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Currently quoted results for αs(mZ )

World average [PDG 2014]: αs(mZ ) = 0.1185(6)

PDG error estimate determined by lattice results!
How realistic are these small errors?

FLAG group average: αs(mZ )|lattice = 0.1184(12)
[arXiv:1310.8555v2]
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ALPHA collaboration project

Build on CLS effort [Bruno et al, JHEP 1502 (2015) 043]:

Nf = 2 + 1 QCD

nonperturbatively O(a) improved Wilson quarks & Lüscher-Weisz
gauge action;

open boundary conditions (avoids topology freezing)

Use 3 input parameters from experiment, e.g.

FK ,mπ,mK ⇒ mu = md ,ms , g0

⇒ everything else becomes a prediction, for instance

α(Nf=3)
s (100× FK ) (in any renormalization scheme)

Final goal: α
(Nf=5)
s (mZ ) in the MS-scheme

Matching to Nf = 5 across the charm and bottom thresholds

Perturbative matching probably fine for bottom, unclear for charm
(not discussed here).
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The QCD Λ-parameter and αs(µ) = ḡ 2(µ)/4π

Λ = µ
[
b0ḡ

2(µ)
]− b1

2b2
0 e
− 1

2b0ḡ2(µ) exp

{
−
∫ ḡ (µ)

0

dg

[
1

β(g)
+

1

b0g3
− b1

b2
0g

]}

exact solution of Callan-Symanzik equation!

Assume: coupling ḡ(µ) non-perturbatively defined, Nf massless
quarks

β(g) has expansion β(g) = −b0g
3 − b1g

5 + ..

b0 = (11− 2
3Nf)/(4π)2, b1 = (102− 38

3 Nf)/(4π)4, . . .

Scheme dependence of Λ almost trivial:

g2
X(µ) = g2

Y(µ) + cXYg
4
Y(µ) + ... ⇒ ΛX

ΛY
= ecXY/2b0

⇒ use ΛMS = ΛQCD as reference!
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The QCD Λ-parameter and αs(µ) = ḡ 2(µ)/4π

Λ = µ
[
b0ḡ

2(µ)
]− b1

2b2
0 e
− 1

2b0ḡ2(µ) exp

{
−
∫ ḡ (µ)

0

dg

[
1

β(g)
+

1

b0g3
− b1

b2
0g

]}

Continuum relation, exact at any scale µ:

require large µ to evaluate integral perturbatively
require small µ to match hadronic scale

⇒ problem of large scale differences:

The scale µ must reach the perturbative regime: µ� ΛQCD

The lattice cutoff must still be larger: µ� a−1

The volume must be large enough to contain pions: L� 1/mπ

Taken together a naive estimate gives

L/a� µL� mπL� 1 ⇒ L/a ' O(103)

⇒ widely different scales cannot be resolved simultaneously on a single
lattice!
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Step scaling function

Widely different scales cannot be resolved simultaneously on a single
lattice

⇒ break calculation up in steps [Lüscher, Weisz, Wolff ’91; Jansen et
al. ’95]:

1 define ḡ 2(L) that runs with the space-time volume, i.e. µ = 1/L
2 construct the step-scaling function

σ(u) = ḡ 2(2L)
∣∣∣
u=ḡ2(L)

for a range of values u ∈ [umin, umax]
3 iteratively step up/down in scale by factors of 2:

ḡ 2(Lmax) = umax ≡ u0, uk = σ(uk+1) = ḡ 2(2−kLmax), k = 0, 1, ...

4 match to hadronic input at a hadronic scale Lmax, i.e. FKLmax = O(1)
5 once arrived in the perturbative regime extract ΛQCD
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Lattice approximants Σ(u, a/L) for σ(u)

choose g0 and L/a = 4,
measure ḡ2(L) = u (this sets
the value of u)

double the lattice and measure

Σ(u, 1/4) = ḡ2(2L)

now choose L/a = 6 and tune
g ′0 such that ḡ2(L) = u is
satisfied

double the lattice and measure

Σ(u, 1/6) = ḡ2(2L)

σ(u) = lima/L→0 Σ(u, a/L).

change u and repeat...
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Wanted: renormalized finite volume coupling, which...

is non-perturbatively defined in a finite space-time volume;

can be expanded in perturbation theory (at least ≤ 2-loop) with
reasonable effort;

is gauge invariant;

is quark mass-independent (defined in the chiral limit).

can be evaluated by MC simulation with good statistical precision

⇒ not easy to satisfy! Here:

1 impose Schrödinger functional (SF) boundary conditions: periodic in
space, Dirichlet in time

2 use 2 definitions of the coupling

traditional SF coupling [Narayanan et al. ’92]
gradient flow coupling & SF b.c.’s [Fritsch & Ramos ’13]
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SF coupling

(inhomogeneous) Dirichlet conditions for the gauge field

⇒ induce family of background gauge fields Bµ with parameter η.

With some care the induced background fields are unique up to
gauge equivalence.

Effective action

e−Γ[B] =

∫
D[A, ψ, ψ]e−S[A,ψ,ψ]

Perturbative expansion:

Γ[B] = 1
g2

0
Γ0[B] + Γ1[B] + O(g2

0 )

Define
1

ḡ2
SF(L)

=
∂ηΓ[B]

∂ηΓ0[B]
=
〈∂ηS〉
∂ηΓ0[B]

⇒ SF coupling is defined by the response of the system to a change of
a colour electric background field. [Narayanan et al. ’92]
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Gradient flow & renormalized finite volume coupling

QCD, gauge field Aµ(x), Yang-Mills gradient flow equation:

∂tBµ(t, x) = DνGνµ(t, x)
(

= − δSg [B]
δBµ(t,x)

)
, Bµ(0, x) = Aµ(x)

with field tensor Gµν = ∂µBν − ∂νBµ + [Bµ,Bν ].

Local gauge invariant composite fields at positive flow time t > 0
such as

E (t, x) = − 1
2 tr {Gµν(x , t)Gµν(x , t)}

are renormalized; no mixing with other fields of same or lower
dimensions! [Lüscher & Weisz ’2012];

Explicit one-loop calculation (infinite volume, dimensional
regularization) [Lüscher 2010]:

〈E (t, x)〉 =
3g2

MS
(µ)

16π2t2

(
1 +

1.0978 + 0.0075Nf

4π
g2
MS

(µ) + ...

)
, µ =

1√
8t

⇒ E (t, x) is, for t > 0, a renormalized field; unlike E (0, x) which
has a quartic and a logarithmic divergence!



11/ 22

Gradient flow couplings

Infinite volume: Non-perturbative definition of a renormalized
“gradient flow coupling” at scale µ = 1/

√
8t:

g2
GF,∞(µ)

def
=

16π2

3
t2〈E (t, x)〉

Finite volume: consider 〈E (t, x)〉 in a finite box of dimension L4, fix
the ratio c =

√
8t/L and define

ḡ2
GF(L) = N (c)−1t2〈E (t, x)〉, lim

c→0
N (c) =

3

16π2

defines family of renormalized couplings, with parameter c .
(typical range from 0.2 to 0.5);

N (c) is calculable in lowest order perturbation theory; depends on
b.c’s for the gauge field; periodic in space; time direction:

periodic b.c.’s [Fodor et al. 2012]
⇒ SF (Dirichlet) b.c.’s [Fritzsch & Ramos 2012], used here!

twisted periodic b.c.’s [Ramos 2013]
open-SF (Neumann-Dirichlet) b.c.’s [Lüscher 2013]
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Comparison gGF vs. gSF

SF-coupling:

• 3-loop β-function (i.e.b2) is known [Bode, Weisz, Wolff ’99]

• 2-loop ct known: O(a) boundary effects highly suppressed

• ∆(1/ḡ2) ∝ (∆L)/L, roughly independent of ḡ .

• requires very large statistics; variance increases with L/a.

• large physical volumes very difficult (N.B. coupling defined by
variation of b.c.’s).

GF-coupling (finite volume, SF b.c.’s)

• high statistical precision

• can be measured in large physical volumes; ideal to match hadronic
physics!

• ΛGF/ΛQCD not yet known; only universal b0, b1 can be used.

• ∆(1/ḡ2) ∝ 1/ḡ2: more expensive as ḡ decreases.

• Relatively large O(a2) effects; can we reduce these?
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Overview of the strategy

Combining the advantages of both couplings we proceed as follows:

Compute the hadronic scale FK on Nf = 2 + 1 CLS configurations

Compute FK × Lmax (defined through the GF-coupling; aim for
Lmax ≈ 0.5fm);

Compute the step scaling functions for ḡ2
GF(L);

Perform 2-3 steps to cover the range from Lmax to Lswi ≈ 0.05 fm

At the intermediate scale Lswi switch from GF to SF scheme; also
change from Lüscher-Weisz to Wilson gauge action;

⇒ obtain relation Lswi/Lmax and thus Lswi × FK .

Compute the step-scaling function for ḡ2
SF(L)

extract LswiΛQCD

Combine results to obtain ΛQCD/FK
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Overview of the strategy

Lswi

g2SF(Lswi)
g2GF(Lswi)

1 10 100 1000

1

2

3

4

5

6

µ/Λ

g2

0
2

2.1

2.2

2.3

(a/L)2

g2SF ≡ lima→0 Ψ(a/L, uswi
GF)

(courtesy Patrick Fritzsch)
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Computation of LswiΛQCD

Define Lswi implicitly by ḡ2
SF(Lswi) = 2.012

Obtain continuum step scaling function (SSF) by fit ansatz for
continuum & cutoff effects

σ(u) = ḡ2
SF(2L)|u=ḡ2

SF(L)

for a range of u-values, u ∈ [1.10891, 2.0120]

Given σ(u) start with u0 = 2.012 and find u1, u2,...,u5.

un−1 = σ(un), n = 1, . . . , 5, ⇒ un = ḡ2
SF

(
2−nLswi

)
At scale 2−nLswi obtain LswiΛSF

LswiΛSF = 2n
[
b0un

]− b1

2b2
0 e
− 1

2b0un exp

{
b2

1 − b2b0

2b3
0

un + O(u2
n)

}
Connect to MS scheme ΛNf=3

SF /ΛNf=3
QCD = 0.382863(1)
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Simulations

On lattices with sizes L/a = 4, 6, 8, 12 measure u = ḡ2(L).

requires precise knowledge of massless limit, i.e. κcr(g0, L/a)

Double lattice size and measure Σ(u, a/L) = ḡ2(2L)

analyze Σ(u, a/L) directly

Alternatively, reduce cutoff effects perturbatively up to 2-loop order:

δ(u, a/L) =
Σ(u, a/L)− σ(u)

σ(u)
= δ1(L/a)u + δ2(L/a)u2 + O(u3)

δ1,2(L/a) are known [Bode, Weisz & Wolff ’99]

⇒ cutoff effects in

Σ′(u, a/L) =
Σ(u, a/L)

1 + δ1(L/a)u + δ2(L/a)u2

start at order u4!
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Obtaining the SSF in the continuum

Example for global fit ansatz:

Σ′(u, a/L) = u + s0u
2 + s1u

3

+ c1u
4 + c2u

5

+ ρ1u
4 a

2

L2

s0, s1 fixed to perturbative
values:

s0 = 2b0 ln 2, s1 = s2
0 +2b1 ln 2

3 parameters: c1, c2, ρ1;
19 data points,

χ2/d.o.f. = 1.099

u

[σ
(u

)−
u]

 / 
u
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Precision compared to earlier results for Nf = 0, 2, 3, 4

u

[σ
(u

)−
u]

 / 
[2

 ln
(2

) 
u2 ]
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Nf = 0, 2, 4 [ALPHA,’92–’12]

Nf = 3
[PACS-CS ’09]
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Precision compared to earlier results for Nf = 0, 2, 3, 4

u

[σ
(u

)−
u]

 / 
[2

 ln
(2

) 
u2 ]
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Nf = 3
[PACS-CS ’09]

Various fits (3-5 parameters,
perturbatively improved &
unimproved data), find stability
after n = 2, 3 step-scaling steps

⇒ LswiΛ
Nf=3

MS
= 0.0802(16)

(preliminary)
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More details on the definition of g 2
GF

Choose same bare action as CLS in large volume;

SF boundaries: use variant B by [Aoki, Frezzotti, Weisz, ’98]

Boundary O(a) improvement: ct, c̃t to 1-loop order
[Aoki, Ide, Takeda ’03; Vilaseca ’15]

Study of O(a) boundary effects (PT and quenched):
1 T = L, c =

√
8t/L = 0.3 seems OK;

2 advantageous to restrict to magnetic components at x0 = T/2:

− 1
2
〈 tr {Gkl(t, x)Gkl(t, x)}〉

∣∣
x0=T/2,T=L,mq=0

= N (c, a/L) g 2
GF(L)

Use N (c , a/L) for given L/a ⇒ g2
GF = g2

0 exact at tree-level.

Wilson flow & O(a2) improved Zeuthen flow

Clover & O(a2) improved observable

topology freezing: use projection on Q = 0 sector [Fritzsch, Ramos,
Stollenwerk ’13]; becomes relevant for L > 0.25 fm
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Matching at the switching scale Lswi (Wilson action)

ḡ2
SF(Lswi) = 2.012⇒ (β, L/a)→ (β, 2L/a)⇒ ḡ2

GF(2Lswi) = 2.6808(54)

(preliminary)
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Summary status: ΛNf=3
QCD with target error < 4-5%

SF coupling for L < Lswi ≈ 0.05 fm;
unprecedented precision (high statistics & precise tuning of κ):

ḡ2
SF(Lswi) = 2.012 ⇒ LswiΛ

Nf=3

MS
= 0.0802(16) (preliminary)

Definition of gradient flow coupling ḡ2
GF(L) settled:

reduced boundary O(a) effects by restricting E(t, x) to magnetic
components;
Symanzik O(a2) improvement: Zeuthen flow and observable.

Matching at switching scale Lswi

ḡ2
GF(2Lswi) = 2.6808(54) (preliminary)

Running of ḡ2
GF(L) from 0.05− 0.1 fm to 0.5 fm:

precision tuning of κ finished;
simulations for step scaling function underway.

Connect to FK on CLS config’s: details to be defined.


