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Parma group introduced NSPT in the 90s. Since then also other people got 
interested in. My viewpoint (I confess) will be still Parma-centered...
 
Many collaborators over the years on the subject ...
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Perturbation Theory (PT) is nothing less than ubiquitous in Field Theory. In principle the lattice 
is a regulator among the others ... in practice it is a dreadful one so that when it comes to 
compute something in Lattice Perturbation Theory (LPT) you will probably start to get nervous ...

where f ABC is the structure constant of SU(Nc) gauge group.
The first three vertices originate from the Wilson quark ac-
tion and the last three from the clover term. The momentum
assignments for the vertices are depicted in Fig. 1.
For the gauge action we consider the following general

form including the standard plaquette term and six-link loop
terms:
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c0"8c1"16c2"8c3!1, "16#

where six-link loops are composed of a 1#2 rectangle, a
bent 1#2 rectangle "chair# and a three-dimensional paral-
lelogram. In this paper we consider the following choices:
c1!c2!c3!0 "Plaquette#, c1!$1/12, c2!c3!0 "Syman-
zik# $13,14% c1!$0.331, c2!c3!0 "Iwasaki#, c1
!$0.27,c2"c3!$0.04 "Iwasaki’# $15%, c1!$0.252,c2
"c3!$0.17 "Wilson# $16% and c1!$1.40686, c2!c3!0
"DBW2# $7%. The last four cases are called the RG improved
gauge action, whose parameters are chosen to be the values
suggested by approximate renormalization group analyses.
Some of these actions are now getting widely used, since
they realize continuumlike gauge field fluctuations better
than the naive plaquette action at the same lattice spacing.
The free gluon propagator is derived in Ref. $13%:
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where we employ the Feynman gauge. The matrix A&'
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and its expression is given by

A&'"k #!
1

+4
$" k̂2$ k̂'

2#"q&,q&-k̂&
2"q&,q,-k̂,

2"q&-q,-k̂-
2#

"" k̂2$ k̂&
2 #"q',q'-k̂'

2"q',q,-k̂,
2"q'-q,-k̂-

2#

"q&,q'-" k̂&
2" k̂,

2#" k̂'
2" k̂-

2#"q&-q'," k̂&
2" k̂-

2#

#" k̂'
2" k̂,

2#$q&'q,-" k̂,
2" k̂-

2#2$"q&,q',

"q&-q'-#k̂,
2k̂-
2$q&'"q&,k̂&

2 k̂-
2"q&-k̂&

2 k̂,
2

"q',k̂'
2k̂-
2"q'-k̂'

2k̂,
2#% , "24#

with &*'*,*- the Lorentz indices. q&' and +4 are writ-
ten as

FIG. 1. Momentum assignments for the quark-antiquark-gluon
vertices.
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A lot of vertices (not given once and for all)
Sums and/or integrals ... a lot of trigonometrics ...
A variety of actions (both for glue and for quarks)

and as an extra bonus ... often bad convergence properties

SU(Nc) gauge group with the gauge coupling constant g.

II. ACTION AND FEYNMAN RULES

For the quark action we consider the O(a)-improved
quark action !2":
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The weak coupling perturbation theory is developed by writ-
ing the link variable in terms of the gauge potential
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where TA(A!1, . . . ,Nc
2"1) is a generator of color SU(Nc).

The quark propagator is obtained by inverting Wilson
Dirac operator in Eq. '1),
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To calculate the improvement coefficient cSW up to one-loop
level, we need one-, two-and three-gluon vertices with
quarks:
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SU(Nc) gauge group with the gauge coupling constant g.

II. ACTION AND FEYNMAN RULES
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Despite this ...
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- Conclusions
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You now want an extra degree of freedom which you will think of as a stochastic time in which an 
evolution takes place according to the Langevin equation

�(x) 7! �⌘(x; t)
d�⌘(x; t)

dt

= � @S[�]

@�⌘(x; t)
+ ⌘(x; t)

... but this is a stochastic differential equation due to the presence of the
gaussian noise

⌘(x; t) : h⌘(x, t) ⌘(x0
, t

0)i⌘ = 2 �(x� x

0) �(t� t

0)

Noise expectation values are now naturally defined h. . . i⌘ =

R
D⌘(z, ⌧) . . . e�

1
4

R
dzd⌧⌘2(z,⌧)

R
D⌘(z, ⌧) e�

1
4

R
dzd⌧⌘2(z,⌧)

The drift term is given by the equations of motion...

Parisi-Wu, Sci. Sinica 24 (1981) 35, Damgaard-Huffel, Phys Rept 152 (1987) 227
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The drift term is given by the equations of motion...

... but this is a stochastic differential equation due to the presence of the
gaussian noise

Parisi-Wu, Sci. Sinica 24 (1981) 35, Damgaard-Huffel, Phys Rept 152 (1987) 227



A conceptually simple proof comes from the Fokker Planck equation formalism
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Ṗ [�, t] =

Z
dx

�

��(x)

✓
�S[�]

��(x)
+

�

��(x)

◆
P [�, t]

for the solution of which we can introduce a perturbative expansion which generates a hierarchy of 
equations

P [�, t] =
X

k=0

gkPk[�, t]

Leading order is easy to solve and admits an infinite time (equilibrium) limit such that

P0[�, t]!t!1P eq
0 [�] =

e�S0[�]

Z0

In a convenient weak sense at every order one gets equilibrium Pk[�, t]!t!1P eq
k [�]

in terms of quantities which are interelated by a set of relations in which one recognizes the 
Schwinger-Dyson equations ... i.e. we are done!
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in terms of quantities which are interelated by a set of relations in which one recognizes the 
Schwinger-Dyson equations ... i.e. we are done!
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Interacting case (cubic interaction in the following) is solved by superposition ...
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Interacting case (cubic interaction in the following) is solved by superposition ...

... which leaves the solution in a form which is ready for iteration. It is actually also ready 
for a graphical intepretation and for the formulation of a 

diagrammatic Stochastic Perturbation Theory

242 PH. Damgaard and H. Hüffel, Stochastic quantization

We see that the dependence on the initial condition is damped out exponentially in t.

In the interacting case we finally obtain the exact integral equation

cb(k, t) = f exp{-(k2 + m2) (t - T)} [~i(k,r) - A f d~pd~qçb(p, r) çb(q, r) ô(k - p - q)].

(3.38)

Solving this equation by iteration one arrives at a power series expansion of 4 in the coupling A,
expressing 4’ as a certain function of the white noise ~.

Symbolically we can represent ~ as

~ (3.39)

or graphically as

x + + + + (3.40)

Here we denote G by a line and ii by a cross; integration over the momenta at the vertices and over the
fictitious times at the vertices as well as at the crosses is included.
Next we observe that eqs. (3.7) are given in momentum space as

(-q(k, t) -q(k’, t’)),
1 2(2ir)” ~5”(k+ k’) 8(t— t’). (3.41)

Let us now consider an L-point function (~(xi, t). . . 4~(xL, t) ) and substitute for çb its diagram-
matical expansion (3.40). When the random averages over the ~‘s are taken, all crosses are joined in all
possible ways due to the Wick-decomposition property (3.8) of the white noise. In this way (we
graphically denote the average over two noises by just one cross) diagrams are obtained, which we call
‘stochastic diagrams’,

+ +

+ ~ Q + )< + Q x . (3.42)

Each of these stochastic diagrams has the form of an ordinary Feynman diagram of the theory
described by the action S, apart from crosses on the lines where two i~’shave been joined together.
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The stochastic diagrams one obtains when 
averaging over the noise (contractions!) 
reconstruct, in a convenient infinite time 
limit, the contributions of the (topologically) 
correspondent Feynman diagrams ...

but we do not want to go this way ...

�(k, t) =

Z t

0
d⌧ exp�(k2 +m2

)(t� ⌧)


⌘(k, ⌧)� �

2!

Z
dpdq

(2⇡)2n
�(p, ⌧)�(q, ⌧) �(k � p� q)

�

� =

Z
G⌘ � �

3!

Z Z Z Z
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We now deal with a theory formulated in terms of group variables and Langevin equation reads

@

@t
U
xµ

(t; ⌘) = (�ir
xµ

S
G

[U ]� i⌘
xµ

(t))U
xµ

(t; ⌘)

where the Lie derivative is in place

r
xµ

= T ara

xµ

= T ara

U

xµ

ra

V

f(V ) = lim
↵!0

1

↵
(f

⇣
ei↵T

a

V
⌘
� f(V ))

lim
t!1

hO[U(t; ⌘)]i⌘ =
1

Z

Z
DU e�SG[U ] O[U ]

This is again a stochastic differential equation with (gaussian) noise averages satisfying

U
µx

= eAµ(x)
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This is again a stochastic differential equation with (gaussian) noise averages satisfying
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In order to proceed we now need a (numerical) integration scheme, e.g. Euler
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Now we look for a solution in the form of a perturbative expansion

U
xµ

(t; ⌘) ! 1 +
X

k=1

��k/2U (k)
xµ

(t; ⌘)

then we plug it into the (numerical scheme!) Langevin equation and get a hierarchy of equations!

U (1)0 = U (1) � F (1)

U (2)0 = U (2) � F (2) +
1

2
F (1) 2 � F (1)U (1)

U (3)0 = U (3) � F (3) +
1

2
(F (2)F (1) + F (1)F (2))� 1

3!
F (1) 3 � (F (2) � 1

2
F (1) 2)U (1) � F (1)U (2)

. . .
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In practice: we do not look closely at the (underlying) Stochastic Perturbation Theory because the 
computer is going to (numerically) take care of it and all that you are interested in are the 
observables, for which
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Beware! Lattice PT is (always!) a decompactification of lattice formulation, so that ultimately 
one should be able to make contact with the continuum Langevin equation, i.e.
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We did not loose anything, since we can always think of all this in the algebra
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and the (expanded) Langevin equation now reads
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... which I wanted to specify because it is an effective way of preparing for the fact that this 
is not the end of the story! Problems are going to pop out which we have to take care of ...
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Let’s go back to the continuum
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BUT ALL THIS IS GOING TO BE ONLY FORMAL ... WE WILL NOT OBTAIN LONG TIME CONVERGENCE BECAUSE OF 
THE LOSS OF DAMPING IN THE LONGITUDINAL (NON-gauge-invariant) SECTOR
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and thus physics is unaffected! (integration by parts ...) ... while if we make a convenient 
choice for the extra term we have new damping factors in place!
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On the lattice we interleave a gauge fixing step to the Langevin evolution
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which has by the way an obvious interpretation
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†] UG
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Figure 1. The effect of stochastic gauge fixing.

One then defines a renormalized coupling g2 through [2]

k

g2
=

@�

@⌘

����
⌘=⌫=0

, (4.2)

where k is a normalization factor ensuring that we end up with an expansion

g2 = g2
0

(1 +m
1

g2
0

+m
2

g4
0

+ . . . ). (4.3)

For a general choice of the parameter ⌫, we obtain

@�

@⌘

����
⌘=0

= k

✓
1

g2
� ⌫v

◆
. (4.4)

The reader is referred to [2] for the precise definitions involved, but a couple of comments are in
order here. First of all, v is indipendent of ⌫ and thus the definition of a new coupling (of a whole
family of couplings, actually) simply amounts to the measurement of yet another quantity, in any
background (typically in the one defined by ⌫ = 0). The original motivation of [2] was that of
trading little extra work with a further test of universality of the Schrödinger functional. On the
other side, this freedom in choosing a value for ⌫ in a 1-parameter family can be viewed as a handle
to minimize cutoff effects (this is the spirit of e.g. [14]). In the following we will report results for
the standard definition of the SF coupling (⌫ = 0). Since one can indeed be interested in playing
around with different definitions of the coupling resulting from different value of ⌫, it is important
to discuss what statistics we have to aim at for a NSPT computation of the relevant v obervable.
Since the latter is known to be small (results for different lattice sizes were computed to two loop
in [15]) and quite noisy in non-perturbative measurements, this is expected to be a non-trivial task.
We devote appendix B to briefly discuss our results on this subject.
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FERMIONIC LOOPS in NSPT Di Renzo, Scorzato 2001
Let’s add fermions (Wilson fermions, in this case) in the Langevin equation
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From a numerical point of view this boils down to the (technically challenging) problem of 
inverting the Dirac operator efficiently. This is a heavy task, making unquenched simulations much 
more demanding in terms of computer time.
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But we have not put our expansion in the coupling in place! Once we do it, we find much less 
problems than expected from the non-perturbative simulations point of view!

From a numerical point of view this boils down to the (technically challenging) problem of 
inverting the Dirac operator efficiently. This is a heavy task, making unquenched simulations much 
more demanding in terms of computer time.
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In NSPT we have to deal with only one inverse (known once and for all: the Feynman free 
propagator) plus a tower of recursive relations
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This has a direct counterpart in the solution of the linear system we have to face, which is also 
translated into a perturbative version (beware! the noise source is 0-th order)
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 A couple of (what I would regard as) relevant applications for this Workshop



The Schrodinger Functional (SF) in NSPT Brambilla, Dalla Brida, Di Renzo, Hesse, Sint

The SF is a perfect framework framework for NSPT!
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You will probably hear from Stefan Sint some news concerning the SF coupling
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To arrive at our main result, that is the Λ-parameter in terms of a low-energy scale, we
solve the equation

(2.28)σ
(
ḡ2(L/2)

)
= ḡ2(L)

recursively for ḡ2(L/2). We start this recursion at a maximal value umax = ḡ2(Lmax) of
the coupling. The value of umax is chosen such that the associated scale Lmax is a scale in
the hadronic regime of QCD. Following the recursion (2.28) to larger and larger energies,
we obtain the values for

(2.29)ui = ḡ2
(
2−iLmax

)
, i = 0, . . . , n, u0 = umax.

We perform n = 7 or n = 8 steps of this recursion and can in this way cover a scale separa-
tion of a factor 100 to 250. Eventually, for sufficiently large energies, perturbation theory
can safely be applied. Then we use (2.9) with µ = 2n/Lmax and with the β-function trun-
cated at 3-loop order, (2.6)–(2.8). The final result for ΛLmax in the Schrödinger functional
scheme can be converted to the MS scheme with (2.11). We also check the admissibility
of employing perturbation theory by studying the variation of our final result with respect
to the number of non-perturbative steps n in the scale evolution of the strong coupling.

2.4. Discretization effects

The influence of the underlying space–time lattice on the evolution of the coupling can
be estimated perturbatively [29], by generalizing Symanzik’s discussion [36–38] to the
present case. Close to the continuum limit we expect that the relative deviation

(2.30)δ(u, a/L) = Σ(u, a/L) − σ (u)

σ (u)
= δ1(a/L)u + δ2(a/L)u2 + · · ·

of the lattice step scaling function from its continuum limit converges to zero with a rate
roughly proportional to a/L. More precisely, since the action is O(a) improved, we expect

(2.31)δ1(a/L) ∼
(

d0,1 + d1,1 ln
a

L

)(
a

L

)2
+ · · · ,

(2.32)δ2(a/L) ∼ e0,2
a

L
+

(
d0,2 + d1,2 ln

a

L
+ d2,2

(
ln

a

L

)2)(
a

L

)2
+ · · ·

for the 1-loop value of ct and the same form with e0,2 = 0 for the 2-loop value of ct. Note
that the tree-level discretization effects vanish exactly, since we normalize the coupling
such that its perturbative expansion starts with g20 for all values of the lattice spacing.
The coefficients δ1 and δ2 are collected in Table 1 for the resolutions needed in this

work. An expanded version of this table can be found in [39]. The entries in the last column
are very small. For larger values of L/a than shown in the table, δct=2-loop

2 decreases as
expected. Since δ

ct=1-loop
2 is of the order a/L, it is no surprise that it is much larger than

δ
ct=2-loop
2 . In fact, it is of the same size as δ1, for which the linear term in a/L is absent.
The largest coupling at which the step scaling function has been computed with the

1-loop value of ct is u = 1.7319. With the 2-loop value of ct, this is u = 3.334. Table 1
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for the 1-loop value of ct and the same form with e0,2 = 0 for the 2-loop value of ct. Note
that the tree-level discretization effects vanish exactly, since we normalize the coupling
such that its perturbative expansion starts with g20 for all values of the lattice spacing.
The coefficients δ1 and δ2 are collected in Table 1 for the resolutions needed in this

work. An expanded version of this table can be found in [39]. The entries in the last column
are very small. For larger values of L/a than shown in the table, δct=2-loop

2 decreases as
expected. Since δ

ct=1-loop
2 is of the order a/L, it is no surprise that it is much larger than

δ
ct=2-loop
2 . In fact, it is of the same size as δ1, for which the linear term in a/L is absent.
The largest coupling at which the step scaling function has been computed with the

1-loop value of ct is u = 1.7319. With the 2-loop value of ct, this is u = 3.334. Table 1

We now have a working implementation of the SF in NSPT!

Alpha Collaboration



Fermionic loops and renormalons

This is a trivial observation: renormalons have been till now tested in the quenched 
approximation.

Since we have been knowing for a while how to treat fermionic loops, I have always been thinking 
that it would be a good idea to repeat for the unquenched case: fermions are actually a terrific 
handle on the control of the asysmptotics of the expansions!

This is so because in the end the coefficients entering the renormalon behavior are fixed by beta-
function ...

A basic, but important technical point: we have to go for staggered quarks, not for the Wilson 
ones. Otherwise there would be an overwhelming amount of computations to fix the critical mass 
counterterms ... Needless to say, even for staggerd quarks the computation is nevertheless more 
demanding than the quenched case ...



Resurgence, trans-series and all that

Simpler question: Can we make sense of the 
semi-classical expansion of  QFT?     

f(�~) ⇠
1X

k=0

c(0,k) (�~)k +
1X

n=1

(�~)��n e�nA/(�~)
1X

k=0

c(n,k) (�~)k

pert. th.                     n-instanton factor     pert. th. around n-instanton

All series appearing above are asymptotic, i.e., divergent as  c(0,k) ~ k!. The 
combined object is called trans-series following resurgence terminology.

Borel resummation idea: If P (�) ⌘ P (g2) =
P1

q=0 aqg
2q

has convergent

Borel transform

BP (t) :=
1X

q=0

aq
q!
tq

in neighborhood of t = 0, then

B(g2) = 1

g2

Z 1

0
BP (t)e�t/g2

dt .

formally gives back P (g2), but is ambiguous if BP (t) has singularities at t 2 R+
:

Argyres, MÜ,"
Dunne, MÜ, 2012 

From Mitat Unsal’s presentation at LATTICE2015

Actually this “Resurgence people” have quite a number of predictions for perturbative expansions 
and they went many steps further than the typical claim for QM cases (double-well potential ...) 

resurgence: fluctuations about the instanton/anti-instanton saddle 
are determined by those about the vacuum saddle. 

Borel-Ecalle summability

There quite a lot to study! ... and I admit my ignorance! Good point is that there are both low 
order/high order and low order/low order relations. I have already been asked by a few people 
(A. Gonzalez-Arroyo, A. Ramos; M. Unsal himself): why don’t we give it a try by NSPT? My answer 
was (of course...) YES! We will see ..



Conclusions

- NSPT has been around for roughly 20 years, but it is never too 
late to have a closer look at it!

- I think there are always applications on our list, but now in 
particular maybe new working grounds are there in Resurgence. 
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- Let’s now listen to Antonio!


