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Currently quoted results for as(myz)

World average [PDG 2014]: as(mz) = 0.1185(6)
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@ PDG error estimate determined by lattice results!
How realistic are these small errors?

o FLAG group average: as(mz)|iattice = 0.1184(12)
[arXiv:1310.8555v2]



ALPHA collaboration project

Build on CLS effort [Bruno et al, JHEP 1502 (2015) 043]:

o Ny =2+1QCD

@ nonperturbatively O(a) improved Wilson quarks & Liischer-Weisz
gauge action;

@ open boundary conditions (avoids topology freezing)

Use 3 input parameters from experiment, e.g.
Fr,m;, mg = m, = my, Ms, 8o
= everything else becomes a prediction, for instance

oM=3)(100 x Fi) (in any renormalization scheme)

Final goal: ang:S)(mz) in the MS-scheme
@ Matching to Ny =5 across the charm and bottom thresholds

@ Perturbative matching probably fine for bottom, unclear for charm
(not discussed here).



The QCD A-parameter and (i) = g2(u)/4m

L 2122 1 g(n) 1 1 by
A= M[bog (M)] 5 e 2bog?(n) exp{ /0 dg [/3(g) + 7bog3 - bgg} }

@ exact solution of Callan-Symanzik equation!

@ Assume: coupling g(u) non-perturbatively defined, Ny massless
quarks

e 3(g) has expansion 3(g) = —bog>® — b1g® + ..

bo = (11— 2N;)/(4m)?, by = (102 — & Ng)/(4m)*,

@ Scheme dependence of A almost trivial:
gx(1) = &% (1) + cxy ey (n) +

= use Ayg = Aqcp as referencel



The QCD A-parameter and (i) = g2(u)/4m

L 2122 1 g(n) 1 1 by
A= M[bog (M)] 5 e 2bog?(n) exp{ /0 dg [/3(g) + 7bog3 - bgg} }

@ Continuum relation, exact at any scale u:
o require large u to evaluate integral perturbatively
e require small ;1 to match hadronic scale
= problem of large scale differences:

o The scale i must reach the perturbative regime: p > Aqcp

o The lattice cutoff must still be larger: pu < a=?

o The volume must be large enough to contain pions: L>> 1/m,
o Taken together a naive estimate gives

L/a> pul> m.L>1 = L/a~0(10%)

= widely different scales cannot be resolved simultaneously on a single
lattice!



Step scaling function

o Widely different scales cannot be resolved simultaneously on a single
lattice
= break calculation up in steps [Lischer, Weisz, Wolff '91; Jansen et
al. '95]:
@ define (L) that runs with the space-time volume, i.e. u=1/L
@ construct the step-scaling function

o(w) = gL)| _,

for a range of values u € [Umin, Umax]
© iteratively step up/down in scale by factors of 2:

g2(Lmax) = Umax = Uo, Uk = O'(Uk+1) = 52(2_kLmax), k=0,1,..

@ match to hadronic input at a hadronic scale Lmax, i.e. FxLmax = O(1)
@ once arrived in the perturbative regime extract Aqcp



Lattice approximants X (u, a/L) for o(u)

£(2,u,1/4)

@ choose g and L/a = 4,
measure g2(L) = u (this sets
the value of u) g2=u

@ double the lattice and measure

T(u,1/4) = g*(2L)

@ now choose L/a =6 and tune
g such that g%(L) = u is
satisfied

2(2,u,1/86)

@ double the lattice and measure

Y(u,1/6) = g%(2L)

(g9?

o o(u)=lim,/ 0 X(u,a/L).
@ change u and repeat...




Wanted: renormalized finite volume coupling, which...

@ is non-perturbatively defined in a finite space-time volume;

@ can be expanded in perturbation theory (at least < 2-loop) with
reasonable effort;

@ is gauge invariant;
@ is quark mass-independent (defined in the chiral limit).

@ can be evaluated by MC simulation with good statistical precision

= not easy to satisfy! Here:
@ impose Schrédinger functional (SF) boundary conditions: periodic in
space, Dirichlet in time
@ use 2 definitions of the coupling

o traditional SF coupling [Narayanan et al. '92]
o gradient flow coupling & SF b.c.’s [Fritsch & Ramos '13]



SF coupling

=

(inhomogeneous) Dirichlet conditions for the gauge field
induce family of background gauge fields B,, with parameter 7.

With some care the induced background fields are unique up to
gauge equivalence.

Effective action
e "Bl — /D[A,M@]e_s[Awm

Perturbative expansion:

r[B] = &TolB] + (8] + O(g)

Define
1 0,[B]  (9,S)
g2(L)  o,o[B]  0,00[B]
SF coupling is defined by the response of the system to a change of

a colour electric background field. [Narayanan et al. '92]



Gradient flow & renormalized finite volume coupling

e QCD, gauge field A,(x), Yang-Mills gradient flow equation:

0Bu(t.x) = DGu(tx) (= —55h), Bul0.X) = Aulx)

with field tensor G, = 0,B, — 0,B,, + [B,, B,].
@ Local gauge invariant composite fields at positive flow time t > 0
such as
E(t,x) = —3tr {Guu(x, t)Gu(x, t)}
are renormalized; no mixing with other fields of same or lower
dimensions! [Liischer & Weisz '2012];

@ Explicit one-loop calculation (infinite volume, dimensional
regularization) [Liischer 2010]:

(E(t,x)) = 4 &S

) /’l' = \/§

= E(t,x) is, for t > 0, a renormalized field; unlike E(0, x) which
has a quartic and a logarithmic divergence!

3exs(i) (| 1.0978 +0.0075 Ny , ) + 1
1672¢2



Gradient flow couplings

@ Infinite volume: Non-perturbative definition of a renormalized
“gradient flow coupling” at scale yu = 1/+/8t:

def 16’/T2
gg}F,oo(:u’) = Tt2<E(t,x)>

e Finite volume: consider (E(t,x)) in a finite box of dimension L*, fix
the ratio ¢ = \/ﬁ/L and define

Be(l) = N(OTE(E(E), lim M(e) =

c—0

@ defines family of renormalized couplings, with parameter c.
(typical range from 0.2 to 0.5);
@ N(c) is calculable in lowest order perturbation theory; depends on
b.c’s for the gauge field; periodic in space; time direction:
o periodic b.c.’s [Fodor et al. 2012]
= SF (Dirichlet) b.c.’s [Fritzsch & Ramos 2012], used here!

o twisted periodic b.c.'s [Ramos 2013]
o open-SF (Neumann-Dirichlet) b.c.’s [Liischer 2013]



Comparison ggr Vs. gsk

SF-coupling:
e 3-loop B-function (i.e.by) is known [Bode, Weisz, Wolff '99]
e 2-loop ¢; known: O(a) boundary effects highly suppressed
o A(1/8%) x (AL)/L, roughly independent of g.
e requires very large statistics; variance increases with L/a.

e large physical volumes very difficult (N.B. coupling defined by
variation of b.c.'s).

GF-coupling (finite volume, SF b.c.’s)
e high statistical precision
e can be measured in large physical volumes; ideal to match hadronic
physics!
e Age/Aqcp not yet known; only universal by, by can be used.
e A(1/8?%) o< 1/g%: more expensive as g decreases.

e Relatively large O(a?) effects; can we reduce these?



Overview of the strategy

Combining the advantages of both couplings we proceed as follows:

e 6 o U

Compute the hadronic scale Fx on Ny =2+ 1 CLS configurations

Compute Fi X Lymax (defined through the GF-coupling; aim for
Limax = 0.5fm);

Compute the step scaling functions for g2g(L);
Perform 2-3 steps to cover the range from Ly to Lgyi =~ 0.05fm

At the intermediate scale L,,; switch from GF to SF scheme; also
change from Liischer-Weisz to Wilson gauge action;

obtain relation Lgyi/Lmax and thus Lg,.; X Fgk.
Compute the step-scaling function for g2-(L)
extract Lgwi\qQcD

Combine results to obtain Aqcp/Fk



Overview of the strategy
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(courtesy Patrick Fritzsch)



Computation of Lg,iAqcp

Define Ly, implicitly by g2¢(Lswi) = 2.012
Obtain continuum step scaling function (SSF) by fit ansatz for
continuum & cutoff effects

o(u) = gSZF(zL)|u:§SZF(L)

for a range of u-values, u € [1.10891, 2.0120]
Given o(u) start with ug = 2.012 and find vy, up,...,us.

up—1 =o(uy), n=1,...,5, = u,= gst (27"sti)

At scale 27" Lg,; obtain Lg,iAsr

by 1 {b%—bzbo

Lowil\sF = 2" [boun] 2 e 2boun exp 253 Up + O(U%)}
0

o Connect to MS scheme AJi™>/ANGH = 0.382863(1)



Simulations

On lattices with sizes L/a = 4,6,8,12 measure u = g2(L).
requires precise knowledge of massless limit, i.e. ke (g0, L/a)
Double lattice size and measure ¥ (u, a/L) = g*(2L)

analyze X (u,a/L) directly

Alternatively, reduce cutoff effects perturbatively up to 2-loop order:
Y(u,a/L) —o(u)
o(u)
d1.2(L/a) are known [Bode, Weisz & Wolff '99]

cutoff effects in

d(u,a/L) = = 61(L/a)u + 6(L/a)u® + O(u?)

Y(u,a/l)
1+ 61(L/a)u+ dx(L/a)u?

Y (u,a/L) =

start at order u?!



Obtaining the SSF in the continuum

Example for global fit ansatz:

u-+ sou2 + 51u3

5

Y (u,a/Ll) =
+ C]U4—|—C2U

2

a

+ P1U4p

@ 5o, s1 fixed to perturbative
values:
so=2byIn2, s =s3+2b;In2

@ 3 parameters: ci, ¢z, p1;
19 data points,

x?/d.o.f. = 1.099
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Precision compared to earlier results for Ny = 0,2,3. 4
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o Ny =0,2,4 [ALPHA,'92-'12]
] Nf =3
[PACS-CS "09]



[o(u)-u] / [2 In(2) u“]

Precision compared to earlier results for Ny = 0,2,3. 4
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@ Various fits (3-5 parameters,

perturbatively improved &
unimproved data), find stability
after n = 2, 3 step-scaling steps

= sti/\%:3 = 0.0802(16)

(preliminary)



More details on the definition of g&g

@ Choose same bare action as CLS in large volume;
o SF boundaries: use variant B by [Aoki, Frezzotti, Weisz, '98]

e Boundary O(a) improvement: ¢, & to 1-loop order
[Aoki, Ide, Takeda '03; Vilaseca '15]

e Study of O(a) boundary effects (PT and quenched):

Q@ T=1L, c=+8t/L=0.3seems OK;
@ advantageous to restrict to magnetic components at xo = T/2:

—3(tr {Gu(t, x)Gul(t, X)}>’x0:T/2,T:L,mq:O =N(c,a/L)gér(L)

@ Use N(c,a/L) for given L/a = g2 = g§ exact at tree-level.
e Wilson flow & O(a?) improved Zeuthen flow
o Clover & O(a?) improved observable

e topology freezing: use projection on @ = 0 sector [Fritzsch, Ramos,
Stollenwerk '13]; becomes relevant for L > 0.25fm



Matching at the switching scale Lg,; (Wilson action)

22:(Lowi) = 2.012 = (B, L/a) — (B,2L/a) = &2r(2Lswi) = 2.6808(54)
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Summary status: /\QCD with target error < 4-5%

SF coupling for L < Lgy; =~ 0.05 fm;
unprecedented precision (high statistics & precise tuning of x):

Br(Lai) =2012 =  LoiAM=® =0.0802(16) (preliminary)

Definition of gradient flow coupling g2(L) settled:

o reduced boundary O(a) effects by restricting E(t, x) to magnetic
components;
o Symanzik O(a®) improvement: Zeuthen flow and observable.

Matching at switching scale Lgy;
82r(2Lswi) = 2.6808(54)  (preliminary)

Running of g2¢(L) from 0.05 — 0.1 fm to 0.5 fm:

e precision tuning of « finished;
e simulations for step scaling function underway.

Connect to Fi on CLS config's: details to be defined.



