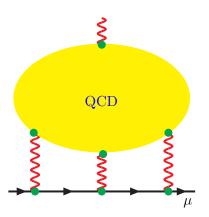
Theoretical background for calculating hadronic light-by-light scattering contribution with **twisted boundary condition**

M. Hayakawa (Nagoya U.)

@Benasque, 3-22 August, 2015

- In many cases, we are interested in A(Q = 0), but its direct computation is difficult or impossible.
- The momentum components are discretized in unit of $\frac{2\pi}{L}$ in a periodic box.
- In most cases, what we can do at best is to measure A(Q=0) with nonvanishing and discretized Q for various L and to make extrapolation to Q=0.
- The twisted boundary condition modifies $Q_{\mu} = \frac{1}{L_{\mu}} (2\pi n_{\mu} + \theta_{\mu})$, and measure A(Q) with $|Q| \ll 2\pi/L$.
- The application of the twisted boundary condition to the hadronic light-by-light scattering contribution (HLBL) to $F_2(Q)$ for Q closer to 0 may help to get more reliable estimate of a_{μ} (HLBL) (though essential "sea dynamics" cannot be explored).
- However, we will immediately confront with a difficulty.



- Let's suppose that the external momentum has fractional number(s) as its component(s).
- The momentum conservation implies that at least one of the three virtual photons must carry fractional momentum.

- Every method to compute $a_{\mu}(\text{HLBL})$ developed thus far requires the photon propagators in the measurement.
- Recall that
 - The HVP contribution a_μ(HVP) is expressed as the integral in terms of the HVP function Π(-Q²).
 - The lattice study can be focused on the calculation of $\Pi(-Q^2)$ itself.
 - The twisted boundary condition can be applied to guess the shape of (the connected diagram contribution to) Π(-Q²) (C. Aubin, T. Blum, M. Golterman and S. Peris, Phys. Rev. D 88, no. 7, 074505 (2013)).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Therefore, we must replace, say, one of the three photons, by some massless vector boson that can carry fractional momentum.

• We are tempted to use the following propagator for that vector boson

$$D_{\mu\nu}(x) = \frac{1}{V_4} \sum_n e^{ip_n \cdot x} \widetilde{D}_{\mu\nu}(\widehat{p}_n) ,$$

$$\widetilde{D}_{\mu\nu}(p) = \frac{\delta_{\mu\nu}}{p^2} ,$$

$$\widehat{p} \equiv \frac{2}{a} \sin\left(\frac{ap_\mu}{2}\right) , \quad (p_n)_\mu \equiv \frac{1}{L_\mu} \left(2\pi n_\mu + \theta_\mu\right) .$$

- I am tempted to ask the following question :
 - Does the result change for

$$\widetilde{D}_{\mu\nu}(p) = \frac{1}{p^2} \left(\delta_{\mu\nu} - (1-\lambda) \frac{p_{\mu}p_{\nu}}{p^2} \right) ?$$

• If this is actually the case, the gauge invariance at $\theta_{\mu} \in 2\pi\mathbb{Z}$ appears to be just accidental.

What I'd like to discuss here is as follows :

- It is possible to find a theoretical foundation which realizes that vector field (w_{μ}) as a gauge field in some gauge theory (2013).
- Such a gauge theory explains why ψ_1 and ψ_2 in

 $\overline{\psi_1} w_\mu \gamma^\mu \psi_2 \,,$

must have the same mass and the same $U(1)_{em}$ charge, because the gauge theory is an SU(2) gauge theory

- with \boldsymbol{w} as the off-diagonal gauge boson
- and with $(\psi_1,\,\psi_2)$ as a multiplet of its fundamental representation.
- Last week, I noticed that the theory is just a special case of known twisted Yang-Mills theory formulated by G. 't Hooft, Nucl. Phys. B 153 (1979).

• We'd like to identify $D_{\mu\nu}(x)$ as the free propagator of some field $w_{\mu}(x)$:

$$\langle w_{\mu}(x)w_{\nu}(y)^{*}\rangle = \frac{1}{V_{4}}\sum_{n} e^{ip_{n}\cdot(x-y)} \widetilde{D}_{\mu\nu}(\widehat{p}_{n}) ,$$
$$(p_{n})_{\nu} \equiv \frac{1}{L_{\nu}} \left(2\pi n_{\nu} + \theta_{\nu}\right) .$$

The right-hand side is complex unless θ_{ν} is a multiple of 2π .

• The following boundary condition for w_μ is compatible with the above :

$$w_{\mu}(x + L_{\nu}\widehat{\nu}) = e^{i\theta_{\nu}} w_{\mu}(x) \text{ (no sum over } \nu).$$

In particular $w_{\mu}(x)$ is a complex field.

• We are tempted to examine whether it is possible to embed $w_{\mu}(x)$ into the off-diagonal part of the SU(2) gauge field.

- We embed $w_\mu(x)$ into the off-diagonal part of the ${
m SU}(2)$ gauge field $W_\mu(x)$

$$W_{\mu}(x) = \left(egin{array}{cc} rac{w_{\mu}^2(x)}{2} & rac{w_{\mu}(x)}{\sqrt{2}} \ rac{(w_{\mu}(x))^*}{\sqrt{2}} & -rac{w_{\mu}^3(x)}{2} \end{array}
ight)$$

• The boundary condition

$$W_{\mu}(x + L_{\nu}\widehat{\nu}) = e^{i\frac{\tau_{3}}{2}\theta_{\nu}} W_{\mu}(x) e^{-i\frac{\tau_{3}}{2}\theta_{\nu}},$$

corresponds to

$$\begin{split} & w_{\mu}(x+L_{\nu}\widehat{\nu}) = e^{\mathrm{i}\theta_{\nu}} w_{\mu}(x) \,, \\ & w_{\mu}^{3}(x+L_{\nu}\widehat{\nu}) = w_{\mu}^{3}(x) \,. \end{split}$$

- The boundary condition for $W_{\mu}(x)$ is preserved under the transformation

 $W_{\mu}(x) \mapsto W'_{\mu}(x) = G(x)W_{\mu}(x)G(x)^{-1} - i \partial_{\mu}G(x)G(x)^{-1} ,$

if SU(2)-valued field G(x) satisfies the boundary condition

$$G(x + L_{\nu}\widehat{\nu}) = e^{i\frac{\tau_3}{2}\theta_{\nu}} G(x) e^{-i\frac{\tau_3}{2}\theta_{\nu}}$$

- The set of all such G(x) forms a group, called gauge group.
- The action

$$S[W] = \int d^4x \, \frac{1}{2} \, \mathrm{tr} \left(\partial_{\mu} W_{\nu} - \partial_{\nu} W_{\mu} - \mathrm{i} \, e_{\mathrm{SU}(2)} \left[W_{\mu}, \, W_{\nu} \right] \right)^2 \, .$$

is gauge-invariant.

The gauge-fixed action

$$S[W] + \int d^4x \, \frac{1}{2\lambda} \left(\sum_{\mu} \partial_{\mu} W_{\mu}(x) \right)^2 \,,$$

reproduces $D_{\mu\nu}(x)$.

- The BRS-invariant quantity is independent of the choice of gauge, $\lambda.$
- $W_{\mu}(x)$ couples to the matter field in the fundamental representation as

where ψ_1 and ψ_2 have the same mass and EM charge, etc. For instance, we prepare $(u_1(x), u_2(x))^T$ for the up-quark field.

• The boundary condition for ψ_1 and ψ_2 can be read off from the requirement that the Lagrangian density should be single-valued :

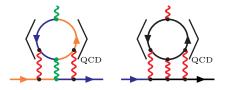
$$\left(\begin{array}{c} \overline{\psi}_1(x'), \quad \overline{\psi}_2(x') \end{array} \right) W_{\mu}(x') \gamma^{\mu} \left(\begin{array}{c} \psi_1(x') \\ \psi_2(x') \end{array} \right) \bigg|_{x'=x+L_{\nu}\widehat{\nu}}$$
$$= \left(\begin{array}{c} \overline{\psi}_1(x), \quad \overline{\psi}_2(x) \end{array} \right) W_{\mu}(x) \gamma^{\mu} \left(\begin{array}{c} \psi_1(x) \\ \psi_2(x) \end{array} \right) .$$

Thus,

$$W_{\mu}(x + L_{\nu}\widehat{\nu}) = e^{i\frac{\tau_3}{2}\theta_{\nu}} W_{\mu}(x) e^{-i\frac{\tau_3}{2}\theta_{\nu}} \\ \begin{pmatrix} \psi_1(x + L_{\nu}\widehat{\nu}) \\ \psi_2(x + L_{\nu}\widehat{\nu}) \end{pmatrix} = e^{i\frac{\tau_3}{2}\theta_{\nu}} \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix}.$$

or

$$\begin{split} w_{\mu}(x+L_{\nu}\widehat{\nu}) &= e^{\mathrm{i}\theta_{\nu}} w_{\mu}(x) \,, \\ \psi_{1}(x+L_{\nu}\widehat{\nu}) &= e^{\mathrm{i}\frac{\theta_{\nu}}{2}} \psi_{1}(x) \,, \quad \psi_{2}(x+L_{\nu}\widehat{\nu}) = e^{-\mathrm{i}\frac{\theta_{\nu}}{2}} \psi_{2}(x) \,, \\ &= e^{\mathrm{i}\frac{\theta_{\nu}}{2}} \psi_{1}(x) \,, \quad \psi_{2}(x+L_{\nu}\widehat{\nu}) = e^{-\mathrm{i}\frac{\theta_{\nu}}{2}} \psi_{2}(x) \,, \end{split}$$



• In order for the result for the up-quark loop at $\theta_{\mu} = 0$ to match with the original one, $e_{{\rm SU}(2)}$ should be adjusted so that

$$\left(\frac{e_{\mathrm{SU}(2)}^{(u)}}{\sqrt{2}}\right)^3 = \left(Q_u \, e_{\mathrm{EM}}\right)^2 \left(Q_\mu e_{\mathrm{EM}}\right) \,.$$

(日)

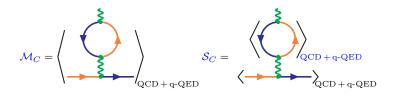
We must prepare another $SU(2)_{(d)}$ gauge theory for the down-type quarks other than $SU(2)_{(u)}$.

Species	$\rm U(1)_{em}$	$\mathrm{SU}(2)_{(u)}$	$\mathrm{SU}(2)_{(d)}$
u	$\frac{2}{3}$	2	—
c	$\frac{2}{3}$	2	_
d	$-\frac{1}{3}$	_	2
s	$-\frac{1}{3}$	_	2
μ	-1	2	2

Twisted nonperturbative QED method

The nonperturbative QED method for the connected-type diagram (M.H., T.Blum, T.Izubuchi and N.Yamada, PoS LAT **2005**, 353 (2006))

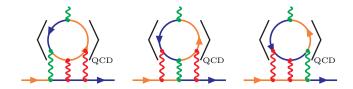
$$\frac{1}{3}\left(\mathcal{M}_C-\mathcal{S}_C\right)\,,$$



- Green wavy line denotes propagation of the twisted boson w_{μ} .
- Each line in the quark loop part denotes the inverse of the quark Dirac operator, $D_m[U^{\text{QCD}}, A^{\text{QED}}]^{-1}$.
- Each line in the muon part denotes the inverse of muon Dirac operator, $D_{\mu}[A^{\text{QED}}]^{-1}$.

Twisted nonperturbative QED method

Here, we *define* the contribution of the connected-type diagram to $F_2[\text{HLBL}](Q)$ to be $\frac{1}{3}$ of the sum of



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Connection to the twisted Yang-Mills theory by 't Hooft The setup of the twisted Yang-Mills theory is as follows (borrowed from M. Garcia Perez, A. Gonzalez-Arroyo and M. Okawa, [arXiv:1406.5655 [hep-th]]):

- The twisted boundary condition is the periodicity up to the ${\rm SU}(N)$ gauge transformation Ω_ν

$$W_{\mu}\left(x+L_{\nu}\widehat{\nu}\right) = \Omega_{\nu}(x) W_{\mu}(x) \Omega_{\nu}(x)^{\dagger} - \mathrm{i} \partial_{\mu}\Omega_{\nu}(x) \Omega_{\nu}(x)^{\dagger},$$

with a cocycle condition

$$\Omega_{\mu}(x + L_{\nu}\widehat{\nu}) \,\Omega_{\nu}(x) = Z_{\mu\nu} \,\Omega_{\nu}(x + L_{\mu}\widehat{\mu}) \,\Omega_{\mu}(x) \,.$$

where $Z_{\mu\nu}$ are the elements of the center C_N of SU(N)

$$Z_{\mu\nu} = \exp\left(2\pi\,\mathrm{i}\,\frac{n_{\mu\nu}}{N}\right)\mathbb{I}_N\,,$$

with integers $n_{\mu\nu}$ modulo N.

Connection to the twisted Yang-Mills theory by 't Hooft

• The gauge transformation G(x) is to transform the pair (?) $(W_{\mu}, \, \Omega_{\mu})$ as

$$W_{\mu}(x) \mapsto W'_{\mu}(x) = G(x)W_{\mu}(x)G(x)^{\dagger} - \mathrm{i}\,\partial_{\mu}G(x)\,G(x)^{\dagger},$$

$$\Omega_{\mu}(x) \mapsto \Omega'_{\mu}(x) = G(x + L_{\mu}\widehat{\mu})\,\Omega_{\mu}(x)\,G(x)^{\dagger}.$$

(If G(x) obeys the boundary condition

$$G(x + L_{\mu}\widehat{\mu}) = \Omega_{\mu}(x)G(x)\Omega_{\mu}(x)^{\dagger},$$

 $\Omega_{\mu}(x)$ is left invariant; $\Omega_{\mu}'(x)=\Omega_{\mu}(x).$)

• The theory developed thus far corresponds to ${\cal N}=2$ and

$$\Omega_{\nu}(x) = \exp\left(\mathrm{i}\,\frac{\tau_3}{2}\,\theta_{\nu}\right)\,.$$

The cocycle condition is satisfied with $Z_{\mu\nu} = \mathbb{I}_2$.

Summary

• The lattice version of the twisted SU(2) gauge theory with the matter fields can be constructed using the compact variables, whose lowest order of $e_{SU(2), (u)}$, $e_{SU(2), (d)}$ gives the necessary and sufficient hadronic light-by-light diagrams.