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Motivation of today’s Talk

a,(E821 — BNL) = 116 592 089(54)a(33)ys x 10~ 1[0.54ppm]

Future Experiments:

FNAL with £0.14 ppm overall uncertainty (data expected in 2017)
JPARC with similar uncertainty but very different technique

Standard Model Contributions to a,, = 1 (g, — 2)
J.P. Miller, E. de Rafael, B.L. Roberts, D. Stockinger, Annu. Rev. Part. Nucl. Phys. '12

CONTRIBUTION REsULT IN 10~ uniTs
QED (leptons) 116 584 718.85 + 0.04
HVP(lo)[eTe ] 6923+ 42
HVP(ho) ~98.4+0.7
HLbyL 105 + 26
EW 153+ 1
Total SM 116 591 801 4+ 49

Persistent 3.60 discrepancy between SM theory and Experiment
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However? A. Lukin’s BaBar talk at Montpellier QCD15

L=~ | [

|BaEar most significant (g-2),, f‘asulf‘
[BaBar: PRD 86 (2012) 032013 PRL 103 (2009) 231801]
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Systematic uncertainties BABAR (514.1 £3.8) x 10~10

at the p region previous e *e~ combined  (503.5 +3.5) x 10-10*
BaBar: 0.5%  combined (5152 £3.5)x 1010
CMD2: 0.8%
SND: 1.5% S
KLOE: 0.8% Deviation between BNL measurement and theory

prediction reduced using BaBar n*n- data
a,lexp]-a,[SM]=(19.8 +8.4)x10-° (2.40)

* arXiv:0906.5443 M. Davier et al.

We shall have to wait and see how BaBar, Kloe and BESIII solve their discrepancies
Good opportunity for Lattice QCD !
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HVP Contribution to the Muon Anomaly

X

Hadrons

Muon Anomaly from HVP

Standard Formulation in terms of the Hadronic Spectral Function
1 HVP a/oo dt /1 X2(1—X) 1
= -2 rons = & = — — dx——————2 — ZImll(t
z(g# )Haﬁ " T am2 t i X2+mL2(1—X)7l' ( )
)
where

47?0 1
U(t)[eJre*H(-y)HHadrons] = T;Iml‘l(t)

The Largest Contribution (~ 75%) comes fromete™ — 77~
The Underlying Physics is well understood:
Large-N¢ p plus pQCD continuum agrees with data at the ~ 10% level
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Euclidean Formulation

Lattice QCD wants to go Euclidean

Ta Q1 i i S
, ti+0? ;Iml‘l(t), with euclidean Q° =
N——

-NQ") =

How to go Euclidean (Lautrup- de Rafael '69)

oo X m
2V — /dx _X/ dt # Limna),
m2 T

T )

Lattice QCD likes to use: w = & = 2|
mu

B

HvPp « “dw
a, =-— —
™ Jo w
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Comment on Lattice QCD Evaluations

aEVP:E/O‘X’dw % [(2+w) (2+w - \/GM) —2} <_w%r| (wmi»

T w

-
G(w) Adler Function

0_57‘ . . . . -
0.4*\ 1

03| ]

G(w)

02f | 1

01f 1

0.0k A 1

Lattice QCD evaluations -at a few w points- need extrapolations
at very low w values using Models and/or Padé Approximants

EdeR HVP and HLbyL



Moment Analysis (Model Independent) EdeR, PL.14

m2 €t 27 Jelico t

d 2 oo dtm? 1 peties fwm?\ TP 1
ol (wmu) = haatl") 7/0 ds r(E)(2—s) _Imn().

2\ —2
wm
<1+ ! L)

Mellin-Barnes Integral Representation of a5i"
C+ioco
me _ (a) 1
i _(w) 27 /dsf(s) M(s), Recelo+1]
c—ioco

F(s) =-T(3—2s)I(—3+s)M(1+s)

gt (m2\ "1
— - | A =
M(s) = /M - ( : ) ~Imn(t)

Mellin Transform of the Spectral Function

2
Useful representation to extract the asymptotic expansion for mt—“ < 1.
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NN
Two types of Moments

Normal Power Moments:

oo 1tn
dt [ m? 1
M(—n):/—( “> Zimn(), n=0,1,2,...

t t

Am%_
Log Weighted Power Moments (first derivative of the Mellin transform at integer n < 0 values):

1+n 2
- o gt [ m? m
M(—n) = = (=& log —*
(=n) 4mgrt<t> g~

N

ImM(t), n=1,2,3,.

Expansion in Moment Approximants

av? — (3) {}M(O)Jr §M(71)+M(71)

s 3
97 -
+ EM(*Z) + 6 M(—2)

4+ 2%8/\4(73) 1 28M1(—3) + O {/\;I(74)] }

These moments are known phenomenologically from e*e ™ data
(M. Davier, private communication)

EdeR HVP and HLbyL



The Moment Approximants in a Phenomenological Toy Model

a, "(e"e”) = (6.923+0.042) x 10°° (0.6%)
M. Davier et al’ 10
a, " (toy model) = 6.936 x 10~°

D. Bernecker and H.B. Meyer, '11; L. Lelllouch, '14

Numerical Values of the Moment Approximants (Toy Model)

@ E — -8 0
(2) 5M(0)=8071x10° (16%)

(%) EM(O) + %M(—l) + /\;l(—l)] =7.240%x10"% (4%)

(%) [%M(O) n gM(—l) + M(=1) + %M(—Z) + GM(—Z)} —7.022 x 1078 (1%)

Fourth Approximation is already within 0.4% of the toy model result
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pproximants in Lattice QCD

The Leading Moment provides a rigorous upper bound to aff*"

J.S. Bell-de Rafael '69: the operator *F*¥ d F,.. governs low-energy hadronic QED observables

atvP < /m2 dt m_ lImI'I( t) = (%) % < uszn(Q )>Q20

M(0) Lattice QCD

@ The bound overestimates a!!'" by less than 18% (not bad for a rigorous bound)

@ The slope of (QZ) at the origin (r.h.s.) can be (has been ?) evaluated in lattice QCD

@ Itis difficult to imagine that, unless lattice QCD does better than phenomenology in this
simple case, it will ever reach a competitive accuracy of the full determination of aHVP

M(—n) Moments correspond to successive derivatives of M1(Q?) at Q% =

T dt m?, Ty =)™ 5 ot 2
&(J_n-)l = / T ( tl ) ;Iml‘l(t) = (n+ 1) (mu) * ((an)nH ne )>Q2:0

These derivatives can (should) be determined in Lattice QCD
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The Log Weighted Moments in Lattice QCD

. oo m2\"  m?
M(=n) = at (—“) log T“ EImI'I(t)
s

2
ame t

They require the evaluation of integrals of the type

Integrals in the Euclidean to be evaluated in lattice QCD

2\ N+l 2
oo " rl
z(—n)E/4mz dQ2<2’2> (- g?) n=1,23...

Example:
4m? 2
M(-1) = —log —* M(-1)+ X(-1) — ’; M(0) +0O [M(—-2)]
m“ — N — 4I’T17r ——
Latt. QCD  Lat. QCD Latt. QCD

@ Contrary to the evaluation of a/!VP, the Euclidean moments X (—1), £(—2), ...

yn

are not weighted by a heavily peaked kernel at small Q2.

@ The threshold of integration is at a rather large value Q2 = 4mfr instead of zero.

@ The determination of these Euclidean moments in lattice QCD and their comparison with the
corresponding phenomenological expressions in terms of the hadronic spectral function,
provide valuable further tests.
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Conclusions about the HVP Contribution

@ Present Lattice QCD determinations of HVP in the Euclidean need to be
complemented by approximation methods in order to get af"".

@ The moment analysis approach may gradually lead to an accurate
determination of al*", providing at the same time many tests of lattice
QCD evaluations to be confronted with phenomenological

determinations using experimental data.

@ This workshop is a good place to discus optimal lattice strategies and
optimal approximation methods to obtain, eventually, a robust
determination of a!l"" which can be confronted with the determinations
from ete~ data.
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Hadronic Light by Light (HLbyL) Contribution to the Muon Anomaly

X

Hadrons

" % % % + Permutations
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The HLbyL Contribution is known in a Theoretical Limit

Sponteneous Chiral Symmetry Breaking in QCD

@ Implies a spectrum with GOLDSTONE PARTICLES (pions)
and a MASS GAP M to the other hadronic states.

@ The HLbyL contribution to a, in Large-N.QCD
and in the limit where m, 4 s — 0 and M Large
is known from xPT with the point-like WZW couplings:

HLbyL Contribution to the Muon Anomaly in Chiral Limit with M Large

aELHLbyL):(g)SN 216mzzf2[ log —+O(|09 _)+O(1)] <( ) NS

Knecht —Nyffeler —Perrottet —de Rafael’02

m2

MZ

")
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Comments and Questions

HLbyL Contribution to the Muon Anomaly in Chiral Limit with M — co

a1 (2w T [ oo M o] o (2

95x10—11  for M=M,

@ Clearly, in the M-Large limit, the IogzmM term dominates.
@ Once m}, factored out, the pion mass is the infrared cut-off.

However, in our World

@ The mass gap of the hadronic spectrum M = M, (is not that large)
and m is bigger than m,,.

@ Therefore, in practice one has to worry about (’)( log nﬁ"—ﬂ) 0(1),
2
@) <Nc%2ﬁ) corrections and % dependence.

@ Furthermore, subleading corrections in 1/N¢ (pion-loop contribution), will
likely become relevant at the wanted level of accuracy.
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Comments on the term ( ) Ne? - szO (Iog mMT)

There are two contributions to this term

@ i) from the point-like contribution (two loops) Ramsey-Musolf and Wise’ 02
@ i) from the effective couplings (one loop) Savage, Luke and Wise’ 92:

8 (a\? L t t t i
2\ [y sl [Xltf(QRQRDu,UU —QLQLD,UU)+x2tr(U'QrD,UQL —UQ. D, U QR)}

which contribute to 7° — e*e™ Knecht-Peris-Perrottet-de Rafael'99

@ The relevant combination: x = —1(x: + x») has been recently extracted
from KTeV data on 7° — e*e™ decays

in the presence of radiative corrections Vasko, Novotny '11, Husek, Kampf and
Novotny 14 (In Ne units): x (pnen ) (M,,) = 4.5 + 1.0
As areference: x(Lage N¢ esimae) (Mp) = 2.2 £ 0.9; x(M Large) = 171.

HLbyL Contribution with next to leading term and M = M,,

2 2
(o) _ ()3 2 M eMp | fMe) 12 My
A= ()N zex2z 1% m, 7| g ) T2 T3 e ()] log Tn O]
—_—
KNPdeR

_\,_/
95x10—11 RM —W

7.7x10—11  (71x10— 11 with x=11)

EdeR HVP and HLbyL



When the photon momenta are small with respect to the mass gap scale M , the HLbyL tensor must
be reproduced by an effective Lagrangian of the Euler-Heisenberg type:

1
Lat(E,H) = We4 {Al [Fw 0OF* )% + A2 [E’LUPGF“quU}Z}

with A1, A2 dimensionless couplings of O(N¢).
As a guidance, in the CxQM

o 21 1 A2 27 1
— =Ne——— and — =Ne=——+
M4 990 M3 M4 9 360 M,
For Mg = (240 & 10) MeV one finds
A A
2L (22340.74)Gev™* and 22 =[3.91 4 1.30) Gev ~*
M4 M4

of the same order of magnitude as expected in a Large—N. lowest pole saturation:

o <i> ~O (&> —8.3Gev™*
M4 M2

Insertion of the Euler-Heisenberg effective coupling in the HLbyLS

contribution to a,, leads to a quadratic divergent integral which, when
3

cut-off at M?, gives the claimed order of magnitude: <%> NcO ( )

m

2
i
M2
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Topologies of the HLbyL Four-Point Function

X
X ‘ /( X

l /

(a)

<l o L L
\ !

(d) (e) (U]

(©

(2

(a) The central vertex has to be a four resonance coupling RRRR of O (NL)
c

b) Each vertex has to be a RRR coupling of O [ —— ).
®) ping ot © (A )

(c) The R R~ vertices are each of O (1).

d) The RRR~ vertex is of © 1 )
(d) 2l ( N

(e) The RR~ vertices here are like those of (c) i.e. O (1)

e © © ¢ ¢

(f) There is a vetex RR~ of O (1) and a vertex RRR of O ( 1 ) .
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Leading Topologies

(e) (©
Relevant Large-NcChiral Lagrangian (V and A tensor-like formulation)

F v v « o
Lint. = ﬁtr Vi f4 + Hy AGpo€pvaptt {VF A7

Ecker —Gasser —Pich—de Rafael /89

Kampf —Novotny /11

Fv ~ ﬁfﬂ7
|Hy.a| ~0.80 from f1(1285) — p° 4.
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Very Preliminary Results

@ From the Leading Topologies one gets an Effective Lagrangian,
Euler-Heisenberg like:

2 2

4 4 FylHy al 2

Lipy = € ——F—5— (6 F"WFPU)
N2 nvpo )
3 My MZ
16722 [Hy a)l® 8 —4
with \; =0 and 2 = s vz 3 = 4.0 GeV T (very close to the X,
N VMa

coupling of the CxQM).

@ Quick Qualitative Estimate:

am?, 16f2 M2

(HLbyL)
al™™) (quark loop) ~ (;) MZ I vl 47TM2

)

which, for a cut-off M = M,,, gives

(HLbyL) (

a, quark loop) ~ 16 x 10~

EdeR HVP and HLbyL



Conclusions about the HLbyL Contribution

The main underlying Physics of the HLbyL contribution is Qualitatively
well understood.

Elaborated phenomenological approaches may gradually lead to a More
Accurate determination of a-”". They should be checked, however, at
all possible stages with the simple expectations from the underlying

Physics.

Lattice QCD should consider computing the relevant effective couplings:

x(M,) from 7° — ete~
A1 and )\, of the Hadronic Euler-Heisenberg effective Lagrangian

This workshop should be a good place to discus Possible QCD Lattice

Strategies to compute a/i-®" and to Suggest Tests.
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