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Parma group introduced NSPT in the 9@0s. Since then also other people got
interested in. My viewpoint (I confess) will be still Parma-centered...

Many collaborators over the years on the subject ...
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Perturbation Theory (PT) is nothing less than ubiquitous in Field Theory. In principle the lattice

1s a regulator among the others

in practice it is a dreadful one so that when it comes to

compute something in Lattice Perturbation Theory (LPT) you will probably start to get nervous
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FIG. 1. Momentum assignments for the quark-antiquark-gluon

vertices.

A lot of vertices (not given once and for all)
Sums and/or integrals a lot of trigonometrics .
A variety of actions (both for glue and for quarks)

and as an extra bonus often bad convergence properties
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Despite this ...
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Do O —S[é]
You start with a field theory you want to solve (Olg]) = / f¢D¢[¢]_§[¢]
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Basics of Stochastic Quantization and Stochastic Perturbation Theory

Do O —S[¢]
You start with a field theory you want to solve (Ole]) _'jqc;i)¢hﬁ]gkﬂ
e

Parisi-Wu, Sci. Sinica 24 (1981) 35, Damgaard-Huffel, Phys Rept 152 (1987) 227

You now want an extra degree of freedom which you will think of as a stochastic time in which an
evolution takes place according to the Langevin equation

P(z) — ¢y (s t) donlrit) _ 0510 ) + n(z;t)

dt __—_8¢n(x;t

The drift term is given by the equations of motion...

. but this is a stochastic differential equation due to the presence of the
gaussian nhoise
n(xst): (n(z,t) n(@’,t)), =26z —2') é(t —t)

. [ Dn(z,7) ... e~ 1 [ dzdrn?(2,7)
T [ Dn(z,7)e iz

Noise expectation values are now naturally defined (o
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The key assertion of Stocastic Quantization can be now simply stated




A conceptually simple proof comes from the Fokker Planck equation formalism

_ [ DnO[gy(t)] e S dzdrm e
- fDU 6—% J dzdtn?(z,T)
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A conceptually simple proof comes from the Fokker Planck equation formalism

_ [ DnO[gy(t)] e S dzdrm e
o fD77 e—i J dzdtn?(z,T)

)
©lx(0), ~ [ Do ol Plo.t

, _ (4.0 (05[¢]
Plg,t] = / @ o) (5¢(a:) " 56()

Floratos-Iliopoulos, Nucl.Phys. B 214 (1983) 392

for the solution of which we can introduce a perturbative expansion which generates a hierarchy of
equations
k
Plg,t] =) g" Pi[o, 1]
k=0

Leading order 1is easy to solve and admits an infinite time (equilibrium) 1limit such that

eq e_SO[¢]
Polo, t] =t 0o Py [¢] = 7
0
In a convenient weak sense at every order one gets equilibrium f%[¢,t}—+b+oofi@[¢]

in terms of quantities which are interelated by a set of relations in which one recognizes the
Schwinger-Dyson equations ... 1.e. we are done!
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eq e_SO[¢]
PO[Qbat]_)t—moPo [Qb] = 7
0
In a convenient weak sense at every order one gets equilibrium f%[¢,ﬂ—+tﬁoofi@[¢]

in terms of quantities which are interelated by a set of relations in which one recognizes the
Schwinger-Dyson equations ... 1.e. we are done!

We want to go via another expansion, i.e. the expansion of the solution of Langevin equation 1in
power of the coupling constant

P (@;t) = ¢SD($St)4‘:£:£f1¢%n)035t) Parisi-Wu, Damgaard-Huffel
n>0
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Langevin equation for the free scalar field (momentum space) a@?o)(k,t) = —(k? —|—m2)gb7(70)(k,t) +n(k,t)



Langevin equation for the free scalar field (momentum space)

t
Look for (propagator) ¢(k,t) :/ dr G(k,t —7)n(k,7)
0

i.e. GO (k,t) = 0(t) exp (—(k% + m?)t)

060 (k1) = ~( + w0l (. 1) + (1)

%G“”(k,t) = —(K* +m*) GO (k.t) + 8(t)

t

o (k. t) = 0O (k,0) exp (= (k> + m?)t) + / drexp (— (k% + m2)(t — 7))n(k, 7)

0



Langevin equation for the free scalar field (momentum space) %ﬂp)(k,t) = —(k? —|—m2)gb7(70)(k:,t) +n(k,t)
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0
Look for (propagator) ¢<k7 t) = / dr G(kﬂf - T) n(k, 7') EG(O)U@ t) = _<l‘32 + m2) G(O)(ka t) + 5(t)
0
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o (k. t) = 0O (k,0) exp (= (k> + m?)t) + /0 drexp (— (k% + m2)(t — 7))n(k, 7)

Interacting case (cubic interaction in the following) is solved by superposition ...

oh.t) = [ drexp—( 4 m?)e =) [athr) - 5 [ GBS o) ola7) 00k~
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Look for (propagator) ¢(k7 t) = / dr G(k>t - T) n(k, 7') _G(O)(k t) (k2 + m2) G(O)(ka t) + 5(t)
0

Langevin equation for the free scalar field (momentum space) ()(k t) = (k2—k7n2)¢gn(k,t)%—n(k,t)

ot

i.e. GO (k,t) = 0(t) exp (—(k% + m?)t)

o (k. t) = 0O (k,0) exp (= (k> + m?)t) + /0 drexp (— (k% + m2)(t — 7))n(k, T)

Interacting case (cubic interaction in the following) is solved by superposition ...

oh,t) = [ drexp—( )t =) otk = 5 [ G 6lp.7) ola. )80k~ p )

. which leaves the solution in a form which 1is ready for iteration. It 1s actually also ready
for a graphical intepretation and for the formulation of a

diagrammatic Stochastic Perturbation Theory

e > —(

The stochastic diagrams one obtains when
averaging over the noise (contractions!)
reconstruct, 1in a convenient 1infinite time
limit, the contributions of the (topologically)
correspondent Feynman diagrams

+ + + — —— _
_%ﬁﬂg;;;> <:ji>_%%_ but we do not want to go this way ...
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From Stochastic Perturbation Theory to NSPT



NSPT (directly in the LGT case) Di Renzo, Marchesini, Onofri 94

We now start with the Wilson action Sg = — b Z Tr (Up —I—U}E)
2N, =



NSPT (directly in the LGT case) Di Renzo, Marchesini, Onofri 94

We now start with the Wilson action Sag = —-'6 :E: 1&'(LQD%—CEL>
2N, =

We now deal with a theory formulated in terms of group variables and Langevin equation reads

Ay () 0 / '
o Usu(tin) = (=iVauS6[U] = iney () Usy(t: )

U =€

where the Lie derivative is in place

Vi = T°V8, =TV, VEA(V) = lm —(f (¢27°V) = f(V))

a—0 o

This 1s again a stochastic differential equation with (gaussian) noise averages satisfying

lim (O[U (5 m)]), = % / DU e=56101 o[

t—o0
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This 1s again a stochastic differential equation with (gaussian) noise averages satisfying

t—o0

lim (O[U (5 m)]), = % / DU e=56101 o[

In order to proceed we now need a (numerical) integration scheme, e.g. Euler

@1; n) = e Tl U, (nsm) FoulU,n) = €V, SelU] + Ve

Batrouni et al (Cornell group) PRD 32 (1985)

FoulU,7] = ep 3 [(Up - UL) - N%Tr (Up - UL)] + Ve N,

1
ik (2) mm(w)), = <%z5knl—-jvz<ﬁk<ﬁnz 0w



Now we look for a solution in the form of a perturbative expansion

k=1

then we plug it into the (numerical scheme!) Langevin equation and get a hierarchy of equations!

g — g _ g

(Wy:m%_ﬂ%+?ﬂﬂ_pmmU

Lpwey g - poge

U —y® _ pG 4 = (}7(2)]7(1) + FOF®)) }7(1)3 (F® — 5

2 3!
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k=1

then we plug it into the (numerical scheme!) Langevin equation and get a hierarchy of equations!

g — g _ g

U@ — @ _ pe % 2 _ p))

Lpwey g - poge

U —y® _ pG 4 = (]7(2)17(1) + FOF®)) }7(1)3 (F® — 5

2 3!

In practice: we do not look closely at the (underlying) Stochastic Perturbation Theory because the
computer 1s going to (numerically) take care of it and all that you are interested in are the
observables, for which

O g" i My =D " (Ok(1))y

lim (O (%))

t—00

T— o0

— lim 1/TZOk(jn)
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computer 1s going to (numerically) take care of it and all that you are interested in are the
observables, for which
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t—00

— lim 1/TZOk(jn)

T— o0

Beware! Lattice PT 1is (always!) a decompactification of lattice formulation, so that ultimately
one should be able to make contact with the continuum Langevin equation, 1i.e.

a a a a
EAN(U,:B;t) = D F) (n,@;t) + n(w;t)

Where has this gone?



We did not loose anything, since we can always think of all this in the algebra

Aup(tin) = > BH2AE) (£ n)

k=1
A =log(U) = log (1 + ZB‘%(N@)
k>0
3
1 1 1 1) 2 1 1
_ gyt (p@ iz - G _ 2 (pOy@ L y@ymY 4 2yms
wiid +6<U SU >+<B> (U 2<U U@ 4+ U@y )+3U )+
3
1 1 1) 2 ()t — _ (k) (k) —
:_A<1>+_A<2>+<_> 4B L AW — 4 A® =0 vk
VB 5] B
and the (expanded) Langevin equation now reads
A = 4 _ 1)
A2 — 4@ _p@ _ 1 po 4]
20
/ 1 11 1 1
AB) — 4B _p®) _ 2 [p) 4@ _ = [F@) A(l)} L [Fu) [Fu) A(l)H L [Au) [Fu) A(l)”
20 712 ’ 12 ’ ’ 12 ’ ’

. which I wanted to specify because it is an effective way of preparing for the fact that this
1s not the end of the story! Problems are going to pop out which we have to take care of ...



Stochastic Gauge Fixing



Stochastic Gauge Fixing
Let’s go back to the continuum P

e An(n wit) = D FY (n,z5t) + 1l (23 t)

whose expanded version has a (momentum space) solution

t t
A (ki t) = Tob /O dse ¥ =) flmb(k 5) + L2, /O ds fS (k, s)

in which vertices pop in (as they should ...)

£ (ks t) = my (K 1) Fo (ks t) = gL 0% (kit) + g D=2 (ks )

7:g]('abc
2(2m)n

gLV (k;t) =

b . c ) 3
b /ﬁmm&k+p+®AA—%®AA—%ﬂ%JAhn@

vgﬁa(k,p,q) = 0, (k — p)s + cyclic permutations
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3!
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Remember the scalar case ... ¢(ht)::/ﬁd¢exp—(k2+4n2Xt—nﬂ[n@;T)—-— (22
0 s



Stochastic Gauge Fixing
Let’s go back to the continuum P

e An(n wit) = D FY (n,z5t) + 1l (23 t)

whose expanded version has a (momentum space) solution

AL")a(k;t) = Tﬁﬁ /Ot ds e_kQ(t_s)fﬁn)b(k:, s) /Ot ds f{MP(k, s
in which vertices pop in (as they should ...)
S0 (s t) =y (ks 1) e (ks t) = gL D" =0 (s ) + g2 IV 2 (ks t)
ig fabe

gLV (k;t) =

hy /ﬁmm&k+p+®Aﬂ—ﬁ®Aﬂ—%ﬂ%ﬂxhn@

2(2m)™

vgﬁa(k,p,q) = 0, (k — p)s + cyclic permutations

t

Remember the scalar case ... o&(k,t) :/ dr exp — (k% + m2)(t — 7) [n(m) - %/Cgf‘)}jf o(p,7) d(q,7) d(5,7) 5k —p — q — 5)
. !

BUT ALL THIS IS GOING TO BE ONLY FORMAL ... WE WILL NOT OBTAIN LONG TIME CONVERGENCE BECAUSE OF

THE LOSS OF DAMPING IN THE LONGITUDINAL (NON-gauge-invariant) SECTOR
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SOLUTION: add an extra piece A“(g;-t) _ P
p\Ls .
6 A% (z;1)

ab /b a( ...
Du |4 [Aat] %(%t)
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SOLUTION: add an extra piece .A@(x;t):: S
a 0 A% (x;t)

ab /b a( ...
Du |4 [Aat] %(%t)

Any functional evolves like

OF[A] SFA] DA% (z;t)
a / dchAZ(x;t) ot



5S[A]

SOLUTION: add an extra piece .A@(x't):: e ol I
p\Ls .
6 A% (z;1)

ab /b a( ...
Du 4 [Aat] %(%t)

OF[A] SF[A]  9A%(x;t)
a / dxéAZ(x;t) ot

Any functional evolves like

ab 5F[A]
but GAUGE INVARIANT ones are such that D) — =0
dAﬂ(x)
and thus physics 1is unaffected! (integration by parts ...) ... while 1if we make a convenient

choice for the extra term we have new damping factors in place!

t t 2
_pryt = Lpwg,ar Aty = T, / ds e~ ¥ =9 fa) (g 5\ L, / ds e~ (=9 pan) (1
« 0 0
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SOLUTION: add an extra piece Ad(zit) = ————3_ £ DP VAt (it
p H@5t) = e COB VA Dy st
A% (x:t
Any functional evolves like OF |4 ::u/ndx OF[A] 0 “(x’ )
ot 514Z(x;t) ot
OF A
but GAUGE INVARIANT ones are such that ng 5 Ab[ | =0
o ()
and thus physics 1is unaffected! (integration by parts ...) ... while 1if we make a convenient

choice for the extra term we have new damping factors in place!

t t 2
_pryt = Lpwg,ar Aty = T, / ds e~ ¥ =9 fa) (g 5\ L, / ds e~ (=9 pan) (1
« 0 0

On the lattice we interleave a gauge fixing step to the Langevin evolution

600

U;N — e—qu[Uﬂ?] Umu(”) ol

T
— a=0.05
—  a=0.00

Upp(n +1) = e®= 0T gl emwatalV]

mg

which has by the way an obvious interpretation -200

—F [UG G GT] G —400 I I I I L L L
U. . (n+1) =e “zv » & U~ (n 0 50 100 150 200 250 300 350 400
TH ( + ) xlu’( ) x10 Langevin Updates

Figure 1. The effect of stochastic gauge fixing.
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FERMIONIC LOOPS in NSPT

Let’s add fermions (Wilson fermions, in this case) in the Langevin equation
W _
Sgr ) = Z% M:cy[U] %
Ty

_ 1 _ _
= Z(m +4) Yy o — 2 Z (Yara L 4+72) Ul e + o (1= 7) Unp Yy )

T

From the point of view of the functional integral measure e ¢ det M = ¢ 9/ = ¢~ (Sc=TrinM)

and in turns V;MSG — V;MSeff = VZMSG — VZMTT In M = VZMSG —Tr ((ngM)M_l)
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Let’s add fermions (Wilson fermions, in this case) in the Langevin equation
W _
Sgr ) = Z¢m Mxy[U] %
Ty

_ 1 _ _
= Z(m +4) Yy Yy — 2 Z (%m (1+ ) U;Zu Vo + Yo (1 =) Usp Vi)

Th

From the point of view of the functional integral measure e ¢ det M = ¢ 9/ = ¢~ (Sc=TrinM)

and in turns Vg,uSG — V;MSeff = ngSG — ViMTr In M = VZMSG —Tr ((VgMM)M_l)

In Uyu(n+1;n) = e F=Un U, (n;n) we now write
F =T + Jen?) &9 = [vgusg ~Re (@J (VﬁuM)kl(M_l)lngnﬂ

where (§;&;)e = 0;; or (this is what we always do)
P = {V;MSG — Re <§lT(V;MM)lnwn>} My = &

From a numerical point of view this boils down to the (technically challenging) problem of
inverting the Dirac operator efficiently. This is a heavy task, making unquenched simulations much
more demanding in terms of computer time.
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Ty

_ 1 _ _
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Th

From the point of view of the functional integral measure e ¢ det M = ¢ 9/ = ¢~ (Sc=TrinM)

and in turns V;MSG — V;MSeff = VZMSG — VZMTT In M = VZMSG —Tr ((V;MM)M”)

In Uyu(n+1;n) = e F=Un U, (n;n) we now write
F =T + Jen?) &9 = [vgusg ~Re (@J (v;MM)kl(M—l)lngn)]

where (§;&;)e = 0;; or (this is what we always do)
P = {V;MSG — Re <§ZT(V;MM)ln¢n>} My = &

From a numerical point of view this boils down to the (technically challenging) problem of
inverting the Dirac operator efficiently. This is a heavy task, making unquenched simulations much
more demanding in terms of computer time.

But we have not put our expansion in the coupling in place! Once we do it, we find much less
problems than expected from the non-perturbative simulations point of view!



M=MO 4 Zﬁ—kﬂM(kz) M-l — M(O)—l 4 Zﬁ_k/QM_l(k)
k>0 k>0

In NSPT we have to deal with only one 1inverse (known once and for all: the Feynman free
propagator) plus a tower of recursive relations

(1) )1

MW — @7 000
M—1(2) _ —M(O)—lM(2>M(O)_1 . M(O)_lM(l)M—l(l)
M1 — @ @ a0 0@ a1 ) 13

n—1
Y VO V() ViC
j=0



M=MO 4 Zﬁ—k/ZM(kz) M-l — M(O)—l 4 Zﬁ—k/2M—1(k)
k>0 k>0

In NSPT we have to deal with only one 1inverse (known once and for all: the Feynman free
propagator) plus a tower of recursive relations

MY — @ 0!

M—1(2) _ —M(O)_lM(2)M(O)—1 . M(O)_lM(l)M—l(l)
M1 — @ @ a0 0@ a1 ) 13

1.e.
n—1

Y VO V() ViC
j=0

This has a direct counterpart in the solution of the linear system we have to face, which is also

translated into a perturbative version (beware! the noise source is 0-th order)
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which 1s particularly nice, since 1t can be solved by going back and forth from momentum to
coordinate representation!




A couple of (what I would regard as) relevant applications for this Workshop



The Schrodinger Functional (SF) in NSPT Brambilla, Dalla Brida, Di Renzo, Hesse, Sint
C’

¥
The SF 1is a perfect framework framework for NSPT! T
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You will probably hear from Stefan Sint some news concerning the SF coupling
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We now have a working implementation of the SF in NSPT!

ALPHA Collaboration / Nuclear Physics B 713 (2005) 378—-406

2 4. Discretization effects

The influence of the underlying space—time lattice on the evolution of the coupling can
be estimated perturbatively [29], by generalizing Symanzik’s discussion [36—-38] to the
present case. Close to the continuum limit we expect that the relative deviation

Y(w,a/L)—o(u)

Su,a/L) = " = 81(a/L)u + 8(a/L)u®+ - -- (2.30)




Fermionic loops and renormalons

This 1s a trivial observation: renormalons have been till now tested 1in the quenched
approximation.

Since we have been knowing for a while how to treat fermionic loops, I have always been thinking
that 1t would be a good idea to repeat for the unquenched case: fermions are actually a terrific
handle on the control of the asysmptotics of the expansions!

This 1s so because in the end the coefficients entering the renormalon behavior are fixed by beta-
function ...

A basic, but important technical point: we have to go for staggered quarks, not for the Wilson
ones. Otherwise there would be an overwhelming amount of computations to fix the critical mass
counterterms ... Needless to say, even for staggerd quarks the computation is nevertheless more
demanding than the quenched case ...



Resurgence, trans-series and all that

From ’s presentation at LATTICE2015

Simpler question: Can we make sense of the Argyres, MU,
semi-classical expansion of QFT? Dunne, MU, 2012

FOR) ~ Y e, (AR)* Z me P AORN e, by (AR
k=0 n=1 k=0
pert. th. n-instanton factor pert. th. around n-instanton

All series appearing above are asymptotic, i.e., divergent as c - k!. The
combined object is called trans-series following resurgence terminology.

Actually this “Resurgence people” have quite a number of predictions for perturbative expansions
and they went many steps further than the typical claim for QM cases (double-well potential ...)

resurgence: fluctuations about the instanton/anti-instanton saddle
are determined by those about the vacuum saddle.

There quite a lot to study! ... and I admit my ignorance! Good point is that there are both low
order/high order and low order/low order relations. I have already been asked by a few people
¢ himself): why don’t we give it a try by NSPT? My answer

was (of course...) YES! We w111 see ..



Conclusions

- NSPT has been around for roughly 20 years, but it 1is never too
late to have a closer look at it!

- I think there are always applications on our 1list, but now 1in
particular maybe new working grounds are there in Resurgence.
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- NSPT has been around for roughly 20 years, but it is never too
late to have a closer look at it!

- I think there are always applications on our 1list, but now 1in
particular maybe new working grounds are there in Resurgence.

- Let’s now listen to Antonio!
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