*-thickness.
- ► In particular, the proof does not use
 - Uniqueness, comparison or maximum principles
 - A priori informations on the limit functions

Some remarks on the stability proof

- Simple, direct proof, using merely
 - ▶ Energy estimates for the functions u_i and their gradients Du_i ;
 - General properties and embeddings for Sobolev functions;
 - Characterizations of Sobolev functions at the boundary;
 - ▶ the self-improving property of *p*-thickness.
- ► In particular, the proof does not use
 - Uniqueness, comparison or maximum principles
 - A priori informations on the limit functions

Literature:

- Stationary case:
 - Lindqvist ('87, J. Math. Anal. Appl., '93, Potential Anal.)
 - Kilpelaïnen & Koskela ('94, Nonlin. Anal.)
 - Li & Martio ('98, Indiana Univ. Math. J.)
 - Zhikov ('97, Russian J. Math. Phys.)
- Time-dependent case:
 - Kinnunen & Parviainen ('10, Adv. Calc. Var.)

Extension to metric measure spaces

Parabolic quasiminimizers on metric measure spaces

Now: Replace \mathbb{R}^n by a metric measure space (\mathcal{X}, d, μ) .

How can we define a 'gradient' ∇u for a function $u \colon \mathcal{X} \to \mathbb{R}$?

Parabolic quasiminimizers on metric measure spaces

Now: Replace \mathbb{R}^n by a metric measure space (\mathcal{X}, d, μ) .

How can we define a 'gradient' ∇u for a function $u \colon \mathcal{X} \to \mathbb{R}$?

Recall: Characterization of Sobolev functions by means of path integrals: For $u \in W^{1,p}(\Omega)$ there holds

$$|u(x)-u(y)|\leq \int_{\gamma}|\nabla u|\,\mathrm{d}s,$$

for p-almost all rectifiable curves γ (parametrized by arclenth) connecting x and y.

Parabolic quasiminimizers on metric measure spaces

Now: Replace \mathbb{R}^n by a metric measure space (\mathcal{X}, d, μ) .

Recall: Characterization of Sobolev functions by means of path integrals: For $u \in W^{1,p}(\Omega)$ there holds

$$|u(x)-u(y)|\leq \int_{\gamma}|\nabla u|\,\mathrm{d}s,$$

for p-almost all rectifiable curves γ (parametrized by arclenth) connecting x and y.

Definiton: A Borel measurable function $g: \mathcal{X} \to [0, \infty]$ is called an upper gradient of $u: \mathcal{X} \to \mathbb{R}$, if

$$|u(\gamma(\ell_{\gamma})) - u(\gamma(0))| \le \int_{\gamma} g \, \mathrm{d}s,$$

for all rectifiable curves $\gamma \colon [0, \ell_{\gamma}] \to \mathcal{X}$.

Upper gradients in metric spaces

Minimal upper gradient: Defined by the property that

$$\|g_u\|_{L^p(\Omega)}=\inf_G\|g\|_{L^p(\Omega)}$$

where G denotes the set of all upper gradients $g \in L^p(\Omega)$.

→ Analog concept to the one of Sobolev spaces: Newtonian space

$$\mathcal{N}^{1,p}(\Omega)$$
.

[Cheeger, Hajlasz, Shanmugalingam]

Parabolic quasi minimizers on (\mathcal{X}, d, μ)

Given a metric measure space (\mathcal{X}, d, μ) , $\Omega \subset \mathcal{X}$ open and $\Omega_{\mathcal{T}} \equiv \Omega \times (0, \mathcal{T}) \subset \mathcal{X} \times \mathbb{R}$.

Consider $u \colon \Omega_T \to \mathbb{R}^N$, $N \ge 1$, satisfying

$$\iint_{\operatorname{spt} \varphi} u \, \partial_t \varphi \, \operatorname{d}\! \mu \operatorname{d}\! t + \iint_{\operatorname{spt} \varphi} g_u^{\, p} \operatorname{d}\! \mu \operatorname{d}\! t \leq \mathcal{Q} \iint_{\operatorname{spt} \varphi} g_{u-\varphi}^{\, p} \operatorname{d}\! \mu \operatorname{d}\! t,$$

for all testing functions $\varphi \in \operatorname{Lip}_c(\Omega_T)$, with $\mathcal{Q} \geq 1$ fixed.

Parabolic quasi minimizers on (\mathcal{X}, d, μ)

Given a metric measure space (\mathcal{X}, d, μ) , $\Omega \subset \mathcal{X}$ open and $\Omega_T \equiv \Omega \times (0, T) \subset \mathcal{X} \times \mathbb{R}$.

Consider $u \colon \Omega_T \to \mathbb{R}^N$, $N \ge 1$, satisfying

$$\iint_{\operatorname{spt} \varphi} u \, \partial_t \varphi \, \operatorname{d}\! \mu \operatorname{d}\! t + \iint_{\operatorname{spt} \varphi} g_u^{\, p} \operatorname{d}\! \mu \operatorname{d}\! t \leq \mathcal{Q} \iint_{\operatorname{spt} \varphi} g_{u-\varphi}^{\, p} \operatorname{d}\! \mu \operatorname{d}\! t,$$

for all testing functions $\varphi \in \operatorname{Lip}_c(\Omega_T)$, with $\mathcal{Q} \geq 1$ fixed.

Assumptions on the metric measure space:

• (\mathcal{X}, d, μ) is doubling, i.e.

$$\frac{\mu(B_{2R}(x))}{\mu(B_{R}(x))} \leq C, \quad \text{for all } B_{2R}(x) \subset \mathcal{X}.$$

• (\mathcal{X}, d, μ) supports a (1, p)-Poincaré inequality

$$\int_{B_{\sigma}(x_{0})} |u - u_{x_{0},\varrho}| \,\mathrm{d}\mu \leq c_{p} \,\varrho \left[\int_{B_{\Gamma_{\sigma}}(x_{0})} g^{p} \,\mathrm{d}\mu \right]^{1/p}$$

Motivation and Examples

Examples:

- Some weighted Euclidean spaces [Heinonen, Kilpeläinen, Martio, 1993]
- Classes of Riemannian manifolds [Saloff-Coste, 2002]
- ► Some Ahlfors *Q*-regular spaces [Laakso, 2000]

Motivation and Examples

Examples:

- Some weighted Euclidean spaces [Heinonen, Kilpeläinen, Martio, 1993]
- Classes of Riemannian manifolds [Saloff-Coste, 2002]
- ► Some Ahlfors *Q*-regular spaces [Laakso, 2000]

Goals:

- Regularity for upper gradients
- ▶ Poincaré inequality ←→ Harnack inequalities

Motivation and Examples

Examples:

- Some weighted Euclidean spaces [Heinonen, Kilpeläinen, Martio, 1993]
- Classes of Riemannian manifolds [Saloff-Coste, 2002]
- ► Some Ahlfors *Q*-regular spaces [Laakso, 2000]

Goals:

- Regularity for upper gradients
- ▶ Poincaré inequality ←→ Harnack inequalities

Obstacles:

- ▶ No PDEs, fundamental solution, comparison arguments,...
- Upper gradients are not linear
- No standard approximation procedures

Towards stability in metric measure spaces

Global higher integrability of Gehring type:

Theorem (Fujishima, H., Preprint):

Let $\Omega \subset \mathcal{X}$ be a 'regular' domain, $u \in L^p(0,T;\mathcal{N}^{1,p}(\Omega))$ be a parabolic quasi minimizer with boundary values $u=\eta$ on $\partial_{\mathrm{par}}\Omega_T$. Then there exists $\varepsilon>0$, depending only on the structure parameters of the problem, such that

$$u\in L^{p+\varepsilon}(0,T;\mathcal{N}^{1,p+\varepsilon}(\Omega)).$$

Towards stability in metric measure spaces

Global higher integrability of Gehring type:

Theorem (Fujishima, H., Preprint):

Let $\Omega \subset \mathcal{X}$ be a 'regular' domain, $u \in L^p(0,T;\mathcal{N}^{1,p}(\Omega))$ be a parabolic quasi minimizer with boundary values $u=\eta$ on $\partial_{\mathrm{par}}\Omega_T$. Then there exists $\varepsilon>0$, depending only on the structure parameters of the problem, such that

$$u \in L^{p+\varepsilon}(0,T;\mathcal{N}^{1,p+\varepsilon}(\Omega)).$$

- Euclidean setting $(\mathcal{X} = \mathbb{R}^n)$:
 - Wieser '87, Kinnunen & Lewis '00, Bögelein '08, Bögelein & Parviainen '10, Bögelein & Duzaar '11, H. '14
- ▶ Metric spaces (\mathcal{X}, d, μ) :
 - ▶ Masson, Miranda, Paronetto, Parviainen '13 (p = 2, local)
 - ▶ Masson, Parviainen '15 (p = 2, up-to-the-boundary)
 - ▶ *H.* '14 ($p \neq 2$, local)

Literature on quasiminimizers on metric measure spaces:

- ► Metric measure spaces, properties: Cheeger, Saloff-Coste, Lewis, Keith, Zhong, Koskela,...
- ► Elliptic problems studied in the past 10-15 years: Kinnunen, Shanmugalingam, Björn, Marola, Koskela, MacManus, Maasalo, Lindqvist, Zatorska-Goldstein,...
- ▶ Parabolic problems on metric measure spaces: Saloff-Coste, Grigoryan, Kinnunen, Kilpeläinen, Koskela, Marola, Miranda, Paronetto, Masson, Parviainen, Siljander,...

Many techniques also come from the study of parabolic problems in the Euclidean setting: DeGiorgi, Nash, Giusti, DiBenedetto, Gianazza, Vespri, Wieser, Duzaar, Bögelein, Zhou, . . .

Thank you for your attention.