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Motivation of today’s Talk

aµ(E821 − BNL) = 116 592 089(54)stat(33)syst × 10−11[0.54ppm]

Future Experiments:
FNAL with ±0.14 ppm overall uncertainty (data expected in 2017)
JPARC with similar uncertainty but very different technique

Standard Model Contributions to aµ = 1
2 (gµ − 2)

J.P. Miller, E. de Rafael, B.L. Roberts, D. Stöckinger, Annu. Rev. Part. Nucl. Phys. ’12

CONTRIBUTION RESULT IN 10−11 UNITS

QED (leptons) 116 584 718.85 ± 0.04
HVP(lo)[e+e−] 6 923 ± 42
HVP(ho) −98.4 ± 0.7
HLbyL 105 ± 26
EW 153 ± 1
Total SM 116 591 801 ± 49

Persistent 3.6σ discrepancy between SM theory and Experiment
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However? A. Lukin’s BaBar talk at Montpellier QCD15

We shall have to wait and see how BaBar, Kloe and BESIII solve their discrepancies
Good opportunity for Lattice QCD !
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HVP Contribution to the Muon Anomaly

X

µ

Hadrons

Muon Anomaly from HVP

Standard Formulation in terms of the Hadronic Spectral Function

1
2
(gµ − 2)Hadrons ≡ aHVP

µ =
α

π

∫ ∞

4m2
π

dt
t

∫ 1

0
dx

x2(1 − x)
x2 + t

m2
µ
(1 − x)

1
π

ImΠ(t)

where

σ(t)[e+e−→(γ)→Hadrons] =
4π2α

t
1
π

ImΠ(t)

The Largest Contribution (∼ 75%) comes from e+e− → π+π−

The Underlying Physics is well understood:
Large-Nc ρ plus pQCD continuum agrees with data at the ∼ 10% level
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Euclidean Formulation

Lattice QCD wants to go Euclidean

−Π(Q2) =

∫ ∞

0

dt
t

Q2

t + Q2
︸ ︷︷ ︸

1
π

ImΠ(t) , with euclidean Q2 =
x2

1 − x
m2

µ ≥ 0 .

How to go Euclidean (Lautrup- de Rafael ’69)

aHVP
µ =

α

π

∫ 1

0
dx (1 − x)

∫ ∞

0

dt
t

x2

1−x m2
µ

t + x2

1−x m2
µ

︸ ︷︷ ︸

1
π

ImΠ(t) ,

aHVP
µ =

α

π

∫ 1

0
dx(1 − x)

[

−Π

(
x2

1 − x
m2

µ

)]

.

Lattice QCD likes to use: ω = Q2

m2
µ
= x2

1−x ,

aHVP
µ =

α

π

∫ ∞

0

dω
ω

1
4

[

(2 + ω)
(

2 + ω −
√
ω
√

4 + ω
)

− 2
](

−ω
d

dω
Π
(

ωm2
µ

))
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Comment on Lattice QCD Evaluations

aHVP
µ =

α

π

∫
∞

0

dω

ω

1

4

[

(2 + ω)
(

2 + ω −
√
ω
√

4 + ω
)

− 2
]

︸ ︷︷ ︸

G(ω)

(

−ω
d

dω
Π
(

ωm2
µ

))

︸ ︷︷ ︸

Adler Function
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Lattice QCD evaluations -at a few ω points- need extrapolations
at very low ω values using Models and/or Padé Approximants
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Moment Analysis (Model Independent) EdeR, P.L.’14

− d

dω
Π
(

ωm2
µ

)

=

∫
∞

4m2
π

dt

t

m2
µ

t

1

2πi

∫ c+i∞

c−i∞
ds

(
ωm2

µ

t

)−s

Γ(s)Γ(2 − s)

︸ ︷︷ ︸
(

1+
ωm2

µ
t

)−2

1

π
ImΠ(t) .

Mellin-Barnes Integral Representation of aHVP
µ

aHVP
µ =

(α

π

) 1
2πi

c+i∞∫

c−i∞

ds F(s) M(s)
︸ ︷︷ ︸

, Re c ∈ ]0,+1[

F(s) = −Γ(3 − 2s)Γ(−3 + s)Γ(1 + s)

M(s) =
∫ ∞

4m2
π

dt
t

(

m2
µ

t

)1−s
1
π

ImΠ(t)

︸ ︷︷ ︸

Mellin Transform of the Spectral Function

Useful representation to extract the asymptotic expansion for
m2
µ

t < 1.
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Two types of Moments

Normal Power Moments:

M(−n) =

∞∫

4m2
π

dt

t

(
m2

µ

t

)1+n
1

π
ImΠ(t) , n = 0, 1, 2, . . .

Log Weighted Power Moments (first derivative of the Mellin transform at integer n < 0 values):

M̃(−n) =
∫

∞

4m2
π

dt

t

(
m2

µ

t

)1+n

log
m2

µ

t

1

π
ImΠ(t) , n = 1, 2, 3, · · ·

Expansion in Moment Approximants

aHVP
µ =

(
α

π

){
1

3
M(0) +

25

12
M(−1) + M̃(−1)

+
97

10
M(−2) + 6M̃(−2)

+
208

5
M(−3) + 28M̃(−3) + O

[

M̃(−4)
]}

These moments are known phenomenologically from e+e− data
(M. Davier, private communication)
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The Moment Approximants in a Phenomenological Toy Model

aHVP
µ (e+e−) = (6.923 ± 0.042)× 10−8 (0.6%)

M. Davier et al’ 10

aHVP
µ (toy model) = 6.936 × 10−8

D. Bernecker and H.B. Meyer, ’11; L. Lelllouch, ’14

Numerical Values of the Moment Approximants (Toy Model)
(α

π

) 1
3
M(0) = 8.071 × 10−8 (16%)

(α

π

)[1
3
M(0) +

25
12

M(−1) + M̃(−1)
]

= 7.240 × 10−8 (4%)

(
α

π

)[
1

3
M(0) +

25

12
M(−1) + M̃(−1) +

97

10
M(−2) + 6M̃(−2)

]

= 7.022 × 10−8 (1%)

Fourth Approximation is already within 0.4% of the toy model result
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The Moment Approximants in Lattice QCD

The Leading Moment provides a rigorous upper bound to aHVP
µ

J.S. Bell-de Rafael ’69: the operator ∂λFµν∂λFµν governs low-energy hadronic QED observables

aHVP
µ <

(α

π

) 1
3

∫ ∞

4m2
π

dt
t

m2
µ

t
1
π

ImΠ(t)

︸ ︷︷ ︸

M(0)

=
(α

π

) 1
3

(

−m2
µ

d
dQ2

Π(Q2)

)

Q2=0
︸ ︷︷ ︸

Lattice QCD

The bound overestimates aHVP
µ by less than 18% (not bad for a rigorous bound)

The slope of Π
(

Q2
)

at the origin (r.h.s.) can be (has been ?) evaluated in lattice QCD

It is difficult to imagine that, unless lattice QCD does better than phenomenology in this
simple case, it will ever reach a competitive accuracy of the full determination of aHVP

µ .

M(−n) Moments correspond to successive derivatives of Π(Q2) at Q2 = 0

M(−n)
︸ ︷︷ ︸

n=0,1,2...

=

∞∫

4m2
π

dt

t

(
m2

µ

t

)1+n
1

π
ImΠ(t) =

(−1)n+1

(n + 1)!
(m2

µ)
n+1

(

∂n+1

(∂Q2)n+1
Π(Q2)

)

Q2=0

These derivatives can (should) be determined in Lattice QCD
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The Log Weighted Moments in Lattice QCD

M̃(−n) =
∫

∞

4m2
π

dt

t

(
m2

µ

t

)n

log
m2

µ

t

1

π
ImΠ(t)

They require the evaluation of integrals of the type

Integrals in the Euclidean to be evaluated in lattice QCD

Σ(−n) ≡
∫

∞

4m2
π

dQ2

(
m2

µ

Q2

)n+1 (

−Π(Q2)

Q2

)

n = 1, 2, 3 . . .

Example:

M̃(−1) = − log
4m2

π

m2
µ

M(−1)
︸ ︷︷ ︸

Latt. QCD

+ Σ(−1)
︸ ︷︷ ︸

Latt. QCD

−
m2

µ

4m2
π

M(0)
︸ ︷︷ ︸

Latt. QCD

+O [M(−2)]

Contrary to the evaluation of aHVP
µ , the Euclidean moments Σ(−1), Σ(−2), ...

are not weighted by a heavily peaked kernel at small Q2 .

The threshold of integration is at a rather large value Q2 = 4m2
π instead of zero.

The determination of these Euclidean moments in lattice QCD and their comparison with the
corresponding phenomenological expressions in terms of the hadronic spectral function,
provide valuable further tests.
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Conclusions about the HVP Contribution

Present Lattice QCD determinations of HVP in the Euclidean need to be
complemented by approximation methods in order to get aHVP

µ .

The moment analysis approach may gradually lead to an accurate
determination of aHVP

µ , providing at the same time many tests of lattice
QCD evaluations to be confronted with phenomenological
determinations using experimental data.

This workshop is a good place to discus optimal lattice strategies and
optimal approximation methods to obtain, eventually, a robust
determination of aHVP

µ which can be confronted with the determinations
from e+e− data.
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Hadronic Light by Light (HLbyL) Contribution to the Muon Anomaly

X

µ
+ Permutations

Hadrons
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The HLbyL Contribution is known in a Theoretical Limit

Sponteneous Chiral Symmetry Breaking in QCD

Implies a spectrum with GOLDSTONE PARTICLES (pions)
and a MASS GAP M to the other hadronic states.

The HLbyL contribution to aµ in Large-NcQCD
and in the limit where mu,d,s → 0 and M Large
is known from χPT with the point-like WZW couplings:

π

µ

π

µµ

π

µ

HLbyL Contribution to the Muon Anomaly in Chiral Limit with M Large

a(HLbyL)
µ =

(α

π

)3
Nc

2 m2
µ

16π2f 2
π

[1
3

log2 M
mπ

+O
(

log
M
mπ

)

+O(1)
]

︸ ︷︷ ︸

Knecht−Nyffeler−Perrottet−de Rafael′02

+O
(
(α

π

)3
Nc

m2
µ

M2

)
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Comments and Questions

HLbyL Contribution to the Muon Anomaly in Chiral Limit with M → ∞

a(HLbyL)
µ =

(α

π

)3
Nc

2 m2
µ

16π2f 2
π

[1
3

log2 M
mπ

︸ ︷︷ ︸

95×10−11 for M=Mρ

+O
(

log
M
mπ

)

+O(1)
]

+O
(
(α

π

)3
Nc

m2
µ

M2

)

Clearly, in the M-Large limit, the log2 M
mπ

term dominates.

Once m2
µ factored out, the pion mass is the infrared cut-off.

However, in our World

The mass gap of the hadronic spectrum M = Mρ (is not that large)
and mπ is bigger than mµ.

Therefore, in practice one has to worry about O
(

log M
mπ

)

, O(1),

O
(

Nc
m2
µ

M2

)

corrections and mµ

mπ
dependence.

Furthermore, subleading corrections in 1/Nc (pion-loop contribution), will
likely become relevant at the wanted level of accuracy.
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Comments on the term
(

α

π

)3
Nc

2 m2
µ

16π2f 2
π
O

(

log M
mπ

)

There are two contributions to this term
i) from the point-like contribution (two loops) Ramsey-Musolf and Wise’ 02
ii) from the effective couplings (one loop) Savage, Luke and Wise’ 92:
3i

32

(
α

π

)2

l̄γµ
γ5 l
[

χ1 tr(QR QRDµUU†−QLQLDµU†U)+χ2tr(U†QRDµUQL−UQLDµU†QR)
]

which contribute to π0 → e+e− Knecht-Peris-Perrottet-de Rafael’99

The relevant combination: χ = − 1
4 (χ1 + χ2) has been recently extracted

from KTeV data on π0 → e+e− decays
in the presence of radiative corrections Vasko, Novotny ’11, Husek, Kampf and

Novotny ’14 (In Nc
3 units): χ(phen.)(Mρ) = 4.5 ± 1.0

As a reference: χ(Large Nc estimate)(Mρ) = 2.2 ± 0.9; χ(M Large) = 11
4 .

HLbyL Contribution with next to leading term and M = Mρ

a(HLbyL)
µ =

(α

π

)3
Nc

2 m2
µ

48π2 f 2
π

{

log2 Mρ

mπ
︸ ︷︷ ︸

95×10−11

+










−f

(

m2
π

m2
µ

)

+
1

2
︸ ︷︷ ︸

RM−W

− 2

3
χ(phen.)(Mρ)

︸ ︷︷ ︸

KNPdeR










log
Mρ

mπ

︸ ︷︷ ︸

7.7×10−11 (71×10−11 with χ= 11
4 )

+O(1)}
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Comments on Terms Contributing at
(

α

π

)3
NcO

(

m2
µ

M2

)

When the photon momenta are small with respect to the mass gap scale M , the HLbyL tensor must
be reproduced by an effective Lagrangian of the Euler-Heisenberg type:

Leff(E,H) =
1

16π2M4
e4
{

λ1
[
Fµν (x)F

µν]2 + λ2
[
ε
µνρσFµνFρσ

]2
}

with λ1, λ2 dimensionless couplings of O(Nc).
As a guidance, in the CχQM

λ1

M4
= Nc

2

9

1

90

1

M4
Q

and
λ2

M4
= Nc

2

9

7

360

1

M4
Q

For MQ = (240 ± 10) MeV one finds

λ1

M4
= (2.23 ± 0.74) GeV−4 and

λ2

M4
= [3.91 ± 1.30) GeV−4

of the same order of magnitude as expected in a Large–Nc lowest pole saturation:

O
(

λi

M4

)

∼ O
(

Nc

M4
ρ

)

= 8.3 GeV−4

Insertion of the Euler-Heisenberg effective coupling in the HLbyLS
contribution to aµ leads to a quadratic divergent integral which, when

cut-off at M2, gives the claimed order of magnitude:
(

α
π

)3
NcO

(
m2
µ

M2

)

.
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Large-Nc Approach to the terms
(

α

π

)3
NcO

(

m2
µ

M2

)

Topologies of the HLbyL Four-Point Function
x

x

x x x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

(a) (b) (c)

(d) (e) (f)

(a) The central vertex has to be a four resonance coupling RRRR of O
(

1
Nc

)

.

(b) Each vertex has to be a RRR coupling of O
(

1√
Nc

)

.

(c) The RRγ vertices are each of O (1).

(d) The RRRγ vertex is of O
(

1√
Nc

)

(e) The RRγ vertices here are like those of (c) i.e. O (1)

(f) There is a vetex RRγ of O (1) and a vertex RRR of O
(

1√
Nc

)

.
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Leading Topologies

x

x

x

x
(e)

x

x

x

x
(c)

V
A

V

V

AV

Relevant Large-NcChiral Lagrangian (V and A tensor-like formulation)

Lint. =
FV

2
√

2
tr Vµν fµν+

︸ ︷︷ ︸

Ecker−Gasser−Pich−de Rafael ′89

+HV ,Agρσεµναβ tr {Vµν ,Aαρ}fβσ
+

︸ ︷︷ ︸

Kampf−Novotny ′11

FV '
√

2fπ ,

|HV ,A| ' 0.80 from f1(1285) → ρ0 + γ .
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Very Preliminary Results

From the Leading Topologies one gets an Effective Lagrangian,
Euler-Heisenberg like:

LLbyL =
4
3

e4 F 2
V |H(V ,A)|2
M4

V M2
A

(εµνρσFµνFρσ)2 ,

with λ1 = 0 and λ2
M4 =

16π2f 2
π

M2
V

|H(V ,A)|
2

M2
V M2

A

8
3 ' 4.0 GeV−4 (very close to the λ2

coupling of the CχQM).

Quick Qualitative Estimate:

a(HLbyL)
µ (quark loop) ∼

(α

π

)3 m2
µ

M2
V

16f 2
π

M2
V

|H(V ,A)|24π
M2

M2
A

,

which, for a cut-off M = Mρ , gives

a(HLbyL)
µ (quark loop) ∼ 16 × 10−11

.
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Conclusions about the HLbyL Contribution

The main underlying Physics of the HLbyL contribution is Qualitatively
well understood.

Elaborated phenomenological approaches may gradually lead to a More
Accurate determination of aHLbyL

µ . They should be checked, however, at
all possible stages with the simple expectations from the underlying
Physics.

Lattice QCD should consider computing the relevant effective couplings:

χ(Mρ) from π0 → e+e−

λ1 and λ2 of the Hadronic Euler-Heisenberg effective Lagrangian

This workshop should be a good place to discus Possible QCD Lattice
Strategies to compute aHLbyL

µ and to Suggest Tests.
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