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Introduction

• The inclusive hadronic decay width of the τ lepton provides a very clean way to
determine αs at low energies.

• The perturbative QCD contribution is known to O(α4
s ).

• The nonperturbative corrections are predicted to be small.

• An important ambiguity is related to the prescription chosen for implementing
renormalization-group invariance.

• Another serious problem is related to the fact that the coefficients of the
perturbative series of the Adler function in QCD display a factorial growth.
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Introduction

• The nonperturbative power corrections and the effects of quark-hadron duality
violation (DV) generate additional uncertainties.

• The τ hadronic width receives small contributions from the power corrections and
DV.

• Some moments may receive larger contributions from the nonperturbative
condensates and terms involving DV.

• The most comprehensive analysis to date, attempted to include DV in a
combined fit of several moments, which leads to a substantial increase in the
error of the nonperturbative contributions.
Boito, Golterman, Jamin, Mahdavi, Maltman, Osborne, and Peris 2012, 2015
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Introduction

• To improve such analyses, however, also the properties of the perturbative
expansions of the moments must be carefully examined.

• The perturbative expansions of a large class of spectral function moments have
been studied within two standard QCD perturbative expansions, the fixed-order
and the contour-improved perturbation theories (FOPT and CIPT).
Beneke, Boito, and Jamin 2013

• Some moments that are commonly employed in the determinations of strong
coupling from τ decays should be avoided because of their perturbative instability.
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Introduction

• However this conclusion refers to the standard expansions, FOPT and CIPT.

• We shall show in this talk that improved expansions with no perturbative
instability can be defined.

• We consider the perturbative behavior of these moments in the framework of a
QCD nonpower perturbation theory.

• This is defined by the technique of series acceleration by conformal mappings,
which simultaneously implements renormalization-group summation and has a
tame large-order behavior.
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QCD description

• The R ratio for the τ decays is defined as:

Rτ,V/A ≡ Γ[τ− → hadrons ντ ]

Γ[τ− → e−νeντ ]
. (1)

• We are interested in the τ decay rate into light u and d quarks, which proceeds
either through a vector or an axialvector current.

• Rτ can also be expressed in the form

Rτ,V/A =
Nc

2
SEW |Vud |2

[
1 + δ(0) + δ′EW +

∑

D≥2

δ
(D)
ud

]
. (2)

Braaten-Narison-Pich

• SEW = 1.0198± 0.0006 Marciano and Sirlin 1988
δ′
EW

= 0.0010± 0.0010 Braaten and Li 1990
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QCD description

• Our main interest is in the perturbative corrections δ(0) which can be written

δ
(0)
wi

(s0) =
1

2πi

∮

|s|=s0

ds

s
Wi (s/s0)D̂pert(s),

where Wi (x) are weights functions and D̂pert(s) is the perturbative part of the
reduced Adler function

D̂(s) ≡ −s dΠ(1+0)(s)/ds − 1.

• A natural expansion for the Adler function is called ‘fixed-order perturbation
theory’ (FOPT)

D̂FOPT(s) =
∑

n≥1

(as(µ
2))n[cn,1 +

n∑

k=2

kcn,k

(
ln

−s

µ2

)k−1

],

where as(µ2) = αs(µ2)/π.
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QCD description

• A different approach would be to keep the full solution of the RGE and perform a
numerical integration and choose µ2 = −s. This is called ‘Contour Improved

Perturbation Theory’.
Pivovarov 1991, Le Diberder and Pich 1992

D̂CIPT(αs(−s)/π, 0) =
∞∑

n=1

cn,1

(
αs(−s)

π

)n

. (2)

• In the expansion above, the leading known coefficients cn,1 are

c1,1 = 1, c2,1 = 1.640, c3,1 = 6.371, c4,1 = 49.076,

Baikov, Chetyrkin and Kuhn 2008
c5,1 = 283 estimeted, Beneke and Jamin 2008.

• The β-function was calculated to four loops in the MS-renormalization scheme,
the known coefficients are

β0 = 9/4, β1 = 4, β2 = 10.0599, β3 = 47.228.

Larin, Ritbergen and Vermaseren 1997 and Czakon 2005
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Renormalization Group Summed Perturbation Theory

• We use a method based on the explicit summation of all renormalization-group
accessible logarithms.

D̂RGSPT (aL) = a(c1,1 + 2c2,2aL+ 3c3,3a
2L2 + · · · ) + a2(c2,1 + 2c3,2aL+ 3c4,3a

2L2 + · · · )

+ a3(c3,1 + 2c4,2aL+ 3c5,3a
2L2 + · · · ) + · · · =

∞∑

n=1

anDn(aL). (3)

where L ≡ ln −s
µ2 .

Maxwell and A. Mirjalili 2000
Ahmady, Chishtie, Elias, Fariborz, Fattahi, McKeon, Sherry, Steele 2002, 03

Dn(aL) ≡
∞∑

k=n

(k − n + 1)ck,k−n+1(aL)
k−n. (4)

• The Adler function is scale independent

µ2 d

dµ2

{
D̂FOPT(aL)

}
= 0. (5)

β(a)
∂D̂FOPT

∂a
− ∂D̂FOPT

∂L
= 0. (6)
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• We derive following RGE equation

0 = −
∞∑

n=1

n∑

k=2

k(k − 1)cn,ka
nLk−2

−
(
β0a

2 + β1a
3 + β2a

4 + . . .+ βla
l+2 + . . .

)
×

∞∑

n=1

n∑

k=1

nkcn,ka
n−1Lk−1. (7)

• By extracting the aggregate coefficient of anLn−p one obtains the recursion
formula (n ≥ p)

0 = (n − p + 2)cn,n−p+2 +

p−2∑

ℓ=0

(n − ℓ− 1)βℓcn−ℓ−1,n−p+1. (8)

• Multiplying both sides of (8) by (n − p + 1)(aL)n−p and summing from n = p to
∞, we obtain a set of first-order linear differential equation for the functions
defined in (4), written as

dDn

d(aL)
+

n−1∑

ℓ=0

βℓ

(
(aL)

d

d(aL)
+ n − ℓ

)
Dn−ℓ = 0, (9)

for n ≥ 1, with the initial conditions Dn(0) = cn,1 which follow from (4). The
solution of the above Eq (9) can be found iteratively in an analytical closed form.
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• The first two solutions are

D1(aL) =
c1,1

y
, D2(aL) =

c2,1

y2
− β1c1,1 ln y

β0w2
, y = 1 + β0aL. (10)

• The RGSPT expansion of the Adler function is

D̂RGSPT(aL) =
N∑

n=1

anDn(aL), (11)

• It can be written as

D̂RGSPT(s) =
∑

n≥1

(ãs(−s))n[cn,1 +

n−1∑

j=1

cj,1dn,j (y)],

where

ãs(−s) =
as(µ2)

1 + β0as(µ2) ln(−s/µ2)

is the solution of the RG equation to one loop, dn,j (y) are calculable functions
and y ≡ 1 + β0as(µ

2) ln(−s/µ2).

Gauhar Abbas, IFIC, Valencia, Spain, 12/28



δ
(0)
FOPT

δ
(0)
CIPT

δ
(0)
RGSPT

n = 1 0.1082 0.1479 0.1455
n = 2 0.1691 0.1776 0.1797
n = 3 0.2025 0.1898 0.1931
n = 4 0.2199 0.1984 0.2024
n = 5 0.2287 0.2022 0.2056

Table: Predictions of δ(0) by the standard FOPT, CIPT and the RGSPT, for various truncation
orders n using αs = 0.34.

For n = 4, the difference between the results of the RGSPT and the standard FOPT is
0.01754, and the difference from the RGSPT and CIPT is 0.0039, which confirms that
the new expansion gives results close to those of the CIPT.
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Large order behaviour

• The Borel-transform

B[D̂](t) ≡
∞∑

n=0

rn
tn

n!
. (12)

• If B[D̂](t) has no singularities for real positive t (which is not the case for the
Adler function), one can define the Borel integral,

D̂(α) ≡
∞∫

0

dt e−t/α B[D̂](t) , (13)

which has the same series expansion in α as D̂(s) does in αs(
√
s).

• The integral D̂(α), if it exists, gives the Borel sum of the original divergent series.
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Large order behaviour
Renormalons

Calculating so-called bubble-chain diagrams, it was found that the Borel-transformed
Adler function B[D̂](t) has ultraviolet (UV) and infrared (IR) renormalon poles .
Beneke 1993, Broadhurst 1993

UV Renormalons

• Sign-alternating, singularity (factorial divergences) structure of the Borel
transformed Adler function related to higher-dim operators in the cut-off QCD
Lagrangian.

• They exist at u = β0t/2π = −n, n ≥ 1.

• The leading UV renormalon, being close to u = 0, dictates the large-order
behaviour of the perturbative expansion.

Beneke and Jamin 2008

Gauhar Abbas, IFIC, Valencia, Spain, 15/28



Large order behaviour
Renormalons

IR Renormalons

• Fixed-sign, singularity structure related to power corrections in the OPE
(dimension D = 2n).

• They exist at u = β0t/2π = +n, n ≥ 2.

• Intermediate orders are governed by IR renormalons, u = 2 especially simple, only
one operator (gluon condensate) and gives dominant contribution.

Beneke and Jamin 2008
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Large order behaviour

• We consider the model where the Adler function is defined in terms of its Borel
transform B(u) by the principal value prescription

D̂(s) =
1

β0
PV

∞∫

0

e
− u

β0a(−s) B(u)du, (14)

where the function B(u) is expressed in terms of a few ultraviolet (UV) and
infrared (IR) renormalons

BBJ(u) = BUV
1 (u) + BIR

2 (u) + BIR
3 (u) + dPO

0 + dPO
1 u. (15)

Beneke and Jamin 2008

• These terms were written as

BIR
p (u) =

dIR
p

(p − u)γp

[
1 + b̃1(p − u) + . . .

]
,

BUV
p (u) =

dUV
p

(p + u)γ̄p

[
1 + b̄1(p + u) + . . .

]
,
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Large order behaviour

• Finally, the free parameters of the model were fixed by the requirement of
reproducing the perturbative coefficients cn,1 for n ≤ 4 and the estimate
c5,1 = 283, and read:

dUV
1 = − 1.56×10−2, dIR

2 = 3.16, dIR
3 = −13.5, dPO

0 = 0.781, dPO
1 = 7.66×10−3.

(16)

• The reference model (RM) is parameterized by the UV and first IR renormalons.
Beneke and Jamin, 2008

• In the alternative model (AM), the first IR renormalon is removed by hand.
Boito, Beneke and Jamin, 2013
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RGS Non-Power Perturbation Theory

• We improve the convergence of the RGSPT expansion by the analytical
continuation in the Borel plane.
Caprini & Fischer 1999, 2000, 2009, 2011

• The method was applied to FOPT and CIPT by Caprini and Fischer in the past.

• The method cannot be applied in the αs plane but can be applied to the Borel
transform, B(u) of the Adler function in the u plane.
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RGS Non-Power Perturbation Theory

• The Taylor exapnsion of the Borel transform, B(u) converges only in the disk
|u| < 1.

B(u) =

∞∑

n=0

cn+1,1
un

βn
0 n!

(17)

• The region of convergence can be enlarged if the series in powers of u is replaced
by a series in powers of an “optimal” variable w̃(u) that conformally maps the
holomorphy domain of B(u), i .e. the u-plane with cut along u ≥ 2 and u ≤ −1,
onto the unit disk |w | < 1.

• This also accelerates the convergence rate at all points in the holomorphy domain.
Ciulli & Fischer 1961, Caprini & Fischer 2011
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RGS Non-Power Perturbation Theory

• We introduce the Borel transform of the RGSPT expansion of the Adler function

BRGSPT(u, y) = B(u) +
∞∑

n=0

un

βn
0 n!

n∑

j=1

cj,1dn+1,j (y), (18)

where y = 1 + β0aL.

• We consider the functions

w̃lm(u) =

√
1 + u/l −

√
1− u/m√

1 + u/l +
√

1− u/m
, l ≥ 1,m ≥ 2 (19)

where l ,m are positive integers satisfying l ≥ 1 and m ≥ 2. The function w̃lm(u)
maps the u-plane cut along u ≤ −l and u ≥ m onto the disk |wlm| < 1 in the
plane wlm ≡ w̃lm(u).

• We define further the class of compensating factors of the simple form

Slm(u) =

(
1− w̃lm(u)

w̃lm(−1)

)γ(l)
1
(
1− w̃lm(u)

w̃lm(2)

)γ(m)
2

, (20)
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RGS Non-Power Perturbation Theory

• The exponents are

γ
(l)
1 = γ1(1 + δl1), γ

(m)
2 = γ2(1 + δm2),

γ1 = 1.21, γ2 = 2.58 , (21)

are chosen such that Slm(u) cancel the dominant singularities on the real axis in
the u-plane.

• We further expand the product Slm(u)BRGSPT(u, y) in powers of the variable
w̃lm(u), as

Slm(u)BRGSPT(u, y) =
∑

n≥0

c
(lm)
n,RGSPT

(y) (w̃lm(u))
n. (22)
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RGS Non-Power Perturbation Theory

• We are led to the class of RGSNPPT expansions

D̂RGSNPPT(s) =
∑

n≥0

c
(lm)
n,RGSPT

(y)W(lm)
n,RGSPT

(s), (23)

where

W(lm)
n,RGSPT

(s) =
1

β0
PV

∞∫

0

exp

( −u

β0ãs(−s)

)
(w̃lm(u))

n

Slm(u)
du, (24)

and the coefficients c
(lm)
n,RGS

(y) are defined by the expansion (22).

• The coupling, ãs(−s), entering in the Laplace-Borel integral is the one-loop
solution of the RGE, a novel feature given by RGSPT.
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Results

The moments employed in the extraction of αs are

i Wi (x)
1 2(1 − x)
2 1 − x2

3 2
3 (1 − x3)

4 1
2 (1 − x4)

5 2
5 (1 − x5)

6 (1 − x)2

7 2
3 (1 − x)2(2 + x)

8 1
2 (3 − 4x + x4)

9 1
4 (1 − x)3(3 + x)

10 2
3 (1 − x)3

11 1
2 (1 − x)4

12 (1 − x)3(1 + x)
13 1

10 (1 − x)4(7 + 8x)

14 1
6 (1 − x)3(1 + 3x)

15 1
6 (1 − x)4(1 + 2x)2

16 1
210 (1 − x)4(13 + 52x + 130x2 + 120x3)

17 1
70 (1 − x)4(2 + 8x + 20x2 + 40x3 + 35x4)

Table: Functions Wi (x) for corresponding moments..
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Results

• The weights shown in the figures are
W1(x) = 2(1− x), W6(x) = (1− x)2,
W16(x) = 1

210
(1− x)4(13 + 52x + 130x2 + 120x3) .
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Results
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for the weights W1, W6, and W16 calculated for the RM, as functions of the
perturbative order up to which the series was summed. The horizontal bands give the
uncertainties of the exact values. We use αs(M2

τ ) = 0.3186.
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Results
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for the weights W1, W6, and W16 calculated for the AM, as functions of the
perturbative order up to which the series was summed.
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Summary

• The moments of the hadronic spectral functions are of interest for the extraction
of the strong coupling and other QCD parameters from the hadronic decays of
the τ lepton.

• We consider the perturbative behavior of these moments in the framework of a
QCD nonpower perturbation theory, defined by the technique of series
acceleration by conformal mappings, which simultaneously implements
renormalization-group summation and has a tame large-order behavior.

• Two recently proposed models of the Adler function are employed to generate the
higher order coefficients of the perturbation series and to predict the exact values
of the moments, required for testing the properties of the perturbative expansions.

• The CINPPT and RGSNPPT expansions provide a good perturbative description
of a large class of τ hadronic spectral function moments, including some for
which all the standard expansions fail.

• A program that employs these expansions for the simultaneous determination of
the strong coupling and other parameters of QCD from hadronic τ decays is of
interest for future investigations.
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