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e Pole mass and 7 decay
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General structure of large-order behaviour is (believed to be) known.
Several components of factorial divergence.

n T'n+1+0b s
R=3nad@ts K Sy (1 roum)

Borel transform

> " t—1/a K
:z_(:)r,, - B[R|(r) = W(1+s1(1—at)+ )
Borel integral
Rlas) = /Oo dre="% BIR(1), L ImR = £ —~ =1/ (4a)7P (1 + # 510 +...)
) 0 ™ al’(1 +b) ) ’

... imaginary part (“ambiguity”) for positive a.
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Renormalon (and instanton) singularities

[Adler function] t

Instanton-anti-instanton
singularities at ¢ = 4x, 8, ...

N

UV renormalons IR renormalons
at t =m/fy, m=1,2,... at t=—m/f, m=2,3,...
[u=2,3,...withu = — ]

e UV renormalons — from large loop momentum
Sign-alternating, singularity structure related to higher-dim operators in the cut-off QCD
Lagrangian [Parisi, 1977; MB, Kivel, Braun 1997]

e IR renormalons — from small loop momentum
Fixed-sign, singularity structure related to higher-dim operators in the OPE [Gross, Neveu,
1974; Lautrup, 1977; ‘t Hooft, 1977; David, 1984; Mueller, 1985; Zakharov, 1992; MB, 1993]

e Instanton-anti-instanton — number of diagrams
[Bogomolny, Fadeev, 1977; Balitsky, 1991]
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IR renormalons and the OPE

Large momentum/small coupling expansion (e.g. Adler function)

dri(Q?) 0 1
D@’ = @ =D CGlos(m),n =) x x (O
dg? g R
—_— condensates (k > 0)
perturbative series “power corrections”
_ (O - | KB1/ B304/ ™ o ()
= 2 N3 X |e TP | (—Byay(Q))FP1/Bo=0.k/Fo Xngock as(0)

where (Oy) /A% are pure numbers.

General belief: series c]E") divergent and not Borel-summable (IR renormalons), (@k)/Azk
ambiguous and values related to series summation prescription. Ambiguities cancel in the entire
double (“transseries”) expansion.

e perturbative/diagrammatic (large-Gy [—2ns/3 — by), subleading 1/n; terms, stochastic
lattice PT)

e Non-perturbative 1/N expansion (see part II)

o RGE and consistency assumption
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Singularities fixed up to constants

Example: single operator at dimension d (e.g. gluon condensate for the Adler function)

(12, ) 01010) (1) = comst - e/ Q0@ (— fa, (0))P1/ )

0
Q.Y(Q) ( )
Flos(@)" exp | — / dx 2752;) (1, 0:(0))
%)
implies
>, o L(n+1+b) st 2)
m = Kd 7F(l+b) (l+n+0(l/n)
with
a0y 4B w0 _a M 0B Lﬁz_%
d 2/30 2/30 co 280 285 285 28}

In general s, (Ci<n, Yi<n> Bi<n+1)-

Only K remains undetermined [Beneke (1993, 1994)]
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|. Quark mass and 7 decay
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Unique features of the pole mass and the Adler function

These two are unique for the study of large-order behaviour

e Perturbative series known to four loops (n = 4).
[Baikov et al. (2008) — Adler function; Marquard et al. (2015) — pole mass]

e Leading IR renormalon determined by a single operator.
Only one unknown constant.

o Perturbative series on the lattice to very high orders n ~ 20.
[Bali et al. (2011-1014)]

e Large-/3) model reasonably good (in particular for M).

The next IR poles and even the leading UV renormalon pole are already complicated — several
operators with anomalous dimensions. The singularity at u then has a multiple cut structure [MB,
Kivel, Braun (1997) — UV renormalon]

BIR)(w) "= Zﬁu +.]
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Leading pole mass renormalon

e Pole closest to the origin at u = 1/2 (“dimension 1) [MB, Braun (1994), Bigi et al. (1994)]
Expected to be important already at low orders in MS.

e QCD self-energy near mass-shell related to UV properties to HQET self-energy. Unique
operator h,h,. No anomalous dimension, trivial coefficient function by RPI [MB (1994)]

\ D(n+1+b i
"2 K (~2py DT LED) )(1+”+;—§+...>

n

T(1+0)
with P
B B
= —2—516 (—2Bp)s1 = ﬁ - 2—618 s> = known

e Fit K to low orders (up to n = 3) [Pineda (2002); Lee (2002)]
K =0.60(3) [ny =0] [Ayalaetal 2014)]

Predicted n = 4 COI‘l‘CCtly to 10%. [Note: not enough for quark mass determinations, since renormalon

cancellation is already built in.]
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Leading pole mass renormalon — numerical stochastic PT

e Perturbative expansion to O(a2°) in lattice scheme, ny = 0 [Bali etal. (2011, 2013)]

K =0.60(3) low orders, continuum K = 0.66(6) lattice, numerical
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[Figures from Bali et al. (2013)]

e Very consistent picture for the first pole mass IR renormalon.
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Numerical stochastic PT

No renormalons on a finite volume lattice (neither UV nor IR)

N
m(N) =r, — J% + O(1/N?*) = no factorial divergence

IR renormalon at u cut-off when

L
S/ 2u) 5 Z =N

a
[Figures from Bali et al. (2013)]
0
~ 04 Result follows from a large extrapolation.
c -U, . . .

L What is the large-order behaviour at finite
2 06 L volume?
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[N=0,1,2,3,4,5,7,9, 11, 15 from top to bottom]
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Leading Adler function renormalon(s)

e Pole closest to the origin at u = —1 (UV renormalon)
Not seen in the first four coefficients.
MS scheme seems to favour IR residues. In the large-3y model

4 _
Kuv/KRr = 66 3

In general for oy — @5 + 0182 + ..., K — K = Kexp(updy /(—fo)).

e Leading IR renormalon at u = 2 related to unique d = 4 operator, o /7GG.
Precise singularity structure known inclduing the 1/n correction.

o Numerical perturbation theory for the plaquette up to O(ocf.s ) [Bali et al. 2014]
a* behaviour (corresponding to u = 2) seen after infinite-volume extrapolation and with
n220.
K =0.61(25) [nf =0]

Central value significantly larger than expected. Important issue for 7 decay and the
QCD sum rule philosophy.
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The 7 hadronic width

Analyticity

e Condensate expansion

e Slightly Euclidean [(1 — x)* suppression]
o DI =4 [H(1+°> (s)] (Adler fn)
ds
MZ
R. = 12 as. I_LZ 142251 D (5) 4+ Im 1O (s)
= 12« Mz Mz Mz m s m K
0

= —iny{ %(1—x)3[3(1+x)D<]+()>(M3x)+4D(0)(M3x)]

|x|=1

Cp (s, 11)(0
= NeSew |[Vaal? {1 +0O 4oy + 37 ol (O () u)<D/[;(“)>:|
D>2 (—S)

[Braaten, Narison, Pich, 1992]

M. Beneke (TU Miinchen) Benasque, 10 Aug



First few terms, FOPT and CIPT

Numerical series expansions for as(M2) = 0.34.
(We will often use the estimate ¢5 1 = 283 £ 283.)

ay o o af g
5 = 0.1082 + 0.0609 + 0.0334 + 0.0174 (4 0.0088 ) = 0.2200 (0.2288)
58 = 0.1479 4 0.0297 + 0.0122 + 0.0086 (+ 0.0038 ) = 0.1984 (0.2021)

e FO/CI difference increases by adding more orders. Systematic problem.

e Expansion of the running coupling on the circle as used in FO has only a finite radius of
convergence [Le Diberder, Pich; 1992; Pivovarov] and actual vy (M2 ) is close.

as(M7)

as(M2e?) = — T
! 1+ Digog(M2)

But: QCD perturbation expansions are only asymptotic anyway. Zero radius of convergence.
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Ansatz

B[D](«) = B[IDYV](u) + B[DR](u) + BIDR](u) + d5° + dtu [MB, Jamin (2008)]

e Ansatz for the Adler function that reproduces known ¢4 1 and ¢5 1 = 283.

o Fit constants ¢, foru = —1,2,3to ¢3,1, c4,1 and cs_1, and adjust dg({ to reproduce cy
and C2,1-

o Findd!V = —1.56-1072,dR = 3.16,dR = —13.5,d5° = 0.781,d5° = 7.66- 1073,

e Pole ansatz works well already atn = 2 (a’ll)0 small).

03— . . . . : : ]
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Convergence of R,

— Borel sum
® FO perturbation theory
O ClI perturbation theory
9 Smallest term
|
4

0.18

0.16

| | |
6 10 12 14 16

0.14 g
Perturbative order n

e FO converges to Borel sum
e CI more quickly than FO at low orders, but never reaches the Borel sum.

e Atn = 4,5 FO is close to the true result, CI too small = « from CI too large.
(Similar result in the large- 3y approximation [Ball, MB, Braun, 1995].)
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Cancellations at large orders and CIPT

oo n
0
5}(:o) = Z [Cn,l + gn] “(M-zr)" & = chn,k]k—l
n=1 k=2

e g, from integration on the circle, ¢,,; from Adler function

e For the leading IR contribution (1 = 2) there are large cancellations:
Cn,1 + 8n
—

1/n?
Cn,l

1
o ¢y dependsoncy, i, Bnuptom =n—k+1,eg cs0 = — 1 (Bscr,1+2B2c2,1+3B1¢c3,1)

n
s

@ 1,1 €21 3,1 4,1 5,1 C6,1 71,1 8,1 8 1t &
2 3.56 1.64 3.56 5.20
4 —20.6 30.5 68.1 49.1 78.0 127.1
6 —2924  —2858 —2280 2214 5041 3275 —807 2468
8 14652 —29552 —145846 —502719

—393887 260511 467787 388442 | —329054 59388

CI at order n sums the first n columns to all orders. Destroys cancellations, running coupling
effects are only dominant at n < 5, then factorial behaviour is more important.
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Crucial role of the leading IR singularity

[MB, Boito, Jamin (2012)]

o FOPT preferred, if the u = 2 singularity is dominant and cancellations are important
(reference model).

e CIPT preferred, if u = 2 singularity artificially set to zero or suppressed. No cancellations,
factorial behaviour suppressed relative to running coupling-effect (alternative model)

e Models with (unnaturally) large cancellations between u = 2 and u = 3 and/or polynomial
coefficients. Anything can happen.

FOPT —e—
CIPT o
Borel sum
. L L h |
5 7 9 11 13 15
(a) wy = (1 —2)%(1 + 2z), reference model (b) wy = (1 —2)%(1 + 2z), alternative model
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Crucial role of the leading IR singularity

e Also for different moments/weight functions. Moments that have an x term and do not
suppress the u = 2 singularity, have generally less stable perturbative behaviour.

0.22 T T T 0.22 T T T
FOPT —e— FOPT —e—
. PT o
0.20 - Borel sum 4 0.20 - Borel sum B
0.18 4 o8} A
0.16 |- 4 ot} pr .‘!\‘\k‘\:
A3
0.14 — 0.14 ® 4
»
042 L 042 Lt L L L L L L
1 3 5 7 9 11 13 15 1 3 5 7 9 1 13 15
(¢) w1z = (1 — x)3(1 + 2z), reference model (d) wiz = (1 — x)%(1 + 2z), alternative model

Important input could come from a reliable determination of the residue parameter for u = 2,
related to the ambiguity of the gluon condensate. Would provide one extra input to

B[D](u) = BIDY)(u) + BIDS| () + BIDF] (u) + di° + d}u
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Il. OPE to all orders in the O(N) ¢ model

MB, V.M. Braun and N. Kivel, Phys.Lett. B443 (1998) 308-316 [hep-ph/9809287]
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OPE and momentum analyticity

,dlI(Q Qi 1
i ZO ) gy
—_— ——————

penurbatlve series

D(Q*) = Q

condensates (k > 0)
“power corrections”

-y [%}} x {e*mr(750%(Q))k/31/ﬁ3—m/ﬁ0 x 3 e au(0)"

n=0

Trade o (Q) for Q/A

0 1 os(Q) L Bl B
(=Bo)In E*@*‘*ln( ,Boas(Q)+/ (xz_%;_ﬂ(x))

2 2
Bl = 2 A

1
L T ReO (— B1/85
11— &x - Q2 e 0 ( ﬁoas(Q)) 0

Coupling constant analyticity <> momentum analyticity (known non-perturbatively)
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Coupling constant analyticity

‘t Hooft cuts [‘t Hooft (1977), Khuri (1981)]

Img?
%

L= (=Bo) |In @ + (2n 4+ 1)mi| + By —corre
as(Q) A2

Im k?

Re k? =

e How is the analytic structure of the exact correlation function
recovered?
How does the Landau pole of the running coupling disappear?

e Are the Borel integrals convergent at infinity?

e Is the OPE convergent or divergent?
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The O(N) non-linear o-model

Two dimensions, d = 2 — €
1
S = E/ddxauaaauo", olc? =N/g, a=1,...N
Perturbation theory: solve for ox

1 R -\
L= > {t%cr’apal + Z (%U’U’) akauakolaual} , ik,l=1,...N—1

a=0

[o] = 0, infinitely many renormalizable interactions

e Spontaneous symmetry breaking to O(N — 1)

o Only massless particles in the spectrum (N — 1 Goldstone bosons)
o Asymptotically free ,

8

Ble) = -5 +...

Non-perturbatively: symmetry restoration, mass gap, no massless excitations
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The 1/N expansion [Bardeen, Lee, Schrock (1976)]

Introduce Lagrange multiplier field c(x)

20] = [ Dlipial exp (=Sloal + [ dtrr (o))

1 N
Slo,a] = > /ddx {8MU“ o + % (U“U” - 7)}
8

Integrate over o-fields, 1/N-expansion corresponds to saddle-point expansion of « functional
integral. Saddle point

e—2\2/€
a=vVN (go,uEF(g) (4#)7) d\;: VNt e /8 = \/Nm?
g '=Zg= (1)

o m?is exponentially small in g(u), analogous to A?

e Equation of motion

a= 7i8ugaauo—“ = o field gets mass m

VN

[In the following rescale g by factor 47, so = ,uzeil/g(“)J
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Condensate ambiguities at order O(1/N)

Define condensates with a momentum cut-off g4y >> m [Novikov, Shifman, Vainshtein, Zakharov (1984) —
cut-off scheme; David (1982, 1984, 1986) — dim reg]

2
(@) (py,m) = = [ 5w
pP<p?

= m*[F(InA) + F(—InA) — 2g]

4
I I wp>mo 2

A=+ S+ 5| . WA= —>1
4m? 4m? &)

F(x) = Ei(—x) — Inx has an essential singularity at x = 0 but no discontinuity. Asymptotic
expansion for large x has a Stokes discsontinuity at negative arguments

e}

!
F(—x)=¢" |:Z xnnj — e ¥ (Inx F i)

n=0

o0

g\ntl 2. g2 m?

(?) = “42 (§> n! + 2g pPm? + m |:721n§it7r —2vg —4g+ ) + O F
0
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OPE of the o self-energy at order O(1/N)

1 K2 4 2m?
%(p) = & = — [ d% % getr(k) + subtractions

N (P+k)?+m

1
B In(k?/m?) *

eurll) V(K + 4m?) { VI ¥ am? +Vi2 |

K2+ 2m? VIE+ dm? — Vi2

Similar to large-n; expansion, but now the effective coupling is defined non-perturbatively (and has
no Landau pole).

Defines an analytic function with a cut for fpz > 9m?.

Angular integral trivial. Want to write the remaining integral as resurgent OPE expansion in g(p) and

exp(—1/8(p))-

@ k> m, p 4+ k > m — expand both propagators at large momentum, C, M x x (O, ,,)(0)
@ k ~ m, p+ k > m—expand o propagator, C,g ) X <0n)(l> with O, ~ (a82"a>.
@ k> m, p + k ~ m — expand effective coupling, C,(,]) x (0,)® with 0, ~ (c0*'c)
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OPE of the o self-energy at order O(1/N)

Simpler to use Mellin-Barnes representation

Y/ A—1]" ds m\
= d | ——1| , A|l——| = | —K(s,0) [ —
0 A+1 A+1 2mi k2

T(t+s)T(—1—2s) ) 2(t+s) (t+s)(t+s+1)
T(t—1-—ys) t—s—1 (t—s—1)(t—ys)

VR e v
N/

A= (442 K@) =

Perform k-integral (standard loop integral) and s-integral (residues of poles).
Borel representation

2 o] oo 2\
s(p) = = _m —t/s) | gy ! @) (n)
= F, + H, .
®) N/o dl%( 172) {e {p mé’(!’) G [l]} v H}

H,Eg) [#] arises from @

P 2
@ and @ give Fj () 1 ln 5 + G<" D [1] and F} () [] In 2 + G[(,"’3)[t], respectively, with p an

intermediate factorization scale
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OPE of the o self-energy at order O(1/N)
sy = 2 / dr Z < ) { ~1/8) {F“)m oy T m} —HY m}.

1
FO1m=1, 6= + 0D v =) =2y, HPE = B,
EOm=~2-1, 6= 7% +27 — 414 (1— F)[qp(l +0) 492 —1) +275]

aPH = (2 + ——+ —— —50).

t t—1 t+1

1,m,t+1
Bo() = 30(, 1), Bi(t) = 6J(1,2)=6J (1, 3)+6J(141,3) =TI (141,2),  J(t,m) = t%lsfz . i]
22 2

" L n—k—1+0? " n=? n—k—1)?

F ) = ZK“n—k,r)%, a1 = ZKnp(nfkflt)#
k=0 o k=0 e
— 1+t
G = ZKp(n—k t)( )i [w(r) Y — 1)+ 20k + 1) — 2(n+1 — 1)}

D(—t,1 41,2043 2 - ) (—1—
Ko 1) = oy Kaplnyr) = — 1020 H3) {172"+ rLu Wi ﬂ

T(t+n+1,34+n—1) t+n-+1 (t+n+1)(t+n+2)
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OPE of the o self-energy at order O(1/N)

Each term in the sum has renormalon singularities.

IR renormalon at t = 1y in coefficient function GI(,") [#] cancels with UV renormalon in H[Eg+t°) [1].
With a prescription for avoiding the poles pull out the sum:
— H{ [ }

P~ (_m\ e OIF PRI
S(p) =+ <——> / die e8P | FS [ — + G\ 1)
N Z 2 0 " elp) ’
Exact result of a resurgent expansion for a Green function to all orders in logs and powers (powers

n=0 p
and exponentials).

n = 0 term:

2 (o]
() =5 [mg(p) + 1887537 = 2(p) + > " (p) nt {[1 + (—1)")C(n + 1) — z}}

n=1

Truncation of the OPE at order n destroys the cancellation. For fy = 1, it leaves a pole of the form

M. Beneke (TU Miinchen)



Convergence of the OPE

For fixed ¢
S/4 it m2\" 2\’
9”2 Z%(—%) {(9[72) [ = m(om2/p) + 00 — w1 — 1) —r<r>r(1—r>}.
n>t

Converges for [p?| > 9m?* (both, OPE and Borel in-
tegral). This is precisely the location of the physical
threshold of the three o-particle cut.

At order 1/N* expect [p?| > (2k 4 1)*m?.

At finite N no convergence.

Im k?

Re k*
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Convergence of the OPE

Conjectures:

e ‘t Hooft cuts are related to the divergence/convergence of the OPE, not the Borel integral
of the perturbative series at 1 = oo, since correct analytic properties are recovered only
when all terms of the OPE are summed. [Ball, MB, Braun (1995)]

e The OPE is itself a divergent series, due to multi-particle thresholds at arbitrarily large
energies.

Large-N. QCD inspired model [Shifman (1994, 2000)]

. N.o 2 a2
M) =~ ,,2:: MZ’ My =M +on
Neo Q>+ M
(%) — I1(0) = — 12;2 P <U°

k
OPE diverges as (71)"k! <é) .

However, if these is only a finite number of resonances with largest mass My, the series behaves

2 2 \k o 2 2
as (fMN/Q ) and is convergent for |Q”| > My.
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Summary

@ OPE in QCD has every feature of a resurgent expansion.
Existence of renormalons is not rigorously established, but hard to see how it
could be otherwise.
Assuming resurgence (“cancellation of ambiguities”) determines singularity
structure of the Borel plane up to non-perutrbative constants.
Practical relevance for heavy quark masses and hadronic 7 decay

@ OPE of the self-energy in the large-N o-model provides a non-trivial example
of a resurgent series where all components are known exactly to all orders.

@ Analyticity of the exact correlation functions is recovered only after summing
the OPE series. At every finite order, there is an unphysical Landau pole.

Convergence/divergence of the OPE seems to be related to physical
thresholds. Multi-particle production causes divergence.

Known examples are sign-alternating in the Euclidean region. Is the OPE
summable? Are there effects not captured by the summed (and analytically
continued OPE)? (“Duality violations™)
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