Hadronic Vacuum Polarisation in (g-2)_u

UNIVERSITY OFIVERPOOLThomas Teubner

- Introduction
- Radiative corrections; VP and FSR
- Data combination, fits, models
- Ongoing puzzles, new data and new results ۲
- Outlook, discussion

a_{μ} : Status and future projection \rightarrow charge for TH

E989: 1st results ~ end 2017, 1-2x BNL stats early 2019...

- if mean values stay and with no
 a_µSM improvement: 5σ discrepancy
- if also EXP+TH can improve a_μSM
 `as expected' (consolidation of L-by-L on level of Glasgow consensus, about factor 2 for HVP): NP at 7-8σ
- or, if mean values get closer, very strong exclusion limits on many NP models (extra dims, new dark sector, xxxSSSM)...

a_{μ}^{SM} : overview, numbers

- Several groups have produced hadronic compilations over the years.
- Here: Hagiwara+Liao+Martin+Nomura+T, numerics (~3.x σ) still valid
- Many more precise data in the meantime and more expected for near future
- At present HVP still dominates the SM error:

QED contribution	11 658 471.808 (0.015) $\times 10^{-10}$	Kinoshita & Nio, Aoyama et al				
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al				
Hadronic contribution						
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11				
NLO hadronic	-9.8 (0.1) $\times 10^{-10}$	HLMNT11				
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein				
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰					
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg				
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy				

(Numbers taken from HLMNT11, arXiv:1105.3149)

a^{had, VP}: Hadronic Vacuum Polarisation

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{hadronic}} + a_{\mu}^{\text{NP?}}$$

- QED: 🗸
- EW: 🗸
- Hadronic: the limiting factor of the SM prediction X

HVP: - most precise prediction by using e⁺e⁻ hadronic cross section (+ tau) data and a dispersion integral

- done at LO and NLO (see graphs)
- now even at NNLO [Steinhauser et al., PLB734(2014)144]

- alternative: lattice QCD, but also need QED corrections; systematics <1% ?

$a_{\mu}^{had, VP}$: Hadronic Vacuum Polarisation

• HVP: still the largest error in the SM prediction X

HVP at NNLO by Steinhauser et al.: $a_{\mu}^{HVP, NNLO} = +1.24 \times 10^{-10}$

Hadronic Vacuum Polarisation, essentials:

Use of data compilation for HVP:

pQCD not useful. Use the dispersion relation and the optical theorem.

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$ How to get the most precise σ^{0}_{had} ? $e^{+}e^{-}$ data:

- Low energies: sum ~ 25 exclusive channels, 2π, 3π, 4π, 5π, 6π, KK, KKπ, KKππ, ηπ, ..., use iso-spin relations for missing channels
- Above ~1.8 GeV: can start to use pQCD (away from flavour thresholds), supplemented by narrow resonances (J/Ψ, Y)
- Challenge of data combination (locally in vs): from many experiments, in different energy bins, errors from different sources, correlations; must avoid inconsistencies/bias
- traditional `direct scan' (tunable e⁺e⁻ beams)
 vs. `Radiative Return' [+ τ spectral functions]
- σ^{0}_{had} means `bare' σ , but WITH FSR: RadCorrs [HLMNT: $\delta a_{\mu}^{had, RadCor VP+FSR} = 2 \times 10^{-10}$!]

• Dyson summation of Real part of one-particle irreducible blobs Π into the effective, real running coupling $\alpha_{\rm QED}$:

$$\Pi = \operatorname{max}_{q}^{\gamma^{*}} \operatorname{max}_$$

Full photon propagator $\sim 1 + \Pi + \Pi \cdot \Pi + \Pi \cdot \Pi \cdot \Pi + \dots$

$$\rightsquigarrow \qquad \alpha(q^2) = \frac{\alpha}{1 - \operatorname{Re}\Pi(q^2)} = \alpha / \left(1 - \Delta \alpha_{\operatorname{lep}}(q^2) - \Delta \alpha_{\operatorname{had}}(q^2)\right)$$

• The Real part of the VP, $\text{Re}\Pi$, is obtained from the Imaginary part, which via the *Optical* Theorem is directly related to the cross section, $\text{Im}\Pi \sim \sigma(e^+e^- \rightarrow hadrons)$:

$$\Delta \alpha_{\rm had}^{(5)}(q^2) = -\frac{q^2}{4\pi^2 \alpha} \operatorname{P} \int_{m_{\pi}^2}^{\infty} \frac{\sigma_{\rm had}^0(s) \,\mathrm{d}s}{s - q^2} \,, \quad \sigma_{\rm had}(s) = \frac{\sigma_{\rm had}^0(s)}{|1 - \Pi|^2}$$

 $[\rightarrow \sigma^0 \text{ requires 'undressing', e.g. via } \cdot (\alpha/\alpha(s))^2 ~ \leadsto ~ \text{iteration needed}]$

• Observable cross sections σ_{had} contain the |full photon propagator|², i.e. |infinite sum|². \rightarrow To include the subleading Imaginary part, use dressing factor $\frac{1}{|1-\Pi|^2}$.

Parametrisations/routines based on `global' data compilations available from a few groups:

- Novosibirsk: <u>http://cmd.inp.nsk.su/~ignatov/vpl/</u> tabulation with ROOT package
- Davier et al: HVPTools (status of distribution? still in preparation?)
- Fred Jegerlehner's package: <u>http://www-com.physik.hu-berlin.de/~fjeger/software.html</u>
 set of routines with analytic codes and tabulations
 - uses rhad from Harlander+Steinhauser for Im part
 - regular updates (last 5.4.2012)

HLMNT routine

- provided upon request by authors (Daisuke Nomura or TT)
- standalone Fortran, partly analytic, partly tabulation
- current version is VP_HLMNT_v2_2 (20.5.2015, based mainly on HLMNT11 status)
- flag to control if narrow resonances included or not, but Φ and higher Υ always included through direct data integration

 $\Delta lpha(q^2)$ in the time-like: HLMNT compared to Fred Jegerlehner's new routines

 \rightarrow with new version big differences (with 2003 version) gone

- smaller differences remain and reflect different choices, smoothing etc.

• Typical accuracy $\delta\left(\Delta \alpha_{
m had}^{(5)}(s)\right)$

Error of VP in the timelike regime at low and higher energies (HLMNT compilation):

 \rightarrow Below one per-mille (and typically $\sim 5 \cdot 10^{-4}$), apart from Narrow Resonances where the bubble summation is not well justified.

Enough in the long term? Need for more work in resonance regions.

Radiative Corrections: Final State Radiation

- Real+virtual; must be included in dispersion integral, but some events with real radiation will have been cut-off by experimental analyses.
 (No problem if γ just missed but event counted! Possible problem of mis-identifies)
- Experiments (now) account for this and add some FSR back;
 - based on MC and sQED for pions (checked to work well),
 - including some uncertainties in their systematics
- Note: at low energies, hard radiation limited by phase space
- HMNT (and other groups) include large, conservative Rad. Corr. error, i.e. HLMNT11: $\delta a_{\mu}^{had, RadCor VP+FSR} = 2 \times 10^{-10}$
- Work in progress: this error estimate is too conservative (especially in K⁺K⁻), and
- use of more modern data sets, where FSR has been part of the analysis, will bring this down.
- However: More scrutiny needed for Rad. Ret. EXPs where this is part of the `LO'.

Data `puzzle' in the $\pi^+\pi^-$ channel

Radiative Return data in the combined fit of HLMNT 11

- 2π fit: overall χ²_{min}/d.o.f. ~ 1.5 needs error inflation, limited gain in error
- Latest KLOE12 data confirm this tension, see below for new fits also including latest BESIII data

Note: $a_{II}^{\pi\pi, w/out Rad Ret} = 498.7 \pm 3.3$ BUT $a_{II}^{\pi\pi, with Rad Ret} = 504.2 \pm 3.0$

• i.e. a shift of +5.5 in HLMNT [DHMZ: $a_{\mu}^{\pi\pi}$ even higher by 2.1 units]

Another `puzzle': Use of tau spectral function data?

- Use CVC (iso-spin symmetry) to connect $\tau^- \to \pi^0 \pi^- \nu_{\tau}$ spectral functions to $e^+e^- \to \omega, \rho \to \pi^+\pi^-$ but have to apply iso-spin corrections
- Early calculations by Alemany, Davier, Hoecker: use of τ data complementing e⁺e⁻ data originally resulted in an improvement w.r.t. use of e⁺e⁻ data alone;
 discrepancy smaller with tau data; later increased tension between e⁺e⁻ and τ
- Recent compilation by Davier et al (Fig. from PRD86, 032013):
- Jegerlehner+Szafron: crucial role of γ-ρ mixing:

- They found discrepancy gone but τ data improves e⁺e⁻ analysis only marginally
- Analyses by Benayoun et al: combined fit of e⁺e⁻ and τ based on Hidden Local Symmetry (HLS):

no big tension betw. e^+e^- and τ , but w. BaBar, hence not used; increased Δa_{μ} of >~ 4.5 σ

- Davier+Malaescu refute criticism, claim fair agreement betw. BaBar and their τ comp.
- HLMNT: stick to e^+e^- (and do not use τ data). With e^+e^- (incl. BaBar) discrepancy of 3-3.5 σ

σ_{had} at higher energies

2011 status to be improved; BESIII

- Exclusive data recently improved mainly due to many Radiative Return data from BaBar
- BESII data (blue markers) in perfect agreement w. pQCD; data-based $a_u^{incl} > a_u^{pQCD}$
- Different data and data vs. pQCD choices give slightly different a_{μ} (within errors)

 Fair agreement between different e⁺e⁻ analyses, including recent updates: (all numbers in 10⁻¹⁰)

HLMNT (11): 694.9 ± 3.7 (exp) ± 2.1 (rad) Jegerlehner (11): 690.8 ± 4.7 Davier et al (11): 692.3 ± 4.2

• The `extremes' (both with τ data):

Davier et al (11): 701.5 \pm 4.7 (+ ~ 1.5 shift from 2013 τ re-analysis EPJC74,3,2803) Benayoun et al (12): 681.2 \pm 4.5

 New data available already do not shift the mean value strongly, but are incrementally improving the determination of a^{HVP}

σ_{had}: recent data: K⁺K⁻(γ) from BaBar [PRD 88(2013)3,032013]

Work on new combination with A. Keshavarzi: PRELIMINARY results

σ_{had}: recent data: K⁺K⁻(γ) from BaBar [PRD 88(2013)3,032013]

Work on new combination with A. Keshavarzi: PRELIMINARY results

σ_{had}: recent data: K⁺K⁻(γ) from BaBar [PRD 88(2013)3,032013]

Problem of data combination between BaBar and older sets: another puzzle?

- Energy dependent difference; fitted Φ mass is different betw. BaBar and CMD-2, SND
- study to combine including energy (and normalisation) shifts
- χ^2_{min} /dof improved through energy shifts, but still not very good; (locally) inflated error Δa_{μ}^{KK} only marginally improved when BaBar data are included, and worse for all sets combined compared to BaBar only (-> χ^2_{min} inflation of error)
- In total we get $a_{\mu}^{K+K-} = 21.74 \pm 0.45$ (HLMNT11) $\rightarrow 21.69 \pm 0.36$ (preliminary!)

$\pi^+\pi^-$: recent data from KLOE

KLOE with $\sigma_{\mu\mu}$ normalisation [PLB720(2013)336]:

- confirm previous KLOE measurements
- do not decrease tension with BaBar, slightly increase KLOE's significance
- Open question: Why are BaBar's data so different from KLOE's?

Are there any issues with the MCs or analysis techniques used?

 Soon more from Novosibirsk, already now from BESIII: $\pi^+\pi^-$: new data from BESIII (from BESIII conf. talk thanks to Achim Denig)

Flagship Analysis: $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$

1

600 - 900 MeV

Features:

- ψ(3770) data only (2.9 fb⁻¹)
- no background subtraction
- PHOKHARA event generator
- tagged ISR photon

 \rightarrow large statistics of $\pi\pi\gamma$ events

- \rightarrow background dominated by $\mu\mu\gamma$
- \rightarrow data MC differences observed

$\pi^+\pi^-$: new data from BESIII; arXiv:1507.08188

Two methods used for the normalisation:

- Bhabha for the luminosity vs. $\mu^+\mu^-(\gamma)$, where the luminosity, the radiator function and the VP corrections are cancelling out.
- Much higher stats for Bhabha, but $\mu^+\mu^-(\gamma)$ important consistency check.

$\pi^+\pi^-$: new data from BESIII; arXiv:1507.08188

Form Factor plot with fit result:

$\pi^+\pi^-$: new data from BESIII; arXiv:1507.08188

Good agreement with previous KLOE results, marginally consistent with BaBar;

BESIII `interpolates' between the two:

$\pi^+\pi^-$: new data from BESIII; arXiv:1507.08188v2

[g-2 integral and plot corrected in v2 after us finding a value different from the one of v1]

$\pi^+\pi^-$: Effect of KLOE12 + BESIII data in `global' 2π fit

Very preliminary first results (this Monday) from my PhD student Alex Kheshavarzi: ISR data comparison in p peak region and new fit band:

$\pi^+\pi^-$: Effect of KLOE12 + BESIII data in `global' 2π fit

Very preliminary first results (this Monday) from my PhD student Alex Kheshavarzi:

Zoom into the ρ - ω interference region:

Very prel. numbers, for indication only:

(range 0.305 ... 2 GeV, units of 10⁻¹⁰)

- all sets and fit as in HLMNT11: 505.8 ± 3.1
- including now also KLOE12 and the new BESIII data: 504.3 ± 2.6

-> improvement in error, but numbers will still change.

Hot from the arXiv: Benayoun et al., 1507.02943

Updated anal. (now with fitted normal. factors) in global fit based on HLS model:

preferred'
 has 5σ already,
 from both
 aggressive
 errors and
 shifts due to
 the HLS model
 (and the fit?)

Hot from the arXiv: Benayoun et al., 1507.02943

Table 4 from their paper showing shifts and error improvements:

Channel	A = m	$A = M_0$	$A = M(\vec{a})$ (variable)	Exp. Value
$\pi^+\pi^-$	494.57 ± 1.48	494.01 ± 1.11	493.80 ± 1.00	496.38 ± 3.13
$\pi^0\gamma$	4.53 ± 0.04	4.54 ± 0.04	4.54 ± 0.04	3.67 ± 0.11
$\eta\gamma$	0.64 ± 0.01	0.64 ± 0.01	0.64 ± 0.01	0.56 ± 0.02
$\pi^+\pi^-\pi^0$	40.83 ± 0.58	40.85 ± 0.58	40.87 ± 0.57	43.54 ± 1.29
$K_L K_S$	11.56 ± 0.08	11.56 ± 0.08	11.56 ± 0.08	12.21 ± 0.33
K^+K^-	16.78 ± 0.20	16.77 ± 0.21	16.77 ± 0.20	17.72 ± 0.52
Total	569.19 ± 1.60	568.37 ± 1.27	568.17 ± 1.17	574.08 ± 3.45

Table 4: The contributions to the muon LO–HVP from the various channels covered by BHLS from their respective thresholds to 1.05 GeV in units of 10^{-10} at start and after iteration. The last column displays the direct numerical integration of the various spectra used within BHLS. The $\pi^+\pi^-$ data samples considered are those flagged by "Combination 2" in Table 2.

\rightarrow 2 π data choices lead to very different results;

if BaBar is used (untruncated) then their fit is worse (incompatibilities mainly between BaBar and other data), their mean and error are larger and the discrepancy goes to 3.7σ.

σ_{had}: recent new data: $2π^+2π^-(γ)$ from BaBar

PRD85(2012)112009

- shift of +0.3 \times 10⁻¹⁰ for a_u
- error down to a third
- combination?

σ_{had} : recent new data from Novosibirsk

CMD-3 6π charged, PLB723(2013)82

- solid black: CMD-3, open green: BaBar
- full analysis will include 2(π⁺π⁻π⁰)

SND $\omega \pi^0$, PRD88(2013)054013

- many more analyses reported with preliminary results, incl. 3π, 4π(2n)
- looking forward to rich harvest from SND and CMD-3

Outlook: Future improvements for a_{μ}^{HVP}

- Most important 2π:
 - close to threshold important; possible info also from space-like
 - more data already now and more expected well before new g-2 EXPs
 - understand discrepancy between sets, especially `BaBar puzzle'?!
 - possibility of direct scan & ISR in the same experiment? Lattice?!

• √s > 1.4 GeV:

higher energies will improve with input from SND, CMD-3, BESIII, BaBar

- With channels more complete, test/ replace iso-spin corrections
- Very good prospects to significantly squeeze the dominant HLO error!

Pie diagrams from HLMNT 11:

3-5 year plan:

- 2π : error down by about 30-50%
- subleading channels: by factor 2-3
- Vs > 2 GeV: by about a factor 2

→ I believe we can half the HVP error in time for the new g-2 EXPs.

Conclusions:

- All sectors of the Standard Model prediction of g-2 have been scrutinised a lot in recent years
- No major changes recently, but discrepancy > 3σ consolidated
- With the next round of hadronic data it should be possible to push the error down significantly, hopefully halfing Δa_{μ}^{HVP}
- For this much more work will be needed (solve some puzzles)
- though Benayoun et al. already claim 5σ now
- But where is the NP?

Extras

Channels with biggest errors. PQCD at 2 GeV?

Importance of various 'channels'

error

3.09

[Numbers from HLMNT, 'local error infl.', $\cdot 10^{-10}$]

• Errors contributions to a_{μ} from leading and subleading channels (ordered) up to 2 GeV

Purely from data:

channel

 $\pi^+\pi^-$

'Higher multiplicity' region from 1.4 to 2 GeV with use of isospin relations for some channels: [Use of old inclusive data disfavoured.]

$\pi^+\pi^-\pi^0\pi^0$	1.26	Channel	contr. \pm error
3π	0.99	$K\bar{K}2\pi$	3.31 ± 0.58
$2\pi^+2\pi^-$	0.47	$\pi^+\pi^-4\pi^0$	0.28 ± 0.28
K^+K^-	0.46	$\eta\pi^+\pi^-$	0.98 ± 0.24
$2\pi^+ 2\pi^- 2\pi^0$	0.24	$K\bar{K}\pi$	2.77 ± 0.15
$K^0_S K^0_L$	0.16	$2\pi^+ 2\pi^- \pi^0$	1.20 ± 0.10

• 'Inclusive' region from 2 to ~ 11 GeV: 41.19 ± 0.82

Can be 'squeezed' by using pQCD (done by DHMZ from 1.8 GeV); region from 2 to 2.6 GeV: $15.69 \pm 0.63 \rightarrow 14.49 \pm 0.13$, only small changes for higher energies.

$\pi^+\pi^-$: Effect of KLOE12 + BESIII data in `global' 2π fit

Comparison old vs. new fit, with new ISR data:

σ_{had} : Φ in different final states K⁺K⁻, K_s⁰K_L⁰, π⁺π⁻π⁰

Why we prefer to integrate data directly, or: How to not fit a resonance

Fitting The Data

Use a non-linear non-linear χ^2 -function [HLMNT, 2012]

$$\chi^{2}(R_{m}, f_{k}) = \sum_{k=1}^{N_{exp}} \left(\frac{1-f_{k}}{df_{k}}\right)^{2} + \left\{\sum_{m=1}^{N_{clu}} \sum_{i=1}^{N^{(k,m)}} \left(\frac{R_{i}^{(k,m)} - f_{k}R_{m}}{d\tilde{R}_{i}^{(k,m)}}\right)^{2}\right\}_{\text{w/o cov. mat}} + \left\{\sum_{m=1}^{N_{clu}} \sum_{i=1}^{N^{(k,m)}} \sum_{j=1}^{N^{(k,m)}} \left(R_{i}^{(k,m)} - f_{k}R_{m}\right)C^{-1}(m_{i}, n_{j})\left(R_{j}^{(k,n)} - f_{k}R_{n}\right)\right\}$$

where N_{clu} , N_{exp} are total number of clusters, experiments.

- Treat the statistical/systematic errors according to experimental data.
- Input covariance matrices where provided (last term!).

Processing the hadronic data: Clustering

Figure from M.L. Swartz:

Need: combination of data from different experiments (for the same channel) with very different stat.+sys. errors and different energy ranges.

• Aims:

- \rightarrow Make maximal use of (normalization of) precise data.
- \rightarrow Don't suppress shape info. of older data.
- \rightarrow Have as few theor. constraints on R as possible (like pQCD, BW resonance shapes, fit by polynomials...).
- Solution: 'A fit that's not a fit' →

▶ Our fit-model: piecewise constant R within a *Cluster* of a given (min.) size.

▶ Realization: Non-linear (numerical, iterative) χ^2 -minimalization of:

$$\chi^{2}(\bar{R}_{m}, f_{k}) = \sum_{k=1}^{\#Exp} \left[\left(1 - f_{k}\right) / \mathrm{d}f_{k} \right]^{2} + \sum_{m=1}^{\#Cl} \sum_{i=1}^{N_{\{k,m\}}} \left[\left(R_{i}^{\{k,m\}} - f_{k}\bar{R}_{m} \right) / \mathrm{d}R_{i}^{\{k,m\}} \right]^{2}$$

Given a binning of all R data $R_i^{\{k,m\}} \pm dR_i^{\{k,m\}} \pm df_k \cdot R_i^{\{k,m\}}$ (from k exp., in m clusters), the fit returns the mean values \bar{R}_m (and the renormalizations f_k of $R_i^{\{k,m\}} \pm dR_i^{\{k,m\}}$).

Advantages:

- No prejudice from TH-inspired modelling of *R*.
- Reliable error estimate using the complete covariance matrix (taking into account statistical and systematic (p.t.p. and overall) errors from all different experiments)

 — correlations over different energies important.
- Automatic check of data-consistency and fit-quality; minimal $\chi^2_{\rm min}/(d.o.f.)(\delta)$ determines choice of cluster size δ .
- Amazing stability of $a_{\mu}^{\rm had,LO}$ and its error.

How does it work? A few examples:

• Artificial 'demo' data for illustration:

The two green 'high quality' points have 1% sys. error, the other set 30% \hookrightarrow 'maximal' adjustment of normalization of the latter by 1/1.35; \hookrightarrow smaller a_{μ} value and error, fit still good, $\chi^2_{\min}/d.o.f. < 1$.

$\pi^+\pi^-$: HLS fit-based results from M Benayoun et al.

$\pi^+\pi^-$: diff. betw. HLMNT & Benayoun et al (as of 2014)

- Taking only direct scan as baseline:
- Benayoun et al: -3.1 from HLS-based fit, -4.3 from KLOE10+12
- HLMNT: +5.5 from KLOE and BaBar (compared to scan only)
- So the big difference (~13×10⁻¹⁰, 3.3 → 5σ) comes to a big part from the data input, i.e. if BaBar's 2π is used or not.
 (If used: error relatively poor despite stats due to inflation)
- Future SND, CMD-3, BELLE and BESIII 2π data may dilute the strong significance of BaBar [also more data from BaBar to be analysed!]
- Ideally find out why the different data sets are not consistent.
 If this could be achieved the 2π channel would be great!